1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Tunneling_sample
*
* %I
* Written by: Kim Lefmann
* Date: 10.05.07
* Origin: Risoe
*
* A Double-cylinder shaped all-incoherent scatterer
* with elastic, quasielastic (Lorentzian), and tunneling (sharp)
* components.
*
* %D
* A Double-cylinder shaped all-incoherent scatterer
* with both elastic, quasielastic (Lorentzian), and tunneling (sharp)
* components. No multiple scattering. Absorbtion included.
* The shape of the sample may be a box with dimensions xwidth, yheight, zdepth.
* The area to scatter to is a disk of radius 'focus_r' situated at the target.
* This target area may also be rectangular if specified focus_xw and focus_yh
* or focus_aw and focus_ah, respectively in meters and degrees.
* The target itself is either situated according to given coordinates (x,y,z),
* or defined with the relative target_index of the component to focus
* to (next is +1).
* This target position will be set to its AT position. When targeting to
* centered components, such as spheres or cylinders, define an Arm component
* where to focus to.
*
* The outgoing polarization is calculated as for nuclear spin incoherence:
* P' = 1/3*P-2/3P = -1/3P
* As above multiple scattering is ignored .
*
* Example: Tunneling_sample(thickness=0.001,radius=0.01,yheight=0.02,focus_r=0.035,
* target_index=1)
*
* %P
* INPUT PARAMETERS:
* radius: [m] Outer radius of sample in (x,z) plane
* yheight: [m] vert. dimension of sample, as a height
* thickness: [m] Thickness of cylindrical sample in (x,z) plane
* focus_r: [m] Radius of disk containing target. Use 0 for full space
* target_index: [1] relative index of component to focus at, e.g. next is +1
* xwidth: horiz. dimension of sample, as a width [m]
* zdepth: depth of sample [m]
* focus_xw: horiz. dimension of a rectangular area [m]
* focus_yh: vert. dimension of a rectangular area [m]
* focus_aw: horiz. angular dimension of a rectangular area [deg]
* focus_ah: vert. angular dimension of a rectangular area [deg]
* sigma_abs:Absorbtion cross section pr. unit cell [barns]
* sigma_inc:Total incoherent scattering cross section pr. unit cell [barns]
* Vc: Unit cell volume [AA^3]
* p_interact: MC Probability for scattering the ray; otherwise transmit [1]
* f_QE: Fraction of quasielastic scattering [1]
* f_tun: Fraction of tunneling scattering (f_QE+f_tun < 1) [1]
* gamma: Lorentzian width of quasielastic broadening (HWHM) [meV]
* E_tun: Tunneling energy [meV]
* target_x: X-position of target to focus at [m]
* target_y: Y-position of target to focus at [m]
* target_z: Z-position of target to focus at [m]
*
* Variables calculated in the component
*
* V_my_s: Attenuation factor due to scattering [m^-1]
* V_my_a: Attenuation factor due to absorbtion [m^-1]
*
* %L
* <A HREF="http://neutron.risoe.dk/mcstas/components/tests/v_sample/">Test
* results</A> (not up-to-date).
*
* %E
*******************************************************************************/
DEFINE COMPONENT Tunneling_sample
SETTING PARAMETERS (thickness=0, radius=0.01, focus_r = 0,
p_interact = 1, f_QE=0, f_tun=0, gamma=0, E_tun=0,
target_x = 0, target_y = 0, target_z = 0.235, focus_xw=0, focus_yh=0,
focus_aw=0, focus_ah=0, xwidth=0, yheight=0.05, zdepth=0, sigma_abs=5.08, sigma_inc=4.935, Vc=13.827, int target_index=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
struct StructVarsV
{
double sigma_a; /* Absorption cross section per atom (barns) */
double sigma_i; /* Incoherent scattering cross section per atom (barns) */
double rho; /* Density of atoms (AA-3) */
double my_s;
double my_a_v;
char isrect; /* true when sample is a box */
double distance; /* when non zero, gives rect target distance */
double aw,ah; /* rectangular angular dimensions */
double xw,yh; /* rectangular metrical dimensions */
double tx,ty,tz; /* target coords */
};
%}
DECLARE
%{
struct StructVarsV VarsV;
double ftun;
double fQE;
%}
INITIALIZE
%{
if (!xwidth || !yheight || !zdepth) /* Cannot define a rectangle */
if (!radius || !yheight) /* Cannot define a cylinder either */
exit(fprintf(stderr,"V_sample: %s: sample has no volume (zero dimensions)\n", NAME_CURRENT_COMP));
else /* It is a cylinder */
VarsV.isrect=0;
else /* It is a rectangle */
VarsV.isrect=1;
VarsV.sigma_a=sigma_abs;
VarsV.sigma_i=sigma_inc;
VarsV.rho = (1/Vc);
VarsV.my_s=(VarsV.rho * 100 * VarsV.sigma_i);
VarsV.my_a_v=(VarsV.rho * 100 * VarsV.sigma_a);
/* now compute target coords if a component index is supplied */
VarsV.tx= VarsV.ty=VarsV.tz=0;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &VarsV.tx, &VarsV.ty, &VarsV.tz);
}
else
{ VarsV.tx = target_x; VarsV.ty = target_y; VarsV.tz = target_z; }
if (!(VarsV.tx || VarsV.ty || VarsV.tz))
printf("Tunneling_sample: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
VarsV.distance=sqrt(VarsV.tx*VarsV.tx+VarsV.ty*VarsV.ty+VarsV.tz*VarsV.tz);
/* different ways of setting rectangular area */
VarsV.aw = VarsV.ah = 0;
if (focus_xw) {
VarsV.xw = focus_xw;
}
if (focus_yh) {
VarsV.yh = focus_yh;
}
if (focus_aw) {
VarsV.aw = DEG2RAD*focus_aw;
}
if (focus_ah) {
VarsV.ah = DEG2RAD*focus_ah;
}
/* Check that probabilities are positive and do not exceed unity */
if (f_tun<0)
ftun=0;
else
ftun=f_tun;
if(f_QE<0)
fQE=0;
else
fQE=f_QE;
if ((ftun+fQE)>1) {
ftun=0;
printf("Tunneling_sample: Sum of inelastic probabilities > 1. Setting f_tun=0");
if (fQE>1) {
fQE=0;
printf("Tunneling_sample: Probability fQE > 1. Setting fQE=0.");
}
}
%}
TRACE
%{
double t0, t3; /* Entry/exit time for outer cylinder */
double t1, t2; /* Entry/exit time for inner cylinder */
double v; /* Neutron velocity */
double dt0, dt1, dt2, dt; /* Flight times through sample */
double l_full; /* Flight path length for non-scattered neutron */
double l_i, l_o=0; /* Flight path lenght in/out for scattered neutron */
double my_a=0; /* Velocity-dependent attenuation factor */
double solid_angle=0; /* Solid angle of target as seen from scattering point */
double aim_x=0, aim_y=0, aim_z=1; /* Position of target relative to scattering point */
double v_i, v_f, E_i, E_f; /* initial and final energies and velocities */
double dE; /* Energy transfer */
double scatt_choice; /* Representing random choice of scattering type */
int intersect=0;
if (VarsV.isrect)
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
if(intersect)
{
if(t0 < 0) ABSORB; /* we already passed the sample; this is illegal */
/* Neutron enters at t=t0. */
if(VarsV.isrect)
t1 = t2 = t3;
else
if(!thickness || !cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius-thickness, yheight))
t1 = t2 = t3;
dt0 = t1-t0; /* Time in sample, ingoing */
dt1 = t2-t1; /* Time in hole */
dt2 = t3-t2; /* Time in sample, outgoing */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (dt0 + dt2); /* Length of full path through sample */
if (v) my_a = VarsV.my_a_v*(2200/v);
if (p_interact >= 1 || rand01()<p_interact) /* Scattering */
{
dt = rand01()*(dt0+dt2); /* Time of scattering (relative to t0) */
l_i = v*dt; /* Penetration in sample: scattering+abs */
if (dt > dt0)
dt += dt1; /* jump to 2nd side of cylinder */
PROP_DT(dt+t0); /* Point of scattering */
if ((VarsV.tx || VarsV.ty || VarsV.tz)) {
aim_x = VarsV.tx-x; /* Vector pointing at target (anal./det.) */
aim_y = VarsV.ty-y;
aim_z = VarsV.tz-z;
}
if(VarsV.aw && VarsV.ah) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, VarsV.aw, VarsV.ah, ROT_A_CURRENT_COMP);
} else if(VarsV.xw && VarsV.yh) {
randvec_target_rect(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, VarsV.xw, VarsV.yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(vx, vy, vz);
scatt_choice = rand01(); /* chooses type of scattering */
v_i = v; /* Store initial velocity in case of inel. */
E_i = VS2E*v_i*v_i;
if (scatt_choice<(fQE+ftun)) /* Inelastic choices */
{
if (scatt_choice<fQE) /* Quasielastic */
{ dE = gamma*tan(PI/2*randpm1());
}
else
{ if (randpm1()>0)
dE = E_tun;
else
dE = -E_tun;
}
E_f = E_i + dE;
if (E_f <= 0)
ABSORB;
v_f = SE2V*sqrt(E_f);
v = v_f;
}
vx *= v;
vy *= v;
vz *= v;
if(!VarsV.isrect) {
if(!cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight))
{
/* ??? did not hit cylinder */
printf("FATAL ERROR: Did not hit cylinder from inside.\n");
exit(1);
}
dt = t3; /* outgoing point */
if(thickness && cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, radius-thickness, yheight) &&
t2 > 0)
dt -= (t2-t1); /* Subtract hollow part */
}
else
{
if(!box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth))
{
/* ??? did not hit box */
printf("FATAL ERROR: Did not hit box from inside.\n");
exit(1);
}
dt = t3;
}
l_o = v*dt; /* trajectory after scattering point: absorption only */
p *= v/v_i*l_full*VarsV.my_s*exp(-my_a*(l_i+v_i/v*l_o)-VarsV.my_s*l_i);
/* We do not consider scattering from 2nd part (outgoing) */
p /= 4*PI/solid_angle;
p /= p_interact;
/* Polarisation part (1/3 NSF, 2/3 SF) */
sx *= -1.0/3.0;
sy *= -1.0/3.0;
sz *= -1.0/3.0;
SCATTER;
}
else /* Transmitting; always elastic */
{
p *= exp(-(my_a+VarsV.my_s)*l_full);
p /= (1-p_interact);
}
}
%}
MCDISPLAY
%{
if (!VarsV.isrect)
{
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
if (thickness)
{
double radius_i=radius-thickness;
circle("xz", 0, yheight/2.0, 0, radius_i);
circle("xz", 0, -yheight/2.0, 0, radius_i);
line(-radius_i, -yheight/2.0, 0, -radius_i, +yheight/2.0, 0);
line(+radius_i, -yheight/2.0, 0, +radius_i, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius_i, 0, +yheight/2.0, -radius_i);
line(0, -yheight/2.0, +radius_i, 0, +yheight/2.0, +radius_i);
}
}
else
{
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
%}
END
|