1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SasView_fractal
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView fractal model component as sample description.
*
* %Description
*
* SasView_fractal component, generated from fractal.c in sasmodels.
*
* Example:
* SasView_fractal(volfraction, radius, fractal_dim, cor_length, sld_block, sld_solvent,
* model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0,
* int target_index=1, target_x=0, target_y=0, target_z=1,
* focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0,
* pd_radius=0.0, pd_cor_length=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* volfraction: [] ([0.0, 1]) volume fraction of blocks.
* radius: [Ang] ([0.0, inf]) radius of particles.
* fractal_dim: [] ([0.0, 6.0]) fractal dimension.
* cor_length: [Ang] ([0.0, inf]) cluster correlation length.
* sld_block: [1e-6/Ang^2] ([-inf, inf]) scattering length density of particles.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) scattering length density of solvent.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_cor_length: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_fractal
SETTING PARAMETERS (
volfraction=0.05,
radius=5.0,
fractal_dim=2.0,
cor_length=100.0,
sld_block=2.0,
sld_solvent=6.4,
model_scale=1.0,
model_abs=0.0,
xwidth=0.01,
yheight=0.01,
zdepth=0.005,
R=0,
target_x=0,
target_y=0,
target_z=1,
int target_index=1,
focus_xw=0.5,
focus_yh=0.5,
focus_aw=0,
focus_ah=0,
focus_r=0,
pd_radius=0.0,
pd_cor_length=0.0)
SHARE %{
#ifdef OPENACC
#define USE_CUDA
#endif
%include "sas_kernel_header.c"
/* BEGIN Required header for SASmodel fractal */
#define HAS_Iq
#define FORM_VOL
#ifndef SAS_HAVE_sas_3j1x_x
#define SAS_HAVE_sas_3j1x_x
#line 1 "sas_3j1x_x"
/**
* Spherical Bessel function 3*j1(x)/x
*
* Used for low q to avoid cancellation error.
* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
* in this case it is likely cancellation errors in the original expression
* using double precision that are the source.
*/
double sas_3j1x_x(double q);
// The choice of the number of terms in the series and the cutoff value for
// switching between series and direct calculation depends on the numeric
// precision.
//
// Point where direct calculation reaches machine precision:
//
// single machine precision eps 3e-8 at qr=1.1 **
// double machine precision eps 4e-16 at qr=1.1
//
// Point where Taylor series reaches machine precision (eps), where taylor
// series matches direct calculation (cross) and the error at that point:
//
// prec n eps cross error
// single 3 0.28 0.4 6.2e-7
// single 4 0.68 0.7 2.3e-7
// single 5 1.18 1.2 7.5e-8
// double 3 0.01 0.03 2.3e-13
// double 4 0.06 0.1 3.1e-14
// double 5 0.16 0.2 5.0e-15
//
// ** Note: relative error on single precision starts increase on the direct
// method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3. This should be
// safe for the sans range, with objects of 100 nm supported to a q of 0.1
// while maintaining 5 digits of precision. For usans/sesans, the objects
// are larger but the q is smaller, so again it should be fine.
//
// See explore/sph_j1c.py for code to explore these ranges.
// Use 4th order series
#if FLOAT_SIZE>4
#define SPH_J1C_CUTOFF 0.1
#else
#define SPH_J1C_CUTOFF 0.7
#endif
#pragma acc routine seq
double sas_3j1x_x(double q)
{
// 2017-05-18 PAK - support negative q
if (fabs(q) < SPH_J1C_CUTOFF) {
const double q2 = q*q;
return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.)))));
} else {
double sin_q, cos_q;
SINCOS(q, sin_q, cos_q);
return 3.0*(sin_q/q - cos_q)/(q*q);
}
}
#endif // SAS_HAVE_sas_3j1x_x
#ifndef SAS_HAVE_sas_gamma
#define SAS_HAVE_sas_gamma
#line 1 "sas_gamma"
/*
The wrapper for gamma function from OpenCL and standard libraries
The OpenCL gamma function fails miserably on values lower than 1.0
while works fine on larger values.
We use gamma definition Gamma(t + 1) = t * Gamma(t) to compute
to function for values lower than 1.0. Namely Gamma(t) = 1/t * Gamma(t + 1)
For t < 0, we use Gamma(t) = pi / ( Gamma(1 - t) * sin(pi * t) )
*/
#if defined(NEED_TGAMMA)
#pragma acc routine seq
static double cephes_stirf(double x)
{
const double MAXSTIR=143.01608;
const double SQTPI=2.50662827463100050242E0;
double y, w, v;
w = 1.0 / x;
w = ((((
7.87311395793093628397E-4*w
- 2.29549961613378126380E-4)*w
- 2.68132617805781232825E-3)*w
+ 3.47222221605458667310E-3)*w
+ 8.33333333333482257126E-2)*w
+ 1.0;
y = exp(x);
if (x > MAXSTIR)
{ /* Avoid overflow in pow() */
v = pow(x, 0.5 * x - 0.25);
y = v * (v / y);
}
else
{
y = pow(x, x - 0.5) / y;
}
y = SQTPI * y * w;
return(y);
}
#pragma acc routine seq
static double tgamma(double x) {
double p, q, z;
int sgngam;
int i;
sgngam = 1;
if (isnan(x))
return(x);
q = fabs(x);
if (q > 33.0)
{
if (x < 0.0)
{
p = floor(q);
if (p == q)
{
return (NAN);
}
i = p;
if ((i & 1) == 0)
sgngam = -1;
z = q - p;
if (z > 0.5)
{
p += 1.0;
z = q - p;
}
z = q * sin(M_PI * z);
if (z == 0.0)
{
return(NAN);
}
z = fabs(z);
z = M_PI / (z * cephes_stirf(q));
}
else
{
z = cephes_stirf(x);
}
return(sgngam * z);
}
z = 1.0;
while (x >= 3.0)
{
x -= 1.0;
z *= x;
}
while (x < 0.0)
{
if (x > -1.E-9)
goto small;
z /= x;
x += 1.0;
}
while (x < 2.0)
{
if (x < 1.e-9)
goto small;
z /= x;
x += 1.0;
}
if (x == 2.0)
return(z);
x -= 2.0;
p = (((((
+1.60119522476751861407E-4*x
+ 1.19135147006586384913E-3)*x
+ 1.04213797561761569935E-2)*x
+ 4.76367800457137231464E-2)*x
+ 2.07448227648435975150E-1)*x
+ 4.94214826801497100753E-1)*x
+ 9.99999999999999996796E-1;
q = ((((((
-2.31581873324120129819E-5*x
+ 5.39605580493303397842E-4)*x
- 4.45641913851797240494E-3)*x
+ 1.18139785222060435552E-2)*x
+ 3.58236398605498653373E-2)*x
- 2.34591795718243348568E-1)*x
+ 7.14304917030273074085E-2)*x
+ 1.00000000000000000320E0;
return(z * p / q);
small:
if (x == 0.0)
{
return (NAN);
}
else
return(z / ((1.0 + 0.5772156649015329 * x) * x));
}
#endif // NEED_TGAMMA
#pragma acc routine seq
inline double sas_gamma(double x)
{
// Note: the builtin tgamma can give slow and unreliable results for x<1.
// The following transform extends it to zero and to negative values.
// It should return NaN for zero and negative integers but doesn't.
// The accuracy is okay but not wonderful for negative numbers, maybe
// one or two digits lost in the calculation. If higher accuracy is
// needed, you could test the following loop:
// double norm = 1.;
// while (x<1.) { norm*=x; x+=1.; }
// return tgamma(x)/norm;
return (x<0. ? M_PI/tgamma(1.-x)/sin(M_PI*x) : tgamma(x+1)/x);
}
#endif // SAS_HAVE_sas_gamma
#ifndef SAS_HAVE_fractal_sq
#define SAS_HAVE_fractal_sq
#line 1 "fractal_sq"
#pragma acc routine seq
static double
fractal_sq(double q, double radius, double fractal_dim, double cor_length)
{
//calculate S(q), using Teixeira, Eq(15)
// mathematica query to check limiting conditions:
// lim x->0 of [ x gamma(x-1) sin(arctan(q c (x-1))) (q r)^(-x) (1 + 1/(q c)^2)^((1-x)/2) ]
// Note: gamma(x) may be unreliable for x<0, so the gamma(D-1) is risky.
// We instead transform D*gamma(D-1) into gamma(D+1)/(D-1).
double term;
if (q == 0.) {
const double D = fractal_dim;
term = pow(cor_length/radius, D)*sas_gamma(D+1.);
} else if (fractal_dim == 0.) {
term = 1.0;
} else if (fractal_dim == 1.) {
term = atan(q*cor_length)/(q*radius);
} else {
// q>0, D>0
const double D = fractal_dim;
const double Dm1 = fractal_dim - 1.0;
// Note: for large Dm1, sin(Dm1*atan(q*cor_length) can go negative
const double t1 = sas_gamma(D+1.)/Dm1*sin(Dm1*atan(q*cor_length));
const double t2 = pow(q*radius, -D);
const double t3 = pow(1.0 + 1.0/square(q*cor_length), -0.5*Dm1);
term = t1 * t2 * t3;
}
return 1.0 + term;
}
#endif // SAS_HAVE_fractal_sq
#ifndef SAS_HAVE_fractal
#define SAS_HAVE_fractal
#line 1 "fractal"
static double
form_volume_fractal(double radius)
{
return M_4PI_3 * cube(radius);
}
static double
Iq_fractal(double q,
double volfraction,
double radius,
double fractal_dim,
double cor_length,
double sld_block,
double sld_solvent)
{
const double sq = fractal_sq(q, radius, fractal_dim, cor_length);
//calculate P(q) for the spherical subunits
const double fq = form_volume_fractal(radius) * (sld_block-sld_solvent)
*sas_3j1x_x(q*radius);
// scale to units cm-1 sr-1 (assuming data on absolute scale)
// convert I(1/A) to (1/cm) => 1e8 * I(q)
// convert rho^2 in 10^-6 1/A to 1/A => 1e-12 * I(q)
// combined: 1e-4 * I(q)
return 1.e-4 * volfraction * sq * fq * fq;
}
#endif // SAS_HAVE_fractal
/* END Required header for SASmodel fractal */
%}
DECLARE
%{
double shape;
double my_a_v;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth)
shape=1;
else if (R > 0 && yheight)
shape=0;
else if (R > 0 && !yheight)
shape=2;
if (shape < 0)
exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
my_a_v = model_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */
%}
TRACE
%{
double t0, t1, v, l_full, l, l_1, dt, d_phi, my_s;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
double f, solid_angle, vx_i, vy_i, vz_i, q, qx, qy, qz;
char intersect=0;
/* Intersection neutron trajectory / sample (sample surface) */
if (shape == 0){
intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, R, yheight);}
else if (shape == 1){
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);}
else if (shape == 2){
intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, R);}
if(intersect)
{
if(t0 < 0)
ABSORB;
/* Neutron enters at t=t0. */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (t1 - t0); /* Length of full path through sample */
dt = rand01()*(t1 - t0) + t0; /* Time of scattering */
PROP_DT(dt); /* Point of scattering */
l = v*(dt-t0); /* Penetration in sample */
vx_i=vx;
vy_i=vy;
vz_i=vz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
qx = V2K*(vx_i-vx);
qy = V2K*(vy_i-vy);
qz = V2K*(vz_i-vz);
q = sqrt(qx*qx+qy*qy+qz*qz);
double trace_radius=radius;
double trace_cor_length=cor_length;
if ( pd_radius!=0.0 || pd_cor_length!=0.0 ){
trace_radius = (randnorm()*pd_radius+1.0)*radius;
trace_cor_length = (randnorm()*pd_cor_length+1.0)*cor_length;
}
// Sample dependent. Retrieved from SasView./////////////////////
float Iq_out;
Iq_out = 1;
Iq_out = Iq_fractal(q, volfraction, trace_radius, fractal_dim, trace_cor_length, sld_block, sld_solvent);
float vol;
vol = 1;
// Scale by 1.0E2 [SasView: 1/cm -> McStas: 1/m]
Iq_out = model_scale*Iq_out / vol * 1.0E2;
l_1 = v*t1;
p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_v*(l+l_1)/v);
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, R);
circle("xz", 0, -yheight/2.0, 0, R);
line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, R);
circle("xz", 0, 0.0, 0, R);
circle("yz", 0, 0.0, 0, R);
}
%}
END
|