File: SasView_hardsphere.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (340 lines) | stat: -rw-r--r-- 11,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SasView_hardsphere
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView hardsphere model component as sample description.
*
* %Description
*
* SasView_hardsphere component, generated from hardsphere.c in sasmodels.
*
* Example: 
*  SasView_hardsphere(radius_effective, volfraction, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_radius_effective=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* radius_effective: [Ang] ([0, inf]) effective radius of hard sphere.
* volfraction: [] ([0, 0.74]) volume fraction of hard spheres.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius_effective: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_hardsphere

SETTING PARAMETERS (
        radius_effective=50.0,
        volfraction=0.2,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_radius_effective=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel hardsphere */
#define HAS_Iq

#ifndef SAS_HAVE_hardsphere
#define SAS_HAVE_hardsphere

#line 1 "hardsphere"
double Iq_hardsphere(double q, double radius_effective, double volfraction)
{
      double D,A,B,G,X,X2,X4,S,C,FF,HARDSPH;
      // these are c compiler instructions, can also put normal code inside the "if else" structure
      #if FLOAT_SIZE > 4
      // double precision
      // orig had 0.2, don't call the variable cutoff as PAK already has one called that!
      // Must use UPPERCASE name please.
      // 0.05 better, 0.1 OK
      #define CUTOFFHS 0.05
      #else
      // 0.1 bad, 0.2 OK, 0.3 good, 0.4 better, 0.8 no good
      #define CUTOFFHS 0.4
      #endif

      if(fabs(radius_effective) < 1.E-12) {
               HARDSPH=1.0;
//printf("HS1 %g: %g\n",q,HARDSPH);
               return(HARDSPH);
      }
      // removing use of pow(xxx,2) and rearranging the calcs
      // of A, B & G cut ~40% off execution time ( 0.5 to 0.3 msec)
      X = 1.0/( 1.0 -volfraction);
      D= X*X;
      A= (1.+2.*volfraction)*D;
      A *=A;
      X=fabs(q*radius_effective*2.0);

      if(X < 5.E-06) {
                 HARDSPH=1./A;
//printf("HS2 %g: %g\n",q,HARDSPH);
                 return(HARDSPH);
      }
      X2 =X*X;
      B = (1.0 +0.5*volfraction)*D;
      B *= B;
      B *= -6.*volfraction;
      G=0.5*volfraction*A;

      if(X < CUTOFFHS) {
      // RKH Feb 2016, use Taylor series expansion for small X
      // else no obvious way to rearrange the equations to avoid
      // needing a very high number of significant figures.
      // Series expansion found using Mathematica software. Numerical test
      // in .xls showed terms to X^2 are sufficient
      // for 5 or 6 significant figures, but I put the X^4 one in anyway
            //FF = 8*A +6*B + 4*G - (0.8*A +2.0*B/3.0 +0.5*G)*X2 +(A/35. +B/40. +G/50.)*X4;
            // refactoring the polynomial makes it very slightly faster (0.5 not 0.6 msec)
            //FF = 8*A +6*B + 4*G + ( -0.8*A -2.0*B/3.0 -0.5*G +(A/35. +B/40. +G/50.)*X2)*X2;

            FF = 8.0*A +6.0*B + 4.0*G + ( -0.8*A -B/1.5 -0.5*G +(A/35. +0.0125*B +0.02*G)*X2)*X2;

            // combining the terms makes things worse at smallest Q in single precision
            //FF = (8-0.8*X2)*A +(3.0-X2/3.)*2*B + (4+0.5*X2)*G +(A/35. +B/40. +G/50.)*X4;
            // note that G = -volfraction*A/2, combining this makes no further difference at smallest Q
            //FF = (8 +2.*volfraction + ( volfraction/4. -0.8 +(volfraction/100. -1./35.)*X2 )*X2 )*A  + (3.0 -X2/3. +X4/40.)*2.*B;
            HARDSPH= 1./(1. + volfraction*FF );
//printf("HS3 %g: %g\n",q,HARDSPH);
            return(HARDSPH);
      }
      X4=X2*X2;
      SINCOS(X,S,C);

// RKH Feb 2016, use version FISH code as is better than original sasview one
// at small Q in single precision, and more than twice as fast in double.
      //FF=A*(S-X*C)/X + B*(2.*X*S -(X2-2.)*C -2.)/X2 + G*( (4.*X2*X -24.*X)*S -(X4 -12.*X2 +24.)*C +24. )/X4;
      // refactoring the polynomial here & above makes it slightly faster

      FF=  (( G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )/X2 + B*(2.*X*S -(X2-2.)*C -2.) )/X + A*(S-X*C))/X ;
      HARDSPH= 1./(1. + 24.*volfraction*FF/X2 );

      // changing /X and /X2 to *MX1 and *MX2, no significantg difference?
      //MX=1.0/X;
      //MX2=MX*MX;
      //FF=  (( G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )*MX2 + B*(2.*X*S -(X2-2.)*C -2.) )*MX + A*(S-X*C)) ;
      //HARDSPH= 1./(1. + 24.*volfraction*FF*MX2*MX );

// grouping the terms, was about same as sasmodels for single precision issues
//     FF=A*(S/X-C) + B*(2.*S/X - C +2.0*(C-1.0)/X2) + G*( (4./X -24./X3)*S -(1.0 -12./X2 +24./X4)*C +24./X4 );
//     HARDSPH= 1./(1. + 24.*volfraction*FF/X2 );
// remove 1/X2 from final line, take more powers of X inside the brackets, stil bad
//      FF=A*(S/X3-C/X2) + B*(2.*S/X3 - C/X2 +2.0*(C-1.0)/X4) + G*( (4./X -24./X3)*S -(1.0 -12./X2 +24./X4)*C +24./X4 )/X2;
//      HARDSPH= 1./(1. + 24.*volfraction*FF );
//printf("HS4 %g: %g\n",q,HARDSPH);
      return(HARDSPH);
}

#endif // SAS_HAVE_hardsphere



/* END Required header for SASmodel hardsphere */
%}
    DECLARE
%{
  double shape;
  double my_a_v;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  my_a_v = model_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */

%}


TRACE
%{
  double t0, t1, v, l_full, l, l_1, dt, d_phi, my_s;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
  double f, solid_angle, vx_i, vy_i, vz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection neutron trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, R);}
  if(intersect)
  {
    if(t0 < 0)
      ABSORB;

    /* Neutron enters at t=t0. */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t1 - t0);          /* Length of full path through sample */
    dt = rand01()*(t1 - t0) + t0;    /* Time of scattering */
    PROP_DT(dt);                     /* Point of scattering */
    l = v*(dt-t0);                   /* Penetration in sample */

    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    vx *= v;
    vy *= v;
    vz *= v;
    qx = V2K*(vx_i-vx);
    qy = V2K*(vy_i-vy);
    qz = V2K*(vz_i-vz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_radius_effective=radius_effective;
    if ( pd_radius_effective!=0.0 ){
    trace_radius_effective = (randnorm()*pd_radius_effective+1.0)*radius_effective;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_hardsphere(q, trace_radius_effective, volfraction);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McStas: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    l_1 = v*t1;
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_v*(l+l_1)/v);
    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END