File: SasView_hayter_msa.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (808 lines) | stat: -rw-r--r-- 23,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SasView_hayter_msa
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView hayter_msa model component as sample description.
*
* %Description
*
* SasView_hayter_msa component, generated from hayter_msa.c in sasmodels.
*
* Example: 
*  SasView_hayter_msa(radius_effective, volfraction, charge, temperature, concentration_salt, dielectconst, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_radius_effective=0.0, pd_charge=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* radius_effective: [Ang] ([0, inf]) effective radius of charged sphere.
* volfraction: [None] ([0, 0.74]) volume fraction of spheres.
* charge: [e] ([1e-06, 200]) charge on sphere (in electrons).
* temperature: [K] ([0, 450]) temperature, in Kelvin, for Debye length calculation.
* concentration_salt: [M] ([0, inf]) conc of salt, moles/litre, 1:1 electolyte, for Debye length.
* dielectconst: [None] ([-inf, inf]) dielectric constant (relative permittivity) of solvent, kappa, default water, for Debye length.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius_effective: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_charge: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_hayter_msa

SETTING PARAMETERS (
        radius_effective=20.75,
        volfraction=0.0192,
        charge=19.0,
        temperature=318.16,
        concentration_salt=0.0,
        dielectconst=71.08,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_radius_effective=0.0,
        pd_charge=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel hayter_msa */
#define HAS_Iq

#ifndef SAS_HAVE_hayter_msa
#define SAS_HAVE_hayter_msa

#line 1 "hayter_msa"
// Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions 
//
// C99 needs declarations of routines here
double Iq_hayter_msa(double QQ,
      double radius_effective, double zz, double VolFrac, double Temp, double csalt, double dialec);
int
sqcoef(int ir, double gMSAWave[]);

int
sqfun(int ix, int ir, double gMSAWave[]);

double
sqhcal(double qq, double gMSAWave[]);
  
double Iq_hayter_msa(double QQ,
      double radius_effective, double VolFrac, double zz, double Temp, double csalt, double dialec)
{
    double gMSAWave[17]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};
	double Elcharge=1.602189e-19;		// electron charge in Coulombs (C)
	double kB=1.380662e-23;				// Boltzman constant in J/K
	double FrSpPerm=8.85418782E-12;	//Permittivity of free space in C^2/(N m^2)
	double SofQ, Qdiam, Vp, ss;
	double SIdiam, diam, Kappa, cs, IonSt;
	double  Perm, Beta;
	double charge;
	int ierr;
	
	diam=2*radius_effective;		//in A

						////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
						//////////////////////////// convert to USEFUL inputs in SI units                                                //
						////////////////////////////    NOTE: easiest to do EVERYTHING in SI units                               //
						////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
	Beta=1.0/(kB*Temp);		// in Joules^-1
	Perm=dialec*FrSpPerm;	//in C^2/(N  m^2)
	charge=zz*Elcharge;		//in Coulomb (C)
	SIdiam = diam*1.0E-10;		//in m
	Vp=M_4PI_3*cube(SIdiam/2.0);	//in m^3
	cs=csalt*6.022E23*1.0E3;	//# salt molecules/m^3
	
	//         Compute the derived values of :
	//			 Ionic strength IonSt (in C^2/m^3)  
	// 			Kappa (Debye-Huckel screening length in m)
	//	and		gamma Exp(-k)
	
	// the zz*VolFrac/Vp is for the counterions from the micelle, assumed monovalent, the 2.0*cs if for added salt, assumed 1:1 electolyte 
	IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs);
	Kappa=sqrt(2*Beta*IonSt/Perm);     //Kappa calc from Ionic strength
									   //	Kappa=2/SIdiam					// Use to compare with HP paper
	gMSAWave[5]=Beta*charge*charge/(M_PI*Perm*SIdiam*square(2.0+Kappa*SIdiam));
	
	//         Finally set up dimensionless parameters 
	Qdiam=QQ*diam;
	gMSAWave[6] = Kappa*SIdiam;
	gMSAWave[4] = VolFrac;
	
	//Function sqhpa(qq)  {this is where Hayter-Penfold program began}
	
	//       FIRST CALCULATE COUPLING
	
	ss=pow(gMSAWave[4],(1.0/3.0));
	gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss);
	
	//        CALCULATE COEFFICIENTS, CHECK ALL IS WELL
	//        AND IF SO CALCULATE S(Q*SIG)
	
	ierr=0;
	ierr=sqcoef(ierr, gMSAWave);
	if (ierr>=0) {
		SofQ=sqhcal(Qdiam, gMSAWave);
	}else{
       	SofQ=NAN;
		//	print "Error Level = ",ierr
		//      print "Please report HPMSA problem with above error code"
	}
	
	return(SofQ);
}



/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
//
//
//      CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING
//      COEFFICIENTS FOR "SQHPA"
//
//      JOHN B. HAYTER   (I.L.L.)    14-SEP-81
//
//      ON EXIT:
//
//      SETA IS THE RESCALED VOLUME FRACTION
//      SGEK IS THE RESCALED CONTACT POTENTIAL
//      SAK IS THE RESCALED SCREENING CONSTANT
//      A,B,C,F,U,V ARE THE MSA COEFFICIENTS
//      G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG):
//      FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
//      ZERO INDICATES THE COMPUTATIONAL ACCURACY.
//
//      IR > 0:    NORMAL EXIT,  IR IS THE NUMBER OF ITERATIONS.
//         < 0:    FAILED TO CONVERGE
//
int
sqcoef(int ir, double gMSAWave[])
{	
	int itm=40,ix,ig,ii;
	double acc=5.0E-6,del,e1,e2,f1,f2;

	//      WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
	f1=0;		//these were never properly initialized...
	f2=0;
	
	ig=1;
	if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) {
		ig=0;
		gMSAWave[15]=gMSAWave[14];
		gMSAWave[16]=gMSAWave[4];
		ix=1;
		ir = sqfun(ix,ir,gMSAWave);
		gMSAWave[14]=gMSAWave[15];
		gMSAWave[4]=gMSAWave[16];
		if((ir<0.0) || (gMSAWave[14]>=0.0)) {
			return ir;
		}
	}
	gMSAWave[10]=fmin(gMSAWave[4],0.20);
	if ((ig!=1) || ( gMSAWave[9]>=0.15)) {
		ii=0;                             
		do {
			ii=ii+1;
			if(ii>itm) {
				ir=-1;
				return ir;		
			}
			if (gMSAWave[10]<=0.0) {
			    gMSAWave[10]=gMSAWave[4]/ii;
			}
			if(gMSAWave[10]>0.6) {
			    gMSAWave[10] = 0.35/ii;
			}
			e1=gMSAWave[10];
			gMSAWave[15]=f1;
			gMSAWave[16]=e1;
			ix=2;
			ir = sqfun(ix,ir,gMSAWave);
			f1=gMSAWave[15];
			e1=gMSAWave[16];
			e2=gMSAWave[10]*1.01;
			gMSAWave[15]=f2;
			gMSAWave[16]=e2;
			ix=2;
			ir = sqfun(ix,ir,gMSAWave);
			f2=gMSAWave[15];
			e2=gMSAWave[16];
			e2=e1-(e2-e1)*f1/(f2-f1);
			gMSAWave[10] = e2;
			del = fabs((e2-e1)/e1);
		} while (del>acc);
		gMSAWave[15]=gMSAWave[14];
		gMSAWave[16]=e2;
		ix=4;
		ir = sqfun(ix,ir,gMSAWave);
		gMSAWave[14]=gMSAWave[15];
		e2=gMSAWave[16];
		ir=ii;
		if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) {
		    return ir;
		}
	}
	gMSAWave[15]=gMSAWave[14];
	gMSAWave[16]=gMSAWave[4];
	ix=3;
	ir = sqfun(ix,ir,gMSAWave);
	gMSAWave[14]=gMSAWave[15];
	gMSAWave[4]=gMSAWave[16];
	if ((ir>=0) && (gMSAWave[14]<0.0)) {
		ir=-3;
	}
	return ir;
}


int
sqfun(int ix, int ir, double gMSAWave[])
{	
	double acc=1.0e-6;
	double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek;
	double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma;
	double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5;
	double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6;
	double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56;
	double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24;
	int ii,ibig,itm=40;
	//      WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
	a2=0;
	a3=0;
	b2=0;
	b3=0;
	v2=0;
	v3=0;
	p2=0;
	p3=0;
	
	//     CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981)
	
	reta = gMSAWave[16];                                                
	eta2 = reta*reta;
	eta3 = eta2*reta;
	e12 = 12.0*reta;
	e24 = e12+e12;
	gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0));
	gMSAWave[12]=gMSAWave[6]/gMSAWave[13];
	ibig=0;
	if (( gMSAWave[12]>15.0) && (ix==1)) {
		ibig=1;
	}
    
	gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]);
	rgek =  gMSAWave[11];
	rak =  gMSAWave[12];
	ak2 = rak*rak;
	ak1 = 1.0+rak;
	dak2 = 1.0/ak2;
	dak4 = dak2*dak2;
	d = 1.0-reta;
	d2 = d*d;
	dak = d/rak;
	dd2 = 1.0/d2;
	dd4 = dd2*dd2;
	dd45 = dd4*2.0e-1;
	eta3d=3.0*reta;
	eta6d = eta3d+eta3d;
	eta32 = eta3+ eta3;
	eta2d = reta+2.0;
	eta2d2 = eta2d*eta2d;
	eta21 = 2.0*reta+1.0;
	eta22 = eta21*eta21;
	
	//     ALPHA(I)
	
	al1 = -eta21*dak;
	al2 = (14.0*eta2-4.0*reta-1.0)*dak2;
	al3 = 36.0*eta2*dak4;
	
	//      BETA(I)
	
	be1 = -(eta2+7.0*reta+1.0)*dak;
	be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2;
	be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4;
	
	//      NU(I)
	
	vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak;
	vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2;
	vu3 = (eta32+3.0e1*reta-5.0)*dak4;
	vu4 = vu1+e24*rak*vu3;
	vu5 = eta6d*(vu2+4.0*vu3);
	
	//      PHI(I)
	
	ph1 = eta6d/rak;
	ph2 = d-e12*dak2;
	
	//      TAU(I)
	
	ta1 = (reta+5.0)/(5.0*rak);
	ta2 = eta2d*dak2;
	ta3 = -e12*rgek*(ta1+ta2);
	ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2);
	ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2;
	
	//     double PRECISION SINH(K), COSH(K)
	
	ex1 = exp(rak);
	ex2 = 0.0;
	if ( gMSAWave[12]<20.0) {
		ex2=exp(-rak);
	}
	sk=0.5*(ex1-ex2);
	ck = 0.5*(ex1+ex2);
	ckma = ck-1.0-rak*sk;
	skma = sk-rak*ck;
	
	//      a(I)
	
	a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4;
	if (ibig==0) {
		a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4;
		a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4;
	}
	
	//      b(I)
	
	b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4;
	if (ibig==0) {
		b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4;
		b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4;
	}
	
	//      V(I)
	
	v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45;
	if (ibig==0) {
		v2 = (vu4*ck-vu5*sk)*dd45;
		v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45;
	}
	
	
	//       P(I)
	
	pp1 = ph1*ph1;
	pp2 = ph2*ph2;
	pp = pp1+pp2;
	p1p2 = ph1*ph2*2.0;
	p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2;
	if (ibig==0) {
		p2 = (pp*sk+p1p2*ck)*dd2;
		p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2;
	}
	
	//       T(I)
	
	t1 = ta3+ta4*a1+ta5*b1;
	if (ibig!=0) {
		
		//		VERY LARGE SCREENING:  ASYMPTOTIC SOLUTION
		
  		v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45;
		t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0;
		p3 = (pp1-pp2)*dd2;
		b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4;
		a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4;
		um6 = t3*a3-e12*v3*v3;
		um5 = t1*a3+a1*t3-e24*v1*v3;
		um4 = t1*a1-e12*v1*v1;
		al6 = e12*p3*p3;
		al5 = e24*p1*p3-b3-b3-ak2;
		al4 = e12*p1*p1-b1-b1;
		w56 = um5*al6-al5*um6;
		w46 = um4*al6-al4*um6;
		fa = -w46/w56;
		ca = -fa;
		gMSAWave[3] = fa;
		gMSAWave[2] = ca;
		gMSAWave[1] = b1+b3*fa;
		gMSAWave[0] = a1+a3*fa;
		gMSAWave[8] = v1+v3*fa;
		gMSAWave[14] = -(p1+p3*fa);
		gMSAWave[15] = gMSAWave[14];
		if (fabs(gMSAWave[15])<1.0e-3) {
			gMSAWave[15] = 0.0;
		}
		gMSAWave[10] = gMSAWave[16];
		
	} else {
        
		t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk);
		t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0;
		
		//		MU(i)
		
		um1 = t2*a2-e12*v2*v2;
		um2 = t1*a2+t2*a1-e24*v1*v2;
		um3 = t2*a3+t3*a2-e24*v2*v3;
		um4 = t1*a1-e12*v1*v1;
		um5 = t1*a3+t3*a1-e24*v1*v3;
		um6 = t3*a3-e12*v3*v3;
		
		//			GILLAN CONDITION ?
		//
		//			YES - G(X=1+) = 0
		//
		//			COEFFICIENTS AND FUNCTION VALUE
		//
		if ((ix==1) || (ix==3)) {
			
			//			NO - CALCULATE REMAINING COEFFICIENTS.
			
			//			LAMBDA(I)
			
			al1 = e12*p2*p2;
			al2 = e24*p1*p2-b2-b2;
			al3 = e24*p2*p3;
			al4 = e12*p1*p1-b1-b1;
			al5 = e24*p1*p3-b3-b3-ak2;
			al6 = e12*p3*p3;
			
			//			OMEGA(I)
			
			w16 = um1*al6-al1*um6;
			w15 = um1*al5-al1*um5;
			w14 = um1*al4-al1*um4;
			w13 = um1*al3-al1*um3;
			w12 = um1*al2-al1*um2;
			
			w26 = um2*al6-al2*um6;
			w25 = um2*al5-al2*um5;
			w24 = um2*al4-al2*um4;
			
			w36 = um3*al6-al3*um6;
			w35 = um3*al5-al3*um5;
			w34 = um3*al4-al3*um4;
			w32 = um3*al2-al3*um2;
			//
			w46 = um4*al6-al4*um6;
			w56 = um5*al6-al5*um6;
			w3526 = w35+w26;
			w3425 = w34+w25;
			
			//			QUARTIC COEFFICIENTS
			
			w4 = w16*w16-w13*w36;
			w3 = 2.0*w16*w15-w13*w3526-w12*w36;
			w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526;
			w1 = 2.0*w15*w14-w13*w24-w12*w3425;
			w0 = w14*w14-w12*w24;
			
			//			ESTIMATE THE STARTING VALUE OF f
			
			if (ix==1) {
				//				LARGE K
				fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32);
			} else {
				//				ASSUME NOT TOO FAR FROM GILLAN CONDITION.
				//				IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE.
				gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek);
				if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) {
					e24g = e24*rgek*exp(rak);
					pwk = sqrt(e24g);
					qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d;
					gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2;
				}
  				pg = p1+gMSAWave[14];
				ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3;
				ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
				fap = -(pg+p2*ca)/p3;
			}
			
			//			AND REFINE IT ACCORDING TO NEWTON
			ii=0;
			do {
				ii = ii+1;
				if (ii>itm) {
					//					FAILED TO CONVERGE IN ITM ITERATIONS
					ir=-2;
					return (ir);
				}
				fa = fap;
				fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa;
				fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa;
				fap = fa-fun/fund;
				del=fabs((fap-fa)/fa);
			} while (del>acc);
			
			ir = ir+ii;
			fa = fap;
			ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12);
			gMSAWave[14] = -(p1+p2*ca+p3*fa);
			gMSAWave[15] = gMSAWave[14];
			if (fabs(gMSAWave[15])<1.0e-3) {
				gMSAWave[15] = 0.0;
			}
			gMSAWave[10] = gMSAWave[16];
		} else {
			ca = ak2*p1+2.0*(b3*p1-b1*p3);
			ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
			fa = -(p1+p2*ca)/p3;
			if (ix==2) {
				gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa;
			}
			if (ix==4) {
				gMSAWave[15] = -(p1+p2*ca+p3*fa);
			}
		}
   		gMSAWave[3] = fa;
		gMSAWave[2] = ca;
		gMSAWave[1] = b1+b2*ca+b3*fa;
		gMSAWave[0] = a1+a2*ca+a3*fa;
		gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0];
	}
   	g24 = e24*rgek*ex1;
	gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24);
	return (ir);
}

double
sqhcal(double qq, double gMSAWave[])
{      	
    double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter; 		
	//	WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"

	etaz = gMSAWave[10];
	akz =  gMSAWave[12];
	gekz =  gMSAWave[11];
	e24 = 24.0*etaz;
	x1 = exp(akz);
	x2 = 0.0;
	if ( gMSAWave[12]<20.0) {
		x2 = exp(-akz);
	}
	ck = 0.5*(x1+x2);
	sk = 0.5*(x1-x2);
	ak2 = akz*akz;
	
	qk = qq/gMSAWave[13];
	q2k = qk*qk;
	if (qk<=1.0e-08) {
		SofQ = -1.0/gMSAWave[0];
	} else {
	// this rescales Q.sigma = 2.Q.Radius, so is hard to predict the value to test the function
	if (qk<=0.01) {
		// try Taylor series expansion at small qk (RKH Feb 2016, with help from Mathematica), 
		// transition point may need to depend on precision of cpu used and ALAS on the values of some of the parameters !
		// note have adsorbed a factor 24 from SofQ=
		// needs thorough test over wide range of parameter space!
		// there seem to be some rounding issues here in single precision, must use double
		aqk = gMSAWave[0]*(8.0+2.0*etaz) + 6*gMSAWave[1] -12.0*gMSAWave[3] 
			-24*(gekz*(1.0+akz) -ck*akz*gMSAWave[2] +gMSAWave[3]*(ck-1.0) +(gMSAWave[2]-gMSAWave[3]*akz)*sk )/ak2
			+q2k*( -(gMSAWave[0]*(48.0+15.0*etaz) +40.0*gMSAWave[1])/60.0 +gMSAWave[3] 
			+(4.0/ak2)*(gekz*(9.0+7.0*akz) +ck*(9.0*gMSAWave[3] -7.0*gMSAWave[2]*akz) +sk*(9.0*gMSAWave[2] -7.0*gMSAWave[3]*akz)) );
		SofQ = 1.0/(1.0-gMSAWave[10]*aqk);
	} else {
		qk2 = 1.0/q2k;
		qk3 = qk2/qk;
		qqk = 1.0/(qk*(q2k+ak2));
		SINCOS(qk,sink,cosk);
		asink = akz*sink;
		qcosk = qk*cosk;
		aqk = gMSAWave[0]*(sink-qcosk);
		aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk);
		inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink;
		aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3;
		aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk;
		aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk;
		aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2;
		aqk=aqk -gekz*(asink+qcosk)*qqk;
		SofQ = 1.0/(1.0  -e24*aqk);
	} }
	return (SofQ);
}


#endif // SAS_HAVE_hayter_msa



/* END Required header for SASmodel hayter_msa */
%}
    DECLARE
%{
  double shape;
  double my_a_v;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  my_a_v = model_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */

%}


TRACE
%{
  double t0, t1, v, l_full, l, l_1, dt, d_phi, my_s;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
  double f, solid_angle, vx_i, vy_i, vz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection neutron trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, R);}
  if(intersect)
  {
    if(t0 < 0)
      ABSORB;

    /* Neutron enters at t=t0. */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t1 - t0);          /* Length of full path through sample */
    dt = rand01()*(t1 - t0) + t0;    /* Time of scattering */
    PROP_DT(dt);                     /* Point of scattering */
    l = v*(dt-t0);                   /* Penetration in sample */

    vx_i=vx;
    vy_i=vy;
    vz_i=vz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&vx, &vy, &vz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(vx, vy, vz);
    vx *= v;
    vy *= v;
    vz *= v;
    qx = V2K*(vx_i-vx);
    qy = V2K*(vy_i-vy);
    qz = V2K*(vz_i-vz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_radius_effective=radius_effective;
    double trace_charge=charge;
    if ( pd_radius_effective!=0.0 || pd_charge!=0.0 ){
    trace_radius_effective = (randnorm()*pd_radius_effective+1.0)*radius_effective;
    trace_charge = (randnorm()*pd_charge+1.0)*charge;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_hayter_msa(q, trace_radius_effective, volfraction, trace_charge, temperature, concentration_salt, dielectconst);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McStas: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    l_1 = v*t1;
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_v*(l+l_1)/v);
    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END