1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2016, All rights reserved
* DTU Physics, Kongens Lyngby, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: ESS_butterfly
*
* %I
*
* Written by: Peter Willendrup and Esben Klinkby
* Date: August-September 2016
* Origin: DTU
*
* ESS butterfly moderator, 2016 revision
*
* %D
* ESS butterfly moderator with automatic choice of coordinate system, with origin
* placed at relevant "Moderator Focus Coordinate System" depending on sector location.
*
* To select beamport N 5 simply use
*
* COMPONENT Source = ESS_butterfly(sector="N",beamline=5,Lmin=0.1,Lmax=20,dist=2,
* cold_frac=0.5, yheight=0.03,focus_xw=0.1, focus_yh=0.1)
*
* <b>Geometry</b>
* The geometry corresponds correctly to the latest release of the butterfly moderator,
* including changes warranted by the ESS CCB in July 2016, the so called BF1 type moderator.
* A set of official release documents are available with this component, see the benchmarking
* website mentioned below.
*
* <b>Brilliances, geometry adapted from earlier BF2 design</b>
* The geometry and brightness data implemented in the McStas ESS source component ESS_butterfly.comp,
* are released as an updated component library for McStas 2.3, as well as a stand alone archive for
* use with earlier versions of McStas.
*
* The following features are worth highlighting:
* <ul>
* <li>The brightness data are still based on last years MCNP calculations, based on the Butterfly 2 geometry.
* As a result, the spatial variation of the brightness across the moderator face should be considered to
* have an uncertainty of the order of 10%. Detailed information on the reasoning behind the change to
* the Butterfly 1 geometry can be found in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a> and detailed information on horizontal spatial brightness
* variation can be found in <A HREF="http://essbutterfly.mcstas.org/PDFs/BFpaper_LZ_latest.pdf">[2]</a>. The spectral shape has been checked and has not changed significantly.
* <li>A scaling factor has been introduced to in order to account for the decrease in brightness since 2015.
* To accommodate the influence of the changed geometry, this scaling factor has been applied independently
* for the cold and thermal contributions and is beamline dependent. It is adjusted to agree with the
* spectrally-integrated 6cm width data shown in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 3.
* <li>To allow future user adjustments of brilliance, the scalar parameters c_performance and t_performance
* have been implemented. For now, we recommend to keep these at their default value of 1.0.
* <li>The geometry has been updated to correspond within about 2 mm to the geometry described in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>. This
* has been done by ensuring that the position and apparent width of the moderators correspond to <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 2,
* which has been derived from current MCNP butterfly 1 model.
* <li>The beamport is now defined directly by its sector and number (e.g. 'W' and '5'), rather than giving the angle,
* as before. <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 5 shows the geometry of the moderator2, beamport insert and beamline axis for beamline W5.
* Since the underlying data is still from last years MCNP run, when the brightness was calculated at 10-degree
* intervals, this means that the spectral curve for the nearest beamport on the grid 5,15,25,35,45,55 degrees
* is used. The use of this grid has no effect on the accuracy of the geometry or brilliance because of the above-
* mentioned beamline-dependent adjustments to the brilliance and geometry. See the website <A HREF="http://essbutterfly.mcstas.org/">[3]</a> for details.
*</ul>
* As before, the beamports all originate at the focal point of the sector. The beamline will in almost all cases be
* horizontally tilted in order to view the cold or thermal moderator, which should be done using an Arm component.
*
* <p>We expect to release an MCNP-event-based source model later in 2016, and possibly also new set of brilliance
* functions for ESS_butterfly.comp. These are expected to include more realistic brilliances in terms of variation
* across sectors and potentially also performance losses due to engineering reality. </b>
*
* <b>Engineering reality</b>
* An ad-hoc method for future implementation of "engineering reality" is included, use the
* "c_performance/t_performance" parameters to down-scale performance uniformly across all wavelengths.
*
* <b>References:</b>
* <ol>
* <li><A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">Release document "Update to ESS Moderators, latest version"</a>
* <li><A HREF="http://essbutterfly.mcstas.org/PDFs/BFpaper_LZ_latest.pdf">Release document "Description and performance of the new baseline ESS moderators, latest version"</a>
* <li><A HREF="http://essbutterfly.mcstas.org/">http://essbutterfly.mcstas.org/</a> benchmarking website with comparative McStas-MCNP figures
* <li><a href="http://essbutterfly.mcstas.org/visualisation">html-based, interactive 3D model of moderators and monolith, as seen from beamline N4</a>.
* <li><A HREF="https://github.com/McStasMcXtrace/McCode/blob/master/mcstas-comps/sources/ESS_butterfly.comp">Source code</A> for <CODE>ESS_butterfly.comp</CODE> at GitHub.
* </ol>
* %P
* Input parameters:
* sector: [str] Defines the 'sector' of your instrument position. Valid values are "N","S","E" and "W"
* beamline: [1] Defines the 'beamline number' of your instrument position. Valid values are 1..10 or 1..11 depending on sector
* yheight: [m] Defines the moderator height. Valid values are 0.03 m and 0.06 m
* cold_frac: [1] Defines the statistical fraction of events emitted from the cold part of the moderator
* c_performance: [1] Cold brilliance scalar performance multiplicator c_performance > 0
* t_performance: [1] Thermal brilliance scalar performance multiplicator t_performance > 0
* Lmin: [AA] Minimum wavelength simulated
* Lmax: [AA] Maximum wavelength simulated
* target_index: [1] Relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* dist: [m] Distance from origin to focusing rectangle; at (0,0,dist) - alternatively use target_index
* focus_xw: [m] Width of focusing rectangle
* focus_yh: [m] Height of focusing rectangle
* tmax_multiplier: [1] Defined maximum emission time at moderator, tmax= tmax_multiplier * ESS_PULSE_DURATION.
* acc_power: [MW] Accelerator power in MW
* n_pulses: [1] Number of pulses simulated. 0 and 1 creates one pulse.
* tfocus_dist: [m] Position of time focusing window along z axis
* tfocus_time: [s] Time position of time focusing window
* tfocus_width: [s] Time width of time focusing window
*
*
*
* %E
*******************************************************************************/
DEFINE COMPONENT ESS_butterfly
SETTING PARAMETERS (string sector="N",int beamline=1, yheight=0.03, cold_frac=0.5,
int target_index=0, dist=0, focus_xw=0, focus_yh=0,
c_performance=1, t_performance=1, Lmin, Lmax, tmax_multiplier=3, int n_pulses=1,
acc_power=5,tfocus_dist=0,tfocus_time=0,tfocus_width=0)
SHARE %{
%include "ESS_butterfly-lib"
%include "ESS_butterfly-geometry.c"
int nearest_angle(double angle) {
int AngleList[] = {5, 15, 25, 35, 45, 55};
double diff = 180;
int jmin=-1;
int j;
for (j=0; j<6; j++) {
if (fabs(AngleList[j]-angle) < diff) {
diff = fabs(AngleList[j]-angle);
jmin = j;
}
}
return AngleList[jmin];
}
double BeamlinesN[]={ 30.0, 36.0, 42.0, 48.0, 54.0, 60.0, 66.0, 72.0, 78.0, 84.0, 90.0};
double BeamlinesE[]={-30.0, -36.0, -42.0, -48.0, -54.0, -60.0, -66.0, -72.0, -78.0, -84.0, -90.0};
double BeamlinesW[]={ 150.0, 144.7, 138.0, 132.7, 126.0, 120.7, 114.0, 108.7, 102.0, 96.7, 90.0, 84.0};
double BeamlinesS[]={-150.0, -144.7, -138.0, -132.7, -126.0, -120.7, -114.0, -108.7, -102.0, -96.7, -90.0, -84.0};
double ColdWidthNE[]={7e-2, 7.45e-2, 8.3e-2, 8.6e-2, 8.7e-2, 8.8e-2, 8.8e-2, 8.7e-2, 8.6e-2, 8.3e-2};
double ThermalWidthNE[]={5.4e-2, 6.2e-2, 7.2e-2, 8.2e-2, 8.5e-2, 9.1e-2, 9.6e-2, 10e-2, 10.3e-2, 10.5e-2};
double ColdWidthSW[]={7e-2, 7.45e-2, 8.3e-2, 8.6e-2, 8.7e-2, 8.8e-2, 8.8e-2, 8.8e-2, 8.6e-2, 8.4e-2, 6.9e-2};
double ThermalWidthSW[]={5.4e-2, 6.2e-2, 7.2e-2, 8.2e-2, 8.5e-2, 9.1e-2, 9.6e-2, 9.95e-2, 10.25e-2, 10.45e-2, 10.5e-2};
double ColdScalarsN[]={9.8788e-01, 1.0009e+00, 9.9335e-01, 9.5997e-01, 9.0717e-01, 9.1646e-01, 9.1028e-01, 9.1773e-01, 9.2537e-01, 9.1727e-01, -1};
double ColdScalarsE[]={9.9032e-01, 1.0020e+00, 9.9647e-01, 9.6885e-01, 9.0713e-01, 9.1787e-01, 9.1190e-01, 9.2113e-01, 9.2786e-01, 9.2146e-01, -1};
double ColdScalarsW[]={9.9017e-01, 1.0069e+00, 9.9366e-01, 9.7144e-01, 9.0624e-01, 8.9379e-01, 9.1022e-01, 9.2847e-01, 9.2812e-01, 9.2703e-01, 8.3098e-01};
double ColdScalarsS[]={8.6550e-01, 1.0071e+00, 9.9401e-01, 9.6243e-01, 9.0398e-01, 8.9299e-01, 9.0830e-01, 9.2450e-01, 9.2270e-01, 9.2373e-01, 8.2508e-01};
double ThermalScalarsN[]={8.6782e-01, 7.8627e-01, 7.6528e-01, 7.9469e-01, 7.3645e-01, 7.3012e-01, 7.2755e-01, 7.1750e-01, 7.1973e-01, 7.0459e-01, -1};
double ThermalScalarsE[]={8.6838e-01, 7.8295e-01, 7.6719e-01, 7.9431e-01, 7.3989e-01, 7.3107e-01, 7.2811e-01, 7.2201e-01, 7.2097e-01, 7.0307e-01, -1};
double ThermalScalarsW[]={8.7232e-01, 8.0007e-01, 7.6853e-01, 8.0251e-01, 7.3728e-01, 7.3761e-01, 7.2808e-01, 7.2151e-01, 7.1797e-01, 6.9857e-01, 6.9610e-01};
double ThermalScalarsS[]={8.6910e-01, 7.9964e-01, 7.6365e-01, 7.9922e-01, 7.3479e-01, 7.3836e-01, 7.2773e-01, 7.2202e-01, 7.1667e-01, 7.0149e-01, 7.0084e-01};
double dxCold[]={-0.01, -0.01, -0.002, 0.004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
double dxThermal[]={0.002, 0.003, 0.002, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007};
%}
DECLARE
%{
double* ColdWidths;
double* ThermalWidths;
double ColdScalars[11];
double ThermalScalars[11];
double *Beamlines;
double wfrac_cold;
double wfrac_thermal;
/* 'Corner' parametrization, i.e. where are the limits of the moderators */
double C1_x;
double C1_z;
double C2_x;
double C2_z;
double C3_x;
double C3_z;
double T1_x;
double T1_z;
double T2_x;
double T2_z;
double T3_x;
double T3_z;
/* - plus rotated versions of the same... */
double rC1_x;
double rC1_z;
double rC2_x;
double rC2_z;
double rC3_x;
double rC3_z;
double rT1_x;
double rT1_z;
double rT2_x;
double rT2_z;
double rT3_x;
double rT3_z;
double tx;
double ty;
double tz;
double r11;
double r12;
double r21;
double r22;
double delta_y;
double Mwidth_c;
double Mwidth_t;
double beamportangle;
double w_mult;
double w_stat;
double w_focus;
double w_tfocus;
double w_geom_c;
double w_geom_t;
int isleft;
double l_range;
double cos_thermal;
double cos_cold;
double orientation_angle;
/* Centering-parameters, which sector are we in? */
double cx;
double cz;
int jmax;
double dxC;
double dxT;
%}
INITIALIZE
%{
int sign_bl_angle;
/* Oversampling for widths plus fraction of moderator surface "not around the corner" */
double oversampT=1.1;
double oversampC=1.0;
/* variables needed to correct for the emission surface angle */
double internal_angle;
double cos_beamport_angle, sin_beamport_angle;
if (beamline<4) {
wfrac_cold=1.0;
wfrac_thermal=(1-0.072);
} else {
wfrac_cold=1.0;
wfrac_thermal=1.0;
}
/* Centering-parameters, which sector are we in? */
if (strcasestr(sector,"N")) {
cx = 0.117; cz=0.0; sign_bl_angle=1;
orientation_angle = BeamlinesN[beamline-1];
Beamlines = BeamlinesN;
internal_angle=90-fabs(orientation_angle);
beamportangle=nearest_angle(fabs(internal_angle));
/* Direction-cosines for use with e.g. Brilliance_monitor */
cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
/* correction for projection along the beam / projection on the z=0 plane */
cos_thermal=cos_beamport_angle;
cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
ColdWidths = ColdWidthNE;
ThermalWidths = ThermalWidthNE;
int j;
for (j=0;j<11;j++){
ColdScalars[j] = ColdScalarsN[j];
ThermalScalars[j] = ThermalScalarsN[j];
}
jmax=10;
T1_x=0;
T1_z=0;
T2_x=-wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
T2_z=0;
T3_x=((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
T3_z=0;
C1_x=0;
C1_z=0;
C2_x=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
C2_z=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
C3_x=-(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
C3_z=0;
isleft=1;
} else if (strcasestr(sector,"W")) {
cx = 0.0; cz=0.0; sign_bl_angle=-1;
orientation_angle = BeamlinesW[beamline-1];
Beamlines = BeamlinesW;
internal_angle=90-fabs(orientation_angle);
beamportangle=nearest_angle(fabs(internal_angle));
/* Direction-cosines for use with e.g. Brilliance_monitor */
cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
/* correction for projection along the beam / projection on the z=0 plane */
cos_thermal=cos_beamport_angle;
cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
ColdWidths = ColdWidthSW;
ThermalWidths = ThermalWidthSW;
int j;
for (j=0;j<11;j++){
ColdScalars[j] = ColdScalarsW[j];
ThermalScalars[j] = ThermalScalarsW[j];
}
jmax=11;
T1_x=0;
T1_z=0;
T2_x=wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
T2_z=0;
T3_x=-((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
T3_z=0;
C1_x=0;
C1_z=0;
C2_x=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
C2_z=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
C3_x=(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
C3_z=0;
isleft=-1;
} else if (strcasestr(sector,"S")) {
cx = 0.0; cz=-0.185; sign_bl_angle=1;
orientation_angle = BeamlinesS[beamline-1];
Beamlines = BeamlinesS;
internal_angle=90-fabs(orientation_angle);
beamportangle=nearest_angle(fabs(internal_angle));
/* Direction-cosines for use with e.g. Brilliance_monitor */
cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
/* correction for projection along the beam / projection on the z=0 plane */
cos_thermal=cos_beamport_angle;
cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
//printf("cosines are %g %g internal angle %g\n",cos_thermal,cos_cold,fabs(internal_angle));
ColdWidths = ColdWidthSW;
ThermalWidths = ThermalWidthSW;
int j;
for (j=0;j<11;j++){
ColdScalars[j] = ColdScalarsS[j];
ThermalScalars[j] = ThermalScalarsS[j];
}
jmax=11;
T1_x=0;
T1_z=0;
T2_x=wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
T2_z=0;
T3_x=-((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
T3_z=0;
C1_x=0;
C1_z=0;
C2_x=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
C2_z=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
C3_x=(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
C3_z=0;
isleft=-1;
} else if (strcasestr(sector,"E")) {
cx = 0.117; cz=-0.185; sign_bl_angle=-1;
orientation_angle = BeamlinesE[beamline-1];
Beamlines = BeamlinesE;
internal_angle=90-fabs(orientation_angle);
beamportangle=nearest_angle(fabs(internal_angle));
/* Direction-cosines for use with e.g. Brilliance_monitor */
cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
/* correction for projection along the beam / projection on the z=0 plane */
cos_thermal=cos_beamport_angle;
cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
ColdWidths = ColdWidthNE;
ThermalWidths = ThermalWidthNE;
int j;
for (j=0;j<11;j++){
ColdScalars[j] = ColdScalarsE[j];
ThermalScalars[j] = ThermalScalarsE[j];
}
jmax=10;
T1_x=0;
T1_z=0;
T2_x=-wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
T2_z=0;
T3_x=((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
T3_z=0;
C1_x=0;
C1_z=0;
C2_x=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
C2_z=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
C3_x=-(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
C3_z=0;
isleft=1;
} else {
fprintf(stderr,"%s: Sector %s is undefined, please use N, W, S or E!\n", NAME_CURRENT_COMP,sector);
exit(-1);
}
if (beamline > jmax || beamline <= 0 ) {
fprintf(stderr,"%s: beamline no %i is undefined in sector %s, please use 1 <= beamline <= %i\n", NAME_CURRENT_COMP, beamline, sector, jmax);
exit(-1);
}
printf("%s: Setting up for sector %s, beamline %i, global orientation angle is %g, internal angle %g\n", NAME_CURRENT_COMP, sector,beamline,orientation_angle,beamportangle);
if (c_performance <= 0) {
fprintf(stderr,"%s: Cold performance scalar of %g is not allowed. Please select 0 < c_performance\n", NAME_CURRENT_COMP, c_performance);
exit(-1);
}
if (t_performance <= 0) {
fprintf(stderr,"%s: Thermal performance scalar of %g is not allowed. Please select 0 < t_performance\n", NAME_CURRENT_COMP, t_performance);
exit(-1);
}
if (Lmin>=Lmax || Lmin <= 0 || Lmax < 0) {
fprintf(stderr,"%s: Unmeaningful definition of wavelength range!\nPlease select Lmin, Lmax > 0 and Lmax > Lmin.\n ERROR - Exiting\n",
NAME_CURRENT_COMP);
exit(-1);
}
/* Figure out where to aim */
if (target_index && !dist)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
} else if (!target_index && !dist) {
fprintf(stderr,"%s: Please choose to set either the dist parameter or specify a target_index.\nExit\n", NAME_CURRENT_COMP);
exit(-1);
} else {
tx=0; ty=0; tz=dist;
}
printf("%s: Focusing at rectagle sized %g x %g \n - positioned at location (x,y,z)=(%g m, %g m, %g m) \n", NAME_CURRENT_COMP, focus_xw, focus_yh, tx, ty, tz);
if (target_index) {
printf(" ( from target_index %i -> distance %g )\n", target_index, dist);
} else {
printf(" ( from dist parameter -> distance %g )\n", dist);
}
printf("%s: Cold and Thermal brilliance performance multiplicators are c_performance=%g and t_performance=%g\n", NAME_CURRENT_COMP, c_performance, t_performance);
/* Calculate orientation matrix for the display and calculations */
r11 = cos(DEG2RAD*orientation_angle);
r12 = -sin(DEG2RAD*orientation_angle);
r21 = sin(DEG2RAD*orientation_angle);
r22 = cos(DEG2RAD*orientation_angle);
/* Rotated corrdinates of the emission areas */
rC1_x = r11*C1_z + r12*C1_x;
rC1_z = r21*C1_z + r22*C1_x;
rC2_x = r11*C2_z + r12*C2_x;
rC2_z = r21*C2_z + r22*C2_x;
rC3_x = r11*C3_z + r12*C3_x;
rC3_z = r21*C3_z + r22*C3_x;
rT1_x = r11*T1_z + r12*T1_x;
rT1_z = r21*T1_z + r22*T1_x;
rT2_x = r11*T2_z + r12*T2_x;
rT2_z = r21*T2_z + r22*T2_x;
rT3_x = r11*T3_z + r12*T3_x;
rT3_z = r21*T3_z + r22*T3_x;
/* Moderator half-height */
delta_y = yheight/2.0;
/* Other moderator parms */
/* "Measured" moderator widths in cm scale */
Mwidth_c=100.0*ColdWidths[beamline-1]/cos_cold;
Mwidth_t=(100.0*ThermalWidths[beamline-1]+0.7)/cos_thermal;
if (tfocus_width && tfocus_time && tfocus_dist) {
printf("%s: Using time focusing: Directing neutrons to this time-window:\n tfocus_width (%g s) wide at tfocus_time (%g s), tfocus_dist (%g m) downstream\n",NAME_CURRENT_COMP, tfocus_width, tfocus_time, tfocus_dist);
} else if (!tfocus_width && !tfocus_time && !tfocus_dist) {
printf("%s: NOT using time focusing\n",NAME_CURRENT_COMP);
} else {
fprintf(stderr,"%s: Unmeaningful combination tfocus_width (%g s), tfocus_time (%g s) and tfocus_dist (%g m): \n All must be either==0 (no time focusing) or !=0 (time focusing)\n ERROR - Exiting\n",
NAME_CURRENT_COMP, tfocus_width, tfocus_time, tfocus_dist);
exit(-1);
}
l_range = Lmax-Lmin;
/* Weight multipliers */
w_mult=acc_power/5;
w_stat=1.0/mcget_ncount();
w_geom_c = 0.072*yheight*1.0e4; /* source area correction */
w_geom_t = 0.108*yheight*1.0e4;
w_mult *= l_range; /* wavelength range correction */
n_pulses=(double)floor(n_pulses);
if (n_pulses == 0) n_pulses=1;
dxC=dxCold[beamline-1];
dxT=dxThermal[beamline-1];
%}
TRACE
%{
double xtmp;
int iscold;
double x0,z0;
int surf_sign;
double cos_factor;
double w_geom;
double xf, yf, zf;
double dx,dy,dz;
double k,v,r,lambda;
double dt=0;
double modX,modY;
/* Cold or thermal event? */
p=1;
xtmp = rand01();
y = randpm1()*delta_y;
modY=y;
if (rand01() < cold_frac) {
iscold=1;
if (rand01() < wfrac_cold) { // "Broad face"
x = rC1_x + (rC2_x - rC1_x)*xtmp;
z = rC1_z + (rC2_z - rC1_z)*xtmp;
x0 = C1_x + (C2_x - C1_x)*xtmp;
z0 = C1_z + (C2_z - C1_z)*xtmp;
surf_sign=-1;
cos_factor=cos_cold;
} else {
x = rC1_x + (rC3_x - rC1_x)*xtmp;
z = rC1_z + (rC3_z - rC1_z)*xtmp;
x0 = C1_x + (C3_x - C1_x)*xtmp;
z0 = C1_z + (C3_z - C1_z)*xtmp;
surf_sign=1;
cos_factor=cos_thermal;
}
modX=((-1.0*isleft*x0)-dxC);
w_geom=w_geom_c;
} else {
iscold=0;
if (rand01() < wfrac_thermal) { // "Broad face"
x = rT1_x + (rT2_x - rT1_x)*xtmp;
z = rT1_z + (rT2_z - rT1_z)*xtmp;
x0 = T1_x + (T2_x - T1_x)*xtmp;
z0 = T1_z + (T2_z - T1_z)*xtmp;
surf_sign=1;
cos_factor=cos_thermal;
} else {
x = rT1_x + (rT3_x - rT1_x)*xtmp;
z = rT1_z + (rT3_z - rT1_z)*xtmp;
x0 = T1_x + (T3_x - T1_x)*xtmp;
z0 = T1_z + (T3_z - T1_z)*xtmp;
surf_sign=-1;
cos_factor=cos_thermal;
}
modX=((-1.0*isleft*x0)+dxT);
w_geom=w_geom_t;
}
SCATTER;
/* Where are we going? */
randvec_target_rect_real(&xf, &yf, &zf, NULL,
tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 0);
w_focus=focus_xw*focus_yh/(tx*tx+ty*ty+tz*tz);
dx = xf-x;
dy = yf-y;
dz = zf-z;
r = sqrt(dx*dx+dy*dy+dz*dz);
lambda = Lmin+l_range*rand01(); /* Choose from uniform distribution */
k = 2*PI/lambda;
v = K2V*k;
vz = v*dz/r;
vy = v*dy/r;
vx = v*dx/r;
/* Are we using time focusing? */
if (tfocus_width>0) {
dt = tfocus_dist/vz;
t = tfocus_time-dt; /* Set time to hit time window center */
t += randpm1()*tfocus_width/2.0;
if (t<0) ABSORB; /* Kill neutron if outside pulse duration */
if (t>tmax_multiplier*ESS_SOURCE_DURATION) ABSORB;
w_tfocus=tfocus_width/(tmax_multiplier*ESS_SOURCE_DURATION);
} else {
/* Simple, random wavelength @ random time */
t = rand01()*tmax_multiplier*ESS_SOURCE_DURATION;
w_tfocus=1;
}
if (iscold) { //case: cold moderator
/* Apply simple engineering reality correction */
ESS_2015_Schoenfeldt_cold(&t, &p, lambda, tfocus_width, tfocus_time, dt, yheight, Mwidth_t, yheight, Mwidth_c, tmax_multiplier, beamportangle, modX, modY);
p *= c_performance;
p *= ColdScalars[beamline-1];
} else { //case: thermal moderator
ESS_2015_Schoenfeldt_thermal(&t, &p, lambda, tfocus_width, tfocus_time, dt, yheight, Mwidth_t, yheight, Mwidth_c, tmax_multiplier, beamportangle, modX, modY);
p *= t_performance;
p *= ThermalScalars[beamline-1];
}
p*=w_stat*w_focus*w_geom*w_mult*w_tfocus;
t+=(double)floor((n_pulses)*rand01())/ESS_SOURCE_FREQUENCY; /* Select a random pulse */
p*=cos_factor;
/* Correct weight for sampling of cold vs. thermal events. */
if (iscold) {
p /= cold_frac;
} else {
p /= (1-cold_frac);
}
SCATTER;
%}
MCDISPLAY
%{
#ifndef OPENACC
magnify("");
butterfly_geometry(delta_y, jmax, cx, cz,
orientation_angle, Beamlines, tx,ty,tz,
rC1_x,rC1_z,rC2_x,rC2_z,rC3_x,rC3_z,
rT1_x,rT1_z,rT2_x,rT2_z,rT3_x,rT3_z,
r11, r12, r21, r22, focus_xw, focus_yh);
#endif
%}
END
|