File: ESS_butterfly.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (598 lines) | stat: -rw-r--r-- 25,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2016, All rights reserved
*         DTU Physics, Kongens Lyngby, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: ESS_butterfly
*
* %I
*
* Written by: Peter Willendrup and Esben Klinkby
* Date: August-September 2016
* Origin: DTU
*
* ESS butterfly moderator, 2016 revision
*
* %D
* ESS butterfly moderator with automatic choice of coordinate system, with origin
* placed at relevant "Moderator Focus Coordinate System" depending on sector location.
*
* To select beamport N 5 simply use 
*  
*  COMPONENT Source = ESS_butterfly(sector="N",beamline=5,Lmin=0.1,Lmax=20,dist=2,
*                                   cold_frac=0.5, yheight=0.03,focus_xw=0.1, focus_yh=0.1)
*
* <b>Geometry</b>
* The geometry corresponds correctly to the latest release of the butterfly moderator,
* including changes warranted by the ESS CCB in July 2016, the so called BF1 type moderator.
* A set of official release documents are available with this component, see the benchmarking
* website mentioned below.
*
* <b>Brilliances, geometry adapted from earlier BF2 design</b>
* The geometry and brightness data implemented in the McStas ESS source component ESS_butterfly.comp, 
* are released as an updated component library for McStas 2.3, as well as a stand alone archive for
* use with earlier versions of McStas.
*
* The following features are worth highlighting: 
* <ul>
* <li>The brightness data are still based on last years MCNP calculations, based on the Butterfly 2 geometry. 
* As a result, the spatial variation of the brightness across the moderator face should be considered to 
* have an uncertainty of the order of 10%. Detailed information on the reasoning behind the change to
* the Butterfly 1 geometry can be found in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a> and detailed information on horizontal spatial brightness 
* variation can be found in <A HREF="http://essbutterfly.mcstas.org/PDFs/BFpaper_LZ_latest.pdf">[2]</a>. The spectral shape has been checked and has not changed significantly.
* <li>A scaling factor has been introduced to in order to account for the decrease in brightness since 2015. 
* To accommodate the influence of the changed geometry, this scaling factor has been applied independently 
* for the cold and thermal contributions and is beamline dependent. It is adjusted to agree with the 
* spectrally-integrated 6cm width data shown in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 3.
* <li>To allow future user adjustments of brilliance, the scalar parameters c_performance and t_performance
* have been implemented. For now, we recommend to keep these at their default value of 1.0.
* <li>The geometry has been updated to correspond within about 2 mm to the geometry described in <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>. This 
* has been done by ensuring that the position and apparent width of the moderators correspond to <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 2, 
* which has been derived from current MCNP butterfly 1 model. 
* <li>The beamport is now defined directly by its sector and number (e.g. 'W' and '5'), rather than giving the angle, 
* as before. <A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">[1]</a>,Figure 5 shows the geometry of the moderator2, beamport insert and beamline axis for beamline W5.
* Since the underlying data is still from last years MCNP run, when the brightness was calculated at 10-degree 
* intervals, this means that the spectral curve for the nearest beamport on the grid 5,15,25,35,45,55 degrees 
* is used. The use of this grid has no effect on the accuracy of the geometry or brilliance because of the above-
* mentioned beamline-dependent adjustments to the brilliance and geometry. See the website <A HREF="http://essbutterfly.mcstas.org/">[3]</a> for details.
*</ul>
* As before, the beamports all originate at the focal point of the sector. The beamline will in almost all cases be 
* horizontally tilted in order to view the cold or thermal moderator, which should be done using an Arm component. 
*
* <p>We expect to release an MCNP-event-based source model later in 2016, and possibly also new set of brilliance 
* functions for ESS_butterfly.comp. These are expected to include more realistic brilliances in terms of variation 
* across sectors and potentially also performance losses due to engineering reality. </b>
* 
* <b>Engineering reality</b>
* An ad-hoc method for future implementation of "engineering reality" is included, use the
* "c_performance/t_performance" parameters to down-scale performance uniformly across all wavelengths.
* 
* <b>References:</b>
* <ol>
* <li><A HREF="http://essbutterfly.mcstas.org/PDFs/Update_to_ESS_moderators_KHA_latest.pdf">Release document "Update to ESS Moderators, latest version"</a>
* <li><A HREF="http://essbutterfly.mcstas.org/PDFs/BFpaper_LZ_latest.pdf">Release document "Description and performance of the new baseline ESS moderators, latest version"</a>
* <li><A HREF="http://essbutterfly.mcstas.org/">http://essbutterfly.mcstas.org/</a> benchmarking website with comparative McStas-MCNP figures
* <li><a href="http://essbutterfly.mcstas.org/visualisation">html-based, interactive 3D model of moderators and monolith, as seen from beamline N4</a>.
* <li><A HREF="https://github.com/McStasMcXtrace/McCode/blob/master/mcstas-comps/sources/ESS_butterfly.comp">Source code</A> for <CODE>ESS_butterfly.comp</CODE> at GitHub.
* </ol>
* %P
* Input parameters:
* sector: [str]         Defines the 'sector' of your instrument position. Valid values are "N","S","E" and "W"
* beamline: [1]         Defines the 'beamline number' of your instrument position. Valid values are 1..10 or 1..11 depending on sector
* yheight: [m]          Defines the moderator height. Valid values are 0.03 m and 0.06 m
* cold_frac: [1]        Defines the statistical fraction of events emitted from the cold part of the moderator
* c_performance: [1]    Cold brilliance scalar performance multiplicator c_performance > 0
* t_performance: [1]    Thermal brilliance scalar performance multiplicator t_performance > 0
* Lmin: [AA]            Minimum wavelength simulated
* Lmax: [AA]            Maximum wavelength simulated
* target_index: [1]     Relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* dist: [m]             Distance from origin to focusing rectangle; at (0,0,dist) - alternatively use target_index
* focus_xw: [m]         Width of focusing rectangle
* focus_yh: [m]         Height of focusing rectangle
* tmax_multiplier: [1]  Defined maximum emission time at moderator, tmax= tmax_multiplier * ESS_PULSE_DURATION.
* acc_power: [MW]       Accelerator power in MW
* n_pulses: [1]         Number of pulses simulated. 0 and 1 creates one pulse.
* tfocus_dist: [m]      Position of time focusing window along z axis
* tfocus_time: [s]      Time position of time focusing window
* tfocus_width: [s]     Time width of time focusing window
*
* 
*
* %E
*******************************************************************************/

DEFINE COMPONENT ESS_butterfly

SETTING PARAMETERS (string sector="N",int beamline=1, yheight=0.03, cold_frac=0.5, 
  int target_index=0, dist=0, focus_xw=0, focus_yh=0,
  c_performance=1, t_performance=1, Lmin, Lmax, tmax_multiplier=3, int n_pulses=1,
  acc_power=5,tfocus_dist=0,tfocus_time=0,tfocus_width=0)


SHARE %{
  %include "ESS_butterfly-lib"
  %include "ESS_butterfly-geometry.c"

  int nearest_angle(double angle) {
    int AngleList[] = {5, 15, 25, 35, 45, 55};
    double diff = 180;
    int jmin=-1;
    int j;
    for (j=0; j<6; j++) {
      if (fabs(AngleList[j]-angle) < diff) {
	diff = fabs(AngleList[j]-angle);
	jmin = j;
      }
    }
    return AngleList[jmin];
  }
  double BeamlinesN[]={ 30.0,  36.0,  42.0,  48.0,  54.0,  60.0,  66.0,  72.0,  78.0,  84.0,  90.0};
  double BeamlinesE[]={-30.0, -36.0, -42.0, -48.0, -54.0, -60.0, -66.0, -72.0, -78.0, -84.0, -90.0};
  double BeamlinesW[]={ 150.0,  144.7,  138.0,  132.7,  126.0,  120.7,  114.0,  108.7,  102.0,  96.7,  90.0,  84.0};
  double BeamlinesS[]={-150.0, -144.7, -138.0, -132.7, -126.0, -120.7, -114.0, -108.7, -102.0, -96.7, -90.0, -84.0};
  double ColdWidthNE[]={7e-2, 7.45e-2, 8.3e-2, 8.6e-2, 8.7e-2, 8.8e-2, 8.8e-2, 8.7e-2, 8.6e-2, 8.3e-2};
  double ThermalWidthNE[]={5.4e-2, 6.2e-2, 7.2e-2, 8.2e-2, 8.5e-2, 9.1e-2, 9.6e-2, 10e-2, 10.3e-2, 10.5e-2};
  double ColdWidthSW[]={7e-2, 7.45e-2, 8.3e-2, 8.6e-2, 8.7e-2, 8.8e-2, 8.8e-2, 8.8e-2, 8.6e-2, 8.4e-2, 6.9e-2};
  double ThermalWidthSW[]={5.4e-2, 6.2e-2, 7.2e-2, 8.2e-2, 8.5e-2, 9.1e-2, 9.6e-2, 9.95e-2, 10.25e-2, 10.45e-2, 10.5e-2};
  double ColdScalarsN[]={9.8788e-01, 1.0009e+00, 9.9335e-01, 9.5997e-01, 9.0717e-01, 9.1646e-01, 9.1028e-01, 9.1773e-01, 9.2537e-01, 9.1727e-01, -1};
  double ColdScalarsE[]={9.9032e-01, 1.0020e+00, 9.9647e-01, 9.6885e-01, 9.0713e-01, 9.1787e-01, 9.1190e-01, 9.2113e-01, 9.2786e-01, 9.2146e-01, -1};
  double ColdScalarsW[]={9.9017e-01, 1.0069e+00, 9.9366e-01, 9.7144e-01, 9.0624e-01, 8.9379e-01, 9.1022e-01, 9.2847e-01, 9.2812e-01, 9.2703e-01, 8.3098e-01};
  double ColdScalarsS[]={8.6550e-01, 1.0071e+00, 9.9401e-01, 9.6243e-01, 9.0398e-01, 8.9299e-01, 9.0830e-01, 9.2450e-01, 9.2270e-01, 9.2373e-01, 8.2508e-01};
  double ThermalScalarsN[]={8.6782e-01, 7.8627e-01, 7.6528e-01, 7.9469e-01, 7.3645e-01, 7.3012e-01, 7.2755e-01, 7.1750e-01, 7.1973e-01, 7.0459e-01, -1};
  double ThermalScalarsE[]={8.6838e-01, 7.8295e-01, 7.6719e-01, 7.9431e-01, 7.3989e-01, 7.3107e-01, 7.2811e-01, 7.2201e-01, 7.2097e-01, 7.0307e-01, -1};
  double ThermalScalarsW[]={8.7232e-01, 8.0007e-01, 7.6853e-01, 8.0251e-01, 7.3728e-01, 7.3761e-01, 7.2808e-01, 7.2151e-01, 7.1797e-01, 6.9857e-01, 6.9610e-01};
  double ThermalScalarsS[]={8.6910e-01, 7.9964e-01, 7.6365e-01, 7.9922e-01, 7.3479e-01, 7.3836e-01, 7.2773e-01, 7.2202e-01, 7.1667e-01, 7.0149e-01, 7.0084e-01};
  double dxCold[]={-0.01, -0.01, -0.002, 0.004,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0,   0.0};
  double dxThermal[]={0.002, 0.003, 0.002, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007};
%}

DECLARE
%{
  double* ColdWidths;
  double* ThermalWidths;
  double ColdScalars[11];
  double ThermalScalars[11];
  double *Beamlines;
  double wfrac_cold;
  double wfrac_thermal;
  /* 'Corner' parametrization, i.e. where are the limits of the moderators */
  double C1_x;
  double C1_z;
  double C2_x;
  double C2_z;
  double C3_x;
  double C3_z;
  double T1_x;
  double T1_z;
  double T2_x;
  double T2_z;
  double T3_x;
  double T3_z;
  /* - plus rotated versions of the same... */
  double rC1_x;
  double rC1_z;
  double rC2_x;
  double rC2_z;
  double rC3_x;
  double rC3_z;
  double rT1_x;
  double rT1_z;
  double rT2_x;
  double rT2_z;
  double rT3_x;
  double rT3_z;
  double tx;
  double ty;
  double tz;
  double r11;
  double  r12;
  double  r21;
  double  r22;
  double delta_y;
  double Mwidth_c;
  double Mwidth_t;
  double beamportangle;
  double w_mult;
  double w_stat;
  double w_focus;
  double  w_tfocus;
  double w_geom_c;
  double  w_geom_t;
  int    isleft;
  double l_range;

  double cos_thermal;
  double cos_cold;
  
  double  orientation_angle;
  /* Centering-parameters, which sector are we in? */
  double cx;
  double cz;
  int     jmax;
  double dxC;
  double dxT;
%}

INITIALIZE
%{
  
  
  int     sign_bl_angle;
  
  /* Oversampling for widths plus fraction of moderator surface "not around the corner" */
  double oversampT=1.1;
  double oversampC=1.0;
  
  
  /* variables needed to correct for the emission surface angle */
  double internal_angle;
  double cos_beamport_angle, sin_beamport_angle;

  if (beamline<4) {
    wfrac_cold=1.0;
    wfrac_thermal=(1-0.072);
  } else {
    wfrac_cold=1.0;
    wfrac_thermal=1.0;
  }
  
  /* Centering-parameters, which sector are we in? */
  if (strcasestr(sector,"N")) {
    cx = 0.117; cz=0.0; sign_bl_angle=1;
    orientation_angle = BeamlinesN[beamline-1];
    Beamlines = BeamlinesN;
    internal_angle=90-fabs(orientation_angle);
    beamportangle=nearest_angle(fabs(internal_angle));
    /* Direction-cosines for use with e.g. Brilliance_monitor */
    cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
    sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
    /* correction for projection along the beam / projection on the z=0 plane */
    cos_thermal=cos_beamport_angle;
    cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
    ColdWidths = ColdWidthNE;
    ThermalWidths = ThermalWidthNE;
    int j;
    for (j=0;j<11;j++){
      ColdScalars[j] = ColdScalarsN[j];
      ThermalScalars[j] = ThermalScalarsN[j];
    }
    jmax=10;
    T1_x=0;
    T1_z=0;
    T2_x=-wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
    T2_z=0;
    T3_x=((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
    T3_z=0;
    C1_x=0;
    C1_z=0;
    C2_x=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
    C2_z=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
    C3_x=-(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
    C3_z=0;   
    isleft=1;
  } else if (strcasestr(sector,"W")) {
    cx = 0.0; cz=0.0; sign_bl_angle=-1;
    orientation_angle = BeamlinesW[beamline-1]; 
    Beamlines = BeamlinesW;
    internal_angle=90-fabs(orientation_angle);
    beamportangle=nearest_angle(fabs(internal_angle));
    /* Direction-cosines for use with e.g. Brilliance_monitor */
    cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
    sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
    /* correction for projection along the beam / projection on the z=0 plane */
    cos_thermal=cos_beamport_angle;
    cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
    ColdWidths = ColdWidthSW;
    ThermalWidths = ThermalWidthSW;
    int j;
    for (j=0;j<11;j++){
      ColdScalars[j] = ColdScalarsW[j];
      ThermalScalars[j] = ThermalScalarsW[j];
    }
    jmax=11;
    T1_x=0;
    T1_z=0;
    T2_x=wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
    T2_z=0;
    T3_x=-((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
    T3_z=0;
    C1_x=0;
    C1_z=0;
    C2_x=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
    C2_z=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
    C3_x=(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
    C3_z=0;    
    isleft=-1;
  } else if (strcasestr(sector,"S")) {
    cx = 0.0; cz=-0.185; sign_bl_angle=1;
    orientation_angle = BeamlinesS[beamline-1]; 
    Beamlines = BeamlinesS;
    internal_angle=90-fabs(orientation_angle);
    beamportangle=nearest_angle(fabs(internal_angle));
    /* Direction-cosines for use with e.g. Brilliance_monitor */
    cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
    sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
    /* correction for projection along the beam / projection on the z=0 plane */
    cos_thermal=cos_beamport_angle;
    cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
    //printf("cosines are %g %g internal angle %g\n",cos_thermal,cos_cold,fabs(internal_angle));
    ColdWidths = ColdWidthSW;
    ThermalWidths = ThermalWidthSW;
    int j;
    for (j=0;j<11;j++){
      ColdScalars[j] = ColdScalarsS[j];
      ThermalScalars[j] = ThermalScalarsS[j];
    }
    jmax=11;
    T1_x=0;
    T1_z=0;
    T2_x=wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
    T2_z=0;
    T3_x=-((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
    T3_z=0;
    C1_x=0;
    C1_z=0;
    C2_x=-(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
    C2_z=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
    C3_x=(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
    C3_z=0;    
    isleft=-1;
  } else if (strcasestr(sector,"E")) {
    cx = 0.117; cz=-0.185; sign_bl_angle=-1;
    orientation_angle = BeamlinesE[beamline-1]; 
    Beamlines = BeamlinesE;
    internal_angle=90-fabs(orientation_angle);
    beamportangle=nearest_angle(fabs(internal_angle));
    /* Direction-cosines for use with e.g. Brilliance_monitor */
    cos_beamport_angle=cos(fabs(internal_angle)*DEG2RAD);
    sin_beamport_angle=sin(fabs(internal_angle)*DEG2RAD);
    /* correction for projection along the beam / projection on the z=0 plane */
    cos_thermal=cos_beamport_angle;
    cos_cold=cos((fabs(internal_angle)-24.24)*DEG2RAD);
    ColdWidths = ColdWidthNE;
    ThermalWidths = ThermalWidthNE;
    int j;
    for (j=0;j<11;j++){
      ColdScalars[j] = ColdScalarsE[j];
      ThermalScalars[j] = ThermalScalarsE[j];
    }
    jmax=10;
    T1_x=0;
    T1_z=0;
    T2_x=-wfrac_thermal*oversampT*ThermalWidths[beamline-1]/cos_thermal;
    T2_z=0;
    T3_x=((1-wfrac_thermal)*oversampT*ThermalWidths[beamline-1]/cos_thermal);
    T3_z=0;
    C1_x=0;
    C1_z=0;
    C2_x=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*cos(24.24*DEG2RAD);
    C2_z=(wfrac_cold*oversampC*ColdWidths[beamline-1]/cos_cold)*sin(24.24*DEG2RAD);
    C3_x=-(1-wfrac_cold)*oversampC*ColdWidths[beamline-1]/cos_thermal;
    C3_z=0; 
    isleft=1;
  } else {
    fprintf(stderr,"%s: Sector %s is undefined, please use N, W, S or E!\n", NAME_CURRENT_COMP,sector);
    exit(-1);
  }
  if (beamline > jmax || beamline <= 0 ) {
    fprintf(stderr,"%s: beamline no %i is undefined in sector %s, please use 1 <= beamline <= %i\n", NAME_CURRENT_COMP, beamline, sector, jmax);
    exit(-1);
  }

  printf("%s: Setting up for sector %s, beamline %i, global orientation angle is %g, internal angle %g\n", NAME_CURRENT_COMP, sector,beamline,orientation_angle,beamportangle);
  if (c_performance <= 0) {
    fprintf(stderr,"%s: Cold performance scalar of %g is not allowed. Please select 0 < c_performance\n", NAME_CURRENT_COMP, c_performance);
    exit(-1);
  }
  if (t_performance <= 0) {
    fprintf(stderr,"%s: Thermal performance scalar of %g is not allowed. Please select 0 < t_performance\n", NAME_CURRENT_COMP, t_performance);
    exit(-1);
  }
  if (Lmin>=Lmax || Lmin <= 0 || Lmax < 0) {
    fprintf(stderr,"%s: Unmeaningful definition of wavelength range!\nPlease select Lmin, Lmax > 0 and Lmax > Lmin.\n ERROR - Exiting\n",
           NAME_CURRENT_COMP);
    exit(-1);
  }
  /* Figure out where to aim */
  if (target_index && !dist)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &tx, &ty, &tz);
    dist=sqrt(tx*tx+ty*ty+tz*tz);
  } else if (!target_index && !dist) {
    fprintf(stderr,"%s: Please choose to set either the dist parameter or specify a target_index.\nExit\n", NAME_CURRENT_COMP);
    exit(-1);
  } else {
    tx=0; ty=0; tz=dist;
  }
  printf("%s: Focusing at rectagle sized %g x %g \n  - positioned at location (x,y,z)=(%g m, %g m, %g m) \n", NAME_CURRENT_COMP, focus_xw, focus_yh, tx, ty, tz);
  if (target_index) {
    printf(" ( from target_index %i -> distance %g )\n", target_index, dist);
  } else {
    printf(" ( from dist parameter -> distance %g )\n", dist);
  }
  printf("%s: Cold and Thermal brilliance performance multiplicators are c_performance=%g and t_performance=%g\n", NAME_CURRENT_COMP, c_performance, t_performance);
  
  /* Calculate orientation matrix for the display and calculations */
  r11 = cos(DEG2RAD*orientation_angle);
  r12 = -sin(DEG2RAD*orientation_angle);
  r21 = sin(DEG2RAD*orientation_angle);
  r22 = cos(DEG2RAD*orientation_angle);
  
  /* Rotated corrdinates of the emission areas */
  rC1_x = r11*C1_z + r12*C1_x;
  rC1_z = r21*C1_z + r22*C1_x;
  rC2_x = r11*C2_z + r12*C2_x;
  rC2_z = r21*C2_z + r22*C2_x;
  rC3_x = r11*C3_z + r12*C3_x;
  rC3_z = r21*C3_z + r22*C3_x;
  rT1_x = r11*T1_z + r12*T1_x;
  rT1_z = r21*T1_z + r22*T1_x;
  rT2_x = r11*T2_z + r12*T2_x;
  rT2_z = r21*T2_z + r22*T2_x;
  rT3_x = r11*T3_z + r12*T3_x;
  rT3_z = r21*T3_z + r22*T3_x;
  /* Moderator half-height */
  delta_y = yheight/2.0;
  /* Other moderator parms */
  /* "Measured" moderator widths in cm scale */
  Mwidth_c=100.0*ColdWidths[beamline-1]/cos_cold; 
  Mwidth_t=(100.0*ThermalWidths[beamline-1]+0.7)/cos_thermal;
  
  if (tfocus_width && tfocus_time && tfocus_dist) {
    printf("%s: Using time focusing: Directing neutrons to this time-window:\n   tfocus_width (%g s) wide at tfocus_time (%g s), tfocus_dist (%g m) downstream\n",NAME_CURRENT_COMP, tfocus_width, tfocus_time, tfocus_dist);
  } else if (!tfocus_width && !tfocus_time && !tfocus_dist) {
    printf("%s: NOT using time focusing\n",NAME_CURRENT_COMP);
  } else {
    fprintf(stderr,"%s: Unmeaningful combination tfocus_width (%g s), tfocus_time (%g s) and tfocus_dist (%g m): \n    All must be either==0 (no time focusing) or !=0 (time focusing)\n ERROR - Exiting\n",
	    NAME_CURRENT_COMP, tfocus_width, tfocus_time, tfocus_dist);
    exit(-1);
  }

  l_range = Lmax-Lmin;
  /* Weight multipliers */
  w_mult=acc_power/5;
  w_stat=1.0/mcget_ncount();
  w_geom_c  = 0.072*yheight*1.0e4;     /* source area correction */
  w_geom_t  = 0.108*yheight*1.0e4;
  w_mult *= l_range;            /* wavelength range correction */
  n_pulses=(double)floor(n_pulses);
  if (n_pulses == 0) n_pulses=1;

  dxC=dxCold[beamline-1];
  dxT=dxThermal[beamline-1];
%}

TRACE
%{
  double xtmp;
  int    iscold;
  double x0,z0;
  int    surf_sign;
  double cos_factor;
  double w_geom;
  double xf, yf, zf;
  double dx,dy,dz;
  double k,v,r,lambda;
  double dt=0;
  double modX,modY;
  
  /* Cold or thermal event? */
  p=1;
  xtmp = rand01();
  y = randpm1()*delta_y;
  modY=y;
  if (rand01() < cold_frac) {
    iscold=1;
    if (rand01() < wfrac_cold) { // "Broad face" 
      x = rC1_x + (rC2_x - rC1_x)*xtmp;
      z = rC1_z + (rC2_z - rC1_z)*xtmp;
      x0 = C1_x + (C2_x - C1_x)*xtmp;
      z0 = C1_z + (C2_z - C1_z)*xtmp;
      surf_sign=-1;
      cos_factor=cos_cold;
    } else {
      x = rC1_x + (rC3_x - rC1_x)*xtmp;
      z = rC1_z + (rC3_z - rC1_z)*xtmp;
      x0 = C1_x + (C3_x - C1_x)*xtmp;
      z0 = C1_z + (C3_z - C1_z)*xtmp;    
      surf_sign=1;
      cos_factor=cos_thermal;
    }
    modX=((-1.0*isleft*x0)-dxC);
    w_geom=w_geom_c;
  } else {
    iscold=0;
    if (rand01() < wfrac_thermal) { // "Broad face" 
      x = rT1_x + (rT2_x - rT1_x)*xtmp;
      z = rT1_z + (rT2_z - rT1_z)*xtmp;
      x0 = T1_x + (T2_x - T1_x)*xtmp;
      z0 = T1_z + (T2_z - T1_z)*xtmp;
      surf_sign=1;
      cos_factor=cos_thermal;
    } else {
      x = rT1_x + (rT3_x - rT1_x)*xtmp;
      z = rT1_z + (rT3_z - rT1_z)*xtmp;
      x0 = T1_x + (T3_x - T1_x)*xtmp;
      z0 = T1_z + (T3_z - T1_z)*xtmp;
      surf_sign=-1;
      cos_factor=cos_thermal;
    }
    modX=((-1.0*isleft*x0)+dxT);
    w_geom=w_geom_t;
  }

  SCATTER;
  /* Where are we going? */
  randvec_target_rect_real(&xf, &yf, &zf, NULL,
			   tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 0);
  
  w_focus=focus_xw*focus_yh/(tx*tx+ty*ty+tz*tz);

  dx = xf-x;
  dy = yf-y;
  dz = zf-z;
  r = sqrt(dx*dx+dy*dy+dz*dz);
  
  lambda = Lmin+l_range*rand01();    /* Choose from uniform distribution */

  k = 2*PI/lambda;
  v = K2V*k;

  vz = v*dz/r;
  vy = v*dy/r;
  vx = v*dx/r;

  /* Are we using time focusing? */
  if (tfocus_width>0) {
    dt = tfocus_dist/vz;
    t = tfocus_time-dt; /* Set time to hit time window center */
    t += randpm1()*tfocus_width/2.0; 
    if (t<0) ABSORB;                       /* Kill neutron if outside pulse duration */
    if (t>tmax_multiplier*ESS_SOURCE_DURATION) ABSORB;
    w_tfocus=tfocus_width/(tmax_multiplier*ESS_SOURCE_DURATION);
  } else {
    /* Simple, random wavelength @ random time */
    t = rand01()*tmax_multiplier*ESS_SOURCE_DURATION;
    w_tfocus=1;
  }
  
  if (iscold) {          //case: cold moderator
    /* Apply simple engineering reality correction */
    ESS_2015_Schoenfeldt_cold(&t,  &p,  lambda,  tfocus_width,  tfocus_time,  dt, yheight, Mwidth_t, yheight, Mwidth_c, tmax_multiplier, beamportangle, modX, modY);
    p *= c_performance;
    p *= ColdScalars[beamline-1];
  }  else  {                      //case: thermal moderator
    ESS_2015_Schoenfeldt_thermal(&t,  &p,  lambda,  tfocus_width,  tfocus_time,  dt, yheight, Mwidth_t, yheight, Mwidth_c, tmax_multiplier, beamportangle, modX, modY);
    p *= t_performance;
    p *= ThermalScalars[beamline-1];
  }
  p*=w_stat*w_focus*w_geom*w_mult*w_tfocus;
  t+=(double)floor((n_pulses)*rand01())/ESS_SOURCE_FREQUENCY;   /* Select a random pulse */
  p*=cos_factor;
  /* Correct weight for sampling of cold vs. thermal events. */
  if (iscold) {
    p /= cold_frac;
  } else {
    p /= (1-cold_frac);
  }
 SCATTER;
%}

MCDISPLAY
%{
 #ifndef OPENACC
  magnify("");
  butterfly_geometry(delta_y, jmax, cx, cz,
    orientation_angle, Beamlines, tx,ty,tz,
    rC1_x,rC1_z,rC2_x,rC2_z,rC3_x,rC3_z, 
    rT1_x,rT1_z,rT2_x,rT2_z,rT3_x,rT3_z,
    r11, r12, r21, r22, focus_xw, focus_yh);
 #endif
%}

END