1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Source_Maxwell_3
*
* %I
* Written by: Kim Lefmann
* Date: March 2001
* Origin: Risoe
*
* Source with up to three Maxwellian distributions
*
* %D
* A parametrised continuous source for modelling a (cubic) source
* with (up to) 3 Maxwellian distributions.
* The source produces a continuous spectrum.
* The sampling of the neutrons is uniform in wavelength.
*
* Units of flux: neutrons/cm^2/second/ster
* (McStas units are in general neutrons/second)
*
* Example: PSI cold source T1=150.42 K / 2.51 AA I1 = 3.67 E11
* T2=38.74 K / 4.95 AA I2 = 3.64 E11
* T3=14.84 K / 9.5 AA I3 = 0.95 E11
*
* %P
* Input parameters:
*
* yheight: [m] Height of rectangular source
* xwidth: [m] Width of rectangular source
* Lmin: [AA] Lower edge of lambda distribution
* Lmax: [AA] Upper edge of lambda distribution
* lambda0: [AA] Mean wavelength of neutrons.
* dlambda: [AA] Wavelength spread of neutrons.
* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* focus_xw: [m] Width of focusing rectangle
* focus_yh: [m] Height of focusing rectangle
* T1: [K] 1st temperature of thermal distribution
* I1: [1/(cm**2*st)] flux, 1 (in flux units, see above)
*
* Optional parameters:
* dist: [m] Distance from source to focusing rectangle; at (0,0,dist)
* T2: [K] 2nd temperature of thermal distribution
* T3: [K] 3nd temperature of - - -
* I2: [1/(cm**2*st)] flux, 2 (in flux units, see above)
* I3: [1/(cm**2*st)] flux, 3 - - -
* size: [m] Edge of cube shaped source (for backward compatibility)
*
* %E
*******************************************************************************/
DEFINE COMPONENT Source_Maxwell_3
SETTING PARAMETERS (size=0, yheight=0, xwidth=0, Lmin, Lmax, dist,
focus_xw, focus_yh,
T1, T2=300, T3=300, I1, I2=0, I3=0,
int target_index=+1,lambda0=0, dlambda=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
/* A normalised Maxwellian distribution : Integral over all l = 1 */
#pragma acc routine seq
double SM3_Maxwell(double l, double temp)
{
double a=949.0/temp;
return 2*a*a*exp(-a/(l*l))/(l*l*l*l*l);
}
%}
DECLARE
%{
double l_range;
double w_mult;
double w_source;
double h_source;
%}
INITIALIZE
%{
if (target_index && !dist)
{
Coords ToTarget;
double tx,ty,tz;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
}
if (size>0) {
w_source = h_source = size;
} else {
w_source = xwidth;
h_source = yheight;
}
if (lambda0) {
Lmin=lambda0-dlambda;
Lmax=lambda0+dlambda;
}
l_range = Lmax-Lmin;
w_mult = w_source*h_source*1.0e4; /* source area correction */
w_mult *= l_range; /* wavelength range correction */
w_mult *= 1.0/mcget_ncount(); /* correct for # neutron rays */
if (w_source <0 || h_source < 0 || Lmin <= 0 || Lmax <= 0 || dist <= 0 || T1 <= 0 || T2 <= 0|| T3 <= 0 || Lmax<=Lmin) {
printf("Source_Maxwell_3: %s: Error in input parameter values!\n"
"ERROR Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
%}
TRACE
%{
double v,tau_l,E,lambda,k,r,xf,yf,dx,dy,w_focus;
t=0;
z=0;
x = 0.5*w_source*randpm1();
y = 0.5*h_source*randpm1(); /* Choose initial position */
randvec_target_rect_real(&xf, &yf, &r, &w_focus,
0, 0, dist, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);
dx = xf-x;
dy = yf-y;
r = sqrt(dx*dx+dy*dy+dist*dist);
lambda = Lmin+l_range*rand01(); /* Choose from uniform distribution */
k = 2*PI/lambda;
v = K2V*k;
vz = v*dist/r;
vy = v*dy/r;
vx = v*dx/r;
/* printf("pos0 (%g %g %g), pos1 (%g %g %g), r: %g, v (%g %g %g), v %g\n",
x,y,z,xf,yf,dist,r,vx,vy,vz, v);
printf("l %g, w_focus %g \n", lambda, w_focus); */
p *= w_mult*w_focus; /* Correct for target focusing etc */
p *= I1*SM3_Maxwell(lambda,T1)+I2*SM3_Maxwell(lambda,T2)+I3*SM3_Maxwell(lambda,T3);
/* Calculate true intensity */
%}
MCDISPLAY
%{
multiline(5, -(double)focus_xw/2.0, -(double)focus_yh/2.0, 0.0,
(double)focus_xw/2.0, -(double)focus_yh/2.0, 0.0,
(double)focus_xw/2.0, (double)focus_yh/2.0, 0.0,
-(double)focus_xw/2.0, (double)focus_yh/2.0, 0.0,
-(double)focus_xw/2.0, -(double)focus_yh/2.0, 0.0);
if (dist) {
dashed_line(0,0,0, -focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2, focus_yh/2,dist, 4);
dashed_line(0,0,0, -focus_xw/2, focus_yh/2,dist, 4);
}
%}
END
|