1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Source_adapt.comp
*
* %I
* Written by: Kristian Nielsen
* Date: 1999
* Origin: Risoe
* Modified by: Revised by: <a href="mailto:percival@physics.queensu.ca">Aaron M. Percival</a>
* Modified by: 2007
* Modified by: <a href="http://www.physics.queensu.ca">Queen's University Department of Physics</a>
* Modified by: Added the option of having an initial distribution that is uniform in wavelength
*
* Neutron source with adaptive importance sampling
*
*
*
* %D
* Rectangular source with flat energy or wavelength distribution that
* uses adaptive importance sampling to improve simulation efficiency.
* Works together with the Adapt_check component.
*
* The source divides the three-dimensional phase space of (energy,
* horizontal position, horizontal divergence) into a number of
* rectangular bins. The probability for selecting neutrons from each
* bin is adjusted so that neutrons that reach the Adapt_check
* component with high weights are emitted more frequently than those
* with low weights. The adjustment is made so as to attemt to make
* the weights at the Adapt_check components equal.
*
* Focusing is achieved by only emitting neutrons towards a rectangle
* perpendicular to and placed at a certain distance along the Z axis.
* Focusing is only approximate (for simplicity); neutrons are also
* emitted to pass slightly above and below the focusing rectangle,
* more so for wider focusing.
*
* In order to prevent false learning, a parameter beta sets a
* fraction of the neutrons that are emitted uniformly, without regard
* to the adaptive distribution. The parameter alpha sets an initial
* fraction of neutrons that are emitted with low weights; this is
* done to prevent early neutrons with rare initial parameters but
* high weight to ruin the statistics before the component adapts its
* distribution to the problem at hand. Good general-purpose values
* for these parameters are alpha = beta = 0.25.
*
* %VALIDATION
* This component is not validated. It does not work properly with MPI.
*
* %P
* INPUT PARAMETERS:
*
* xmin: [m] Left edge of rectangular source
* xmax: [m] Right edge
* ymin: [m] Lower edge
* ymax: [m] Upper edge
* xwidth: [m] Width of source
* yheight: [m] Height of source
* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* dist: [m] Distance to target rectangle along z axis
* focus_xw: [m] Width of target
* focus_yh: [m] Height of target
* E0: [meV] Mean energy of neutrons
* dE: [meV] Energy spread (energy range is from E0-dE to E0+dE)
* lambda0: [AA] Mean wavelength of neutrons (if energy not specified)
* dlambda: [AA] Wavelength spread half width
* flux: [] (1/(cm 2 AA st)) Absolute source flux
* N_E: [1] Number of bins in energy (or wavelength) dimension
* N_xpos: [1] Number of bins in horizontal position
* N_xdiv: [1] Number of bins in horizontal divergence
* alpha: [1] Learning cut-off factor (0 < alpha <= 1)
* beta: [1] Aggressiveness of adaptive algorithm (0 < beta <= 1)
* filename: [string] Optional filename for adaptive distribution output
*
* CALCULATED PARAMETERS:
*
* p_in: [] Internal, holds initial neutron weight
* y_0: [] Internal
* C: [] Internal
* r_0: [] Internal
* count: [] Internal, counts neutrons emitted
* adpt: [] Internal structure shared with the Adapt_check component
*
* %E
*******************************************************************************/
DEFINE COMPONENT Source_adapt
SETTING PARAMETERS (
N_E=20, N_xpos=20, N_xdiv=20,
xmin=0, xmax=0, ymin=0, ymax=0, xwidth=0, yheight=0,
string filename=0, dist=0, focus_xw=0.05, focus_yh=0.1,
E0=0, dE=0, lambda0=0, dlambda=0, flux=1e13,
int target_index=+1, alpha=0.25, beta=0.25)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "adapt_tree-lib"
struct source_adapt
{
struct adapt_tree *atree; /* Adaptive search tree */
int idx; /* Index of current bin */
double *psi, *n; /* Arrays of weight sums, neutron counts */
double psi_tot; /* Total weight sum */
double pi, num; /* Initial p, number of bins in tree */
double factor; /* Adaption quality factor */
double a_beta; /* Adaption agression factor */
} source_adapt;
%}
DECLARE
%{
struct source_adapt adpt;
double count; /* Neutron counter */
double y_0, C, r_0;
double p_in;
%}
INITIALIZE
%{
int i;
double a, lambda_min, lambda_max, delta_lambda, source_area;
if (target_index && !dist)
{
Coords ToTarget;
double tx,ty,tz;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
}
if (xwidth > 0) { xmin=-xwidth/2; xmax=-xmin; }
if (yheight> 0) { ymin=-yheight/2; ymax=-ymin; }
adpt.num = N_E*N_xpos*N_xdiv;
adpt.a_beta = beta;
if (E0 == 0) {
lambda_min = lambda0 - dlambda; /* AAngstroem */
lambda_max = lambda0 + dlambda;
delta_lambda = 2*dlambda;
}
else {
lambda_min = sqrt(81.81/(E0+dE)); /* AAngstroem */
lambda_max = sqrt(81.81/(E0-dE));
delta_lambda = lambda_max - lambda_min;
}
if (lambda_min<=0 || lambda_max <=0 || lambda_max<=lambda_min ) {
printf("Source_adapt: %s: Error in given wavelength range!\n"
"ERROR Exiting\n",
NAME_CURRENT_COMP);
exit(0);
}
source_area = (xmax - xmin)*(ymax - ymin)*1e4; /* cm^2 */
p_in = flux/mcget_ncount()*delta_lambda*source_area;
adpt.atree = adapt_tree_init(adpt.num);
adpt.psi = malloc(adpt.num*sizeof(*adpt.psi));
adpt.n = malloc(adpt.num*sizeof(*adpt.n));
if(!(adpt.psi && adpt.n))
{
fprintf(stderr, "Fatal error: out of memory.\n");
exit(1);
}
for(i = 0; i < adpt.num; i++)
{
adapt_tree_add(adpt.atree, i, 1.0/adpt.num);
adpt.psi[i] = adpt.n[i] = 0;
}
adpt.psi_tot = 0;
count = 0;
y_0 = adpt.num > 8 ? 2.0/adpt.num : 0.25;
r_0 = 1/(double)alpha*log((1 - y_0)/y_0)/(double)mcget_ncount();
C = 1/(1 + log(y_0 + (1 - y_0)*exp(-r_0*mcget_ncount()))/(r_0*mcget_ncount()));
%}
TRACE
%{
double thmin,thmax,phmin,phmax,theta,phi,v,r,E,lambda;
double new_v;
int i_E, i_xpos, i_xdiv;
/* Randomly select a bin in the current distribution */
r = rand01();
adpt.idx = adapt_tree_search(adpt.atree, adpt.atree->total*r);
if(adpt.idx >= adpt.num)
{
fprintf(stderr,
"Hm, idx is %d, num is %d, r is %g, atree->total is %g\n",
adpt.idx, (int)adpt.num, r, adpt.atree->total);
adpt.idx = adpt.num - 1;
}
/* Now find the bin coordinates. */
i_xdiv = adpt.idx % (int)N_xdiv;
i_xpos = (adpt.idx / (int)N_xdiv) % (int)N_xpos;
i_E = (adpt.idx / (int)N_xdiv) / (int)N_xpos;
/* Compute the initial neutron parameters, selecting uniformly randomly
within each bin dimension. */
x = xmin + (i_xpos + rand01())*((xmax - xmin)/(double)N_xpos);
y = ymin + rand01()*(ymax - ymin);
z=0;
thmin = atan2(-focus_xw/2.0 - x, dist);
thmax = atan2( focus_xw/2.0 - x, dist);
theta = thmin + (i_xdiv + rand01())*((thmax - thmin)/(double)N_xdiv);
phmin = atan2(-focus_yh/2.0 - y, dist);
phmax = atan2( focus_yh/2.0 - y, dist);
phi = phmin + rand01()*(phmax - phmin);
if(E0 == 0) {
lambda = lambda0 - dlambda + (i_E + rand01())*(2.0*dlambda/(double)N_E);
v = 3.956E3/lambda;
vy = v*sin(phi);
vx = v*cos(phi)*sin(theta);
vz = v*cos(phi)*cos(theta);
}
else {
E = E0 - dE + (i_E + rand01())*(2.0*dE/(double)N_E);
v = sqrt(E)*SE2V;
vy = v*sin(phi);
vx = v*cos(phi)*sin(theta);
vz = v*cos(phi)*cos(theta);
}
t = 0;
/* Adjust neutron weight. */
p = p_in;
adpt.factor = y_0/(y_0 + (1 - y_0)*exp(-r_0*count));
count++;
p /= adpt.atree->v[adpt.idx]/(adpt.atree->total/adpt.num);
p *= C*adpt.factor*(thmax - thmin)*(sin(phmax) - sin(phmin));
SCATTER;
/* Update distribution, assuming absorbtion. */
if(adpt.n[adpt.idx] > 0)
adpt.psi_tot -= adpt.psi[adpt.idx]/
(adpt.n[adpt.idx]*(adpt.n[adpt.idx] + 1));
adpt.n[adpt.idx]++;
if(adpt.psi_tot != 0)
{
new_v = (1 - adpt.a_beta)*adpt.factor*adpt.psi[adpt.idx]/
(adpt.n[adpt.idx]*adpt.psi_tot) +
adpt.a_beta/adpt.num;
adapt_tree_add(adpt.atree, adpt.idx, new_v - adpt.atree->v[adpt.idx]);
}
/* Remember initial neutron weight. */
adpt.pi = p;
%}
FINALLY
%{
double *p1 = NULL;
int i;
if(filename)
{
p1 = malloc(adpt.num*sizeof(double));
if(!p1)
fprintf(stderr, "Warning: Source_adapt: "
"not enough memory to write distribution.\n");
}
if(p1)
{
for(i = 0; i < adpt.num; i++)
p1[i] = adpt.atree->v[i]/adpt.atree->total;
if(E0 == 0) {
DETECTOR_OUT_1D("Adaptive source Wavelength distribution",
"Wavelength [AA]",
"Probability",
"lambda", lambda0 - dlambda, lambda0 + dlambda, adpt.num,
NULL, p1, NULL, filename);
}
else {
DETECTOR_OUT_1D("Adaptive source energy distribution",
"Energy [meV]",
"Probability",
"E", E0 - dE, E0 + dE, adpt.num,
NULL, p1, NULL, filename);
}
free(p1);
}
adapt_tree_free(adpt.atree);
%}
MCDISPLAY
%{
multiline(5, (double)xmin, (double)ymin, 0.0,
(double)xmax, (double)ymin, 0.0,
(double)xmax, (double)ymax, 0.0,
(double)xmin, (double)ymax, 0.0,
(double)xmin, (double)ymin, 0.0);
if (dist) {
dashed_line(0,0,0, -focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2, focus_yh/2,dist, 4);
dashed_line(0,0,0, -focus_xw/2, focus_yh/2,dist, 4);
}
%}
END
|