File: Source_gen.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (632 lines) | stat: -rw-r--r-- 23,408 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Source_gen
*
* %I
* Written by: Emmanuel Farhi, Kim Lefmann
* Date: Aug 27, 2001
* Origin: ILL/Risoe
* Modified by: EF, Aug 27, 2001 ; can use Energy/wavelength and I1
* Modified by: EF, Sep 18, 2001 ; corrected illumination bug. Add options
* Modified by: EF, Oct 30, 2001 ; minor changes. mccompcurname replaced
*
* Circular/squared neutron source with flat or Maxwellian energy/wavelength
* spectrum
*
* %D
* This routine is a neutron source (rectangular or circular), which aims at
* a square target centered at the beam (in order to improve MC-acceptance
* rate). The angular divergence is then given by the dimensions of the
* target. However, it may be directly set using the 'focus-aw' and 'focus_ah'
* parameters.
*
* The neutron energy/wavelength is distributed uniformly in wavelength between
* Emin=E0-dE and Emax=E0+dE or Lmin=lambda0-dlambda and Lmax=lambda0+dlambda.
* The I1 may be either arbitrary (I1=0), or specified in neutrons per steradian
* per square cm per Angstrom per s. A Maxwellian spectra may be selected if you
* give the source temperatures (up to 3).
*
* Finally, a file with the flux as a
* function of the wavelength [lambda(AA) flux(n/s/cm^2/st/AA)] may be used
* with the 'flux_file' parameter. Format is 2 columns free text.
*
* Additional distributions for the horizontal and vertical phase spaces
* distributions (position-divergence) may be specified with the
* 'xdiv_file' and 'ydiv_file' parameters. Format is free text, requiring
* a comment line '# xylimits: pos_min pos_max div_min div_max' to set
* the axis of the distribution matrix. All these files may be generated using
* standard monitors (better in McStas/PGPLOT format), e.g.:
*   Monitor_nD(options="auto lambda per cm2")
*   Monitor_nD(options="x hdiv, all auto")
*   Monitor_nD(options="y vdiv, all auto")
*
* The source shape is defined by its radius, or can alternatively be squared
* if you specify non-zero yheight and xwidth parameters.
* The beam is divergence uniform,.
* The source may have a thickness, which will broaden the default zero time
* distribution.
*
* Usage example:
*   Source_gen(radius=0.1,lambda0=2.36,dlambda=0.16,T1=20,I1=1e13,focus_xw=0.01,focus_yh=0.01)
*   Source_gen(yheight=0.1,xwidth=0.1,Emin=1,Emax=3,I1=1e13,verbose=1,focus_xw=0.01,focus_yh=0.01)
*   EXTEND
*   %{
*      t = rand0max(1e-3); // set time from 0 to 1 ms for TOF instruments.
*   %}
*
* <b>Some neutron facility parameters:</b>
* PSI cold source     T1=296.2,I1=8.5E11, T2=40.68,I2=5.2E11
* ILL VCS cold source T1=216.8,I1=1.24e+13,T2=33.9,I2=1.02e+13
*        (H1, 58 MW)  T3=16.7 ,I3=3.0423e+12
* ILL HCS cold source T1=413.5,I1=10.22e12,T2=145.8,I2=3.44e13
*        (H5, 58 MW)  T3=40.1 ,I3=2.78e13
* ILL Thermal tube    T1=683.7,I1=0.5874e+13,T2=257.7,I2=2.5099e+13
*        (H12, 58 MW) T3=16.7 ,I3=1.0343e+12
* ILL Hot source      T1=1695, I1=1.74e13,T2=708,  I2=3.9e12 (58MW)
* HZB cold source     T1=43.7 ,I1=1.4e12, T2=137.2,I2=2.08e12,radius=.155 (10MW)
* HZB bi-spectral     T1=43.7, I1=1.4e12, T2=137.2,I2=2.08e12,T3=293.0,I3=1.77e12
* HZB thermal tube    T1=293.0,I1=2.64e12 (10MW)
* FRM2 cold,20MW      T1=35.0, I1=9.38e12,T2=547.5,I2=2.23e12,T3=195.4,I3=1.26e13
* FRM2 thermal,20MW   T1=285.6,I1=3.06e13,T2=300.0,I2=1.68e12,T3=429.9,I3=6.77e12
* LLB cold,14MW       T1=220,  I1=2.09e12,T2=60,   I2=3.83e12,T3=20,   I3=1.04e12
* TRIGA thermal 1MW   T1=300,  I1=3.5e11 (scale by thermal power in MW)
*
* %VALIDATION
* Feb 2005: output cross-checked for 3 Maxwellians against VITESS source
*           I(lambda), I(hor_div), I(vert_div) identical in shape and absolute values
* Validated by: K. Lieutenant
*
* %P
* radius: [m]           Radius of circle in (x,y,0) plane where neutrons are generated. You may also use 'yheight' and 'xwidth' for a square source
* target_index: [1]     relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* focus_xw: [m]         Width of target.
* focus_yh: [m]         Height of target.
*
* Energy or wavelength range must be defined by giving min and max value or
* average and spread:
* Emin: [meV]           Minimum energy of neutrons
* Emax: [meV]           Maximum energy of neutrons
* E0: [meV]             Mean energy of neutrons.
* dE: [meV]             Energy spread of neutrons, half width.
* Lmin: [AA]            Minimum wavelength of neutrons
* Lmax: [AA]            Maximum wavelength of neutrons
* lambda0: [AA]         Mean wavelength of neutrons.
* dlambda: [AA]         Wavelength spread of neutrons,half width
*
* Optional parameters:
* dist: [m]             Distance to target along z axis.
* yheight: [m]          Source y-height, then does not use radius parameter
* xwidth: [m]           Source x-width, then does not use radius parameter
* zdepth: [m]           Source z-zdepth, not anymore flat
* focus_aw: [deg]       maximal (uniform) horz. width divergence
* focus_ah: [deg]       maximal (uniform) vert. height divergence
* T1: [K]               Temperature of the Maxwellian source, 0=none
* I1: [1/(cm**2*sr)]    Source flux per solid angle, area and Angstrom if I1=0, the source emits 1 in 4*PI whole space.
* T2: [K]               Second Maxwellian source Temperature, 0=none
* I2: [1/(cm**2*sr)]    Second Maxwellian Source flux
* T3: [K]               Third Maxwellian source Temperature, 0=none
* I3: [1/(cm**2*sr)]    Third Maxwellian Source flux
* flux_file: [str]      Name of a two columns [lambda flux] text file that contains the wavelength distribution of the flux in <b>either</b> [1/(s*cm**2*st)] <b>or</b> [1/(s*cm**2*st*AA)] (see flux_file_perAA flag) Comments (#) and further columns are ignored. Format is compatible with McStas/PGPLOT wavelength monitor files. When specified, temperature and intensity values are ignored.
* flux_file_perAA: [1]  When true (1), indicates that flux file data is already per Aangstroem. If false, file data is per wavelength bin.
* flux_file_log: [1]    When true, will transform the flux table in log scale to improve the sampling.
* xdiv_file: [str]      Name of the x-horiz. divergence distribution file, given as a free format text matrix, preceeded with a line '# xylimits: xmin xmax xdiv_min xdiv_max'
* ydiv_file: [str]      Name of the y-vert. divergence distribution file, given as a free format text matrix, preceeded with a line '# xylimits: ymin ymax ydiv_min ydiv_max'
* verbose: [0/1]        display info about the source. -1 unactivate source.
*
* %L
* P. Ageron, Nucl. Inst. Meth. A 284 (1989) 197
* %E
******************************************************************************/


DEFINE COMPONENT Source_gen

SETTING PARAMETERS (string flux_file="NULL", string xdiv_file="NULL", string ydiv_file="NULL",
radius=0.0, dist=0, focus_xw=0.045, focus_yh=0.12, focus_aw=0, focus_ah=0,
E0=0, dE=0, lambda0=0, dlambda=0, I1=1,
yheight=0.1, xwidth=0.1, verbose=0, T1=0,
flux_file_perAA=0, flux_file_log=0,
Lmin=0,Lmax=0,Emin=0,Emax=0,T2=0,I2=0,T3=0,I3=0,zdepth=0, int target_index=+1)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
%include "read_table-lib"

#ifndef SOURCE_GEN_DEF
#define SOURCE_GEN_DEF
/*******************************************************************************
* str_dup_numeric: replaces non 'valid name' chars with spaces
*******************************************************************************/
char *str_dup_numeric(char *orig)
  {
    long i;

    if (!orig || !strlen(orig)) return(NULL);

    for (i=0; i < strlen(orig); i++)
    {
      if ( (orig[i] > 122)
        || (orig[i] < 32)
        || (strchr("!\"#$%&'()*,:;<=>?@[\\]^`/ ", orig[i]) != NULL) )
      {
        orig[i] = ' ';
      }
    }
    orig[i] = '\0';
    /* now skip spaces */
    for (i=0; i < strlen(orig); i++) {
      if (*orig == ' ') orig++;
      else break;
    }

    return(orig);
  } /* str_dup_numeric */

  /* A normalised Maxwellian distribution : Integral over all l = 1 */
#pragma acc routine seq
  double SG_Maxwell(double l, double temp)
  {
    double a=949.0/temp;
    return 2*a*a*exp(-a/(l*l))/(l*l*l*l*l);
  }
#endif

%}

DECLARE
%{

  double p_in;
  double lambda1;  /* first Maxwellian source */
  double lambda2;  /* second Maxwellian source */
  double lambda3;  /* third Maxwellian source */
  t_Table pTable;
  t_Table pTable_x;
  t_Table pTable_y;
  double pTable_xmin;
  double pTable_xmax;
  double pTable_xsum;
  double pTable_ymin;
  double pTable_ymax;
  double pTable_ysum;
  double pTable_dxmin;
  double pTable_dxmax;
  double pTable_dymin;
  double pTable_dymax;

%}

INITIALIZE
%{
  pTable_xsum=0;
  pTable_ysum=0;


  double source_area, k;

  if (target_index && !dist)
  {
    Coords ToTarget;
    double tx,ty,tz;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &tx, &ty, &tz);
    dist=sqrt(tx*tx+ty*ty+tz*tz);
  }

  /* spectrum characteristics */
  if (flux_file && strlen(flux_file) && strcmp(flux_file,"NULL") && strcmp(flux_file,"0")) {
    if (Table_Read(&pTable, flux_file, 1) <= 0) /* read 1st block data from file into pTable */
      exit(fprintf(stderr, "Source_gen: %s: can not read flux file %s\n", NAME_CURRENT_COMP, flux_file));
    /* put table in Log scale */
    int i;
    if (pTable.columns < 2) exit(fprintf(stderr, "Source_gen: %s: Flux file %s should contain at least 2 columns [wavelength in Angs,flux].\n", NAME_CURRENT_COMP, flux_file));
    double table_lmin=FLT_MAX, table_lmax=-FLT_MAX;
    double tmin=FLT_MAX, tmax=-FLT_MAX;
    for (i=0; i<pTable.rows; i++) {
      double val = Table_Index(pTable, i,1);
      val = Table_Index(pTable, i,0); /* lambda */
      if (val > tmax) tmax=val;
      if (val < tmin) tmin=val;
    }
    for (i=0; i<pTable.rows; i++) {
      double val = Table_Index(pTable, i,1);
      if (val < 0) fprintf(stderr, "Source_gen: %s: File %s has negative flux at row %i.\n", NAME_CURRENT_COMP, flux_file, i+1);
      if (flux_file_log)
        val = log(val > 0 ? val : tmin/10);
      Table_SetElement(&pTable, i, 1, val);
      val = Table_Index(pTable, i,0); /* lambda */
      if (val > table_lmax) table_lmax=val;
      if (val < table_lmin) table_lmin=val;
    }
    if (!Lmin && !Lmax && !lambda0 && !dlambda && !E0 && !dE && !Emin && !Emax) {
      Lmin = table_lmin; Lmax = table_lmax;
    }
    if (Lmax > table_lmax) {
      if (verbose) fprintf(stderr, "Source_gen: %s: Maximum wavelength %g is beyond table range upper limit %g. Constraining.\n", NAME_CURRENT_COMP, Lmax, table_lmax);
      Lmax = table_lmax;
    }
    if (Lmin < table_lmin) {
      if (verbose) fprintf(stderr, "Source_gen: %s: Minimum wavelength %g is below table range lower limit %g. Constraining.\n", NAME_CURRENT_COMP, Lmin, table_lmin);
      Lmin = table_lmin;
    }
  }  /* end flux file */
  else
  {
    k  = 1.38066e-23; /* k_B */
    if (T1 > 0)
    {
      lambda1  = 1.0e10*sqrt(HBAR*HBAR*4.0*PI*PI/2.0/MNEUTRON/k/T1);
    }
    else
      { lambda1 = lambda0; }

    if (T2 > 0)
    {
      lambda2  = 1.0e10*sqrt(HBAR*HBAR*4.0*PI*PI/2.0/MNEUTRON/k/T2);
    }
    else
      { lambda2 = lambda0; }

    if (T3 > 0)
    {
      lambda3  = 1.0e10*sqrt(HBAR*HBAR*4.0*PI*PI/2.0/MNEUTRON/k/T3);
    }
    else
      { lambda3 = lambda0; }
  }

  /* now read position-divergence files, if any */
  if (xdiv_file && strlen(xdiv_file) && strcmp(xdiv_file,"NULL") && strcmp(xdiv_file,"0")) {
    int i,j;
    if (Table_Read(&pTable_x, xdiv_file, 1) <= 0) /* read 1st block data from file into pTable */
      exit(fprintf(stderr, "Source_gen: %s: can not read XDiv file %s\n", NAME_CURRENT_COMP, xdiv_file));
    pTable_xsum = 0;
    for (i=0; i<pTable_x.rows; i++)
      for (j=0; j<pTable_x.columns; j++)
        pTable_xsum += Table_Index(pTable_x, i,j);

    /* now extract limits */
    char **parsing;
    char xylimits[1024];
    strcpy(xylimits, "");
    parsing = Table_ParseHeader(pTable_x.header,
      "xlimits", "xylimits",
      NULL);

    if (parsing) {
      if (parsing[0])  strcpy(xylimits, str_dup_numeric(parsing[0]));
      if (parsing[1] && !strlen(xylimits))
                       strcpy(xylimits, str_dup_numeric(parsing[1]));
      for (i=0; i<=1; i++) {
        if (parsing[i]) free(parsing[i]);
      }
      free(parsing);
    }
    i = sscanf(xylimits, "%lg %lg %lg %lg",
      &(pTable_xmin),  &(pTable_xmax),
      &(pTable_dxmin), &(pTable_dxmax));
    if (i != 2 && i != 4 && verbose)
      fprintf(stderr, "Source_gen: %s: invalid xylimits '%s' from file %s. extracted %i values\n",
        NAME_CURRENT_COMP, xylimits, xdiv_file, i);

    if (!xwidth) xwidth=pTable_xmax-pTable_xmin;
    if (!focus_xw && !dist) focus_xw=fabs(pTable_dxmax-pTable_dxmin);
  } /* end xdiv file */

  if (ydiv_file && strlen(ydiv_file) && strcmp(ydiv_file,"NULL") && strcmp(ydiv_file,"0")) {
    int i,j;
    if (Table_Read(&pTable_y, ydiv_file, 1) <= 0) /* read 1st block data from file into pTable */
      exit(fprintf(stderr, "Source_gen: %s: can not read YDiv file %s\n", NAME_CURRENT_COMP, ydiv_file));
    pTable_ysum = 0;
    for (i=0; i<pTable_y.rows; i++)
      for (j=0; j<pTable_y.columns; j++)
        pTable_ysum += Table_Index(pTable_y, i,j);

    /* now extract limits */
    char **parsing;
    char xylimits[1024];
    strcpy(xylimits, "");
    parsing = Table_ParseHeader(pTable_y.header,
      "xlimits", "xylimits",
      NULL);

    if (parsing) {
      if (parsing[0])  strcpy(xylimits,str_dup_numeric(parsing[0]));
      if (parsing[1] && !strlen(xylimits))
                       strcpy(xylimits,str_dup_numeric(parsing[1]));
      for (i=0; i<=1; i++) {
        if (parsing[i]) free(parsing[i]);
      }
      free(parsing);
    }
    i = sscanf(xylimits, "%lg %lg %lg %lg",
      &(pTable_ymin),  &(pTable_ymax),
      &(pTable_dymin), &(pTable_dymax));
    if (i != 2 && i != 4 && verbose)
      fprintf(stderr, "Source_gen: %s: invalid xylimits '%s' from file %s. extracted %i values\n",
        NAME_CURRENT_COMP, xylimits, ydiv_file, i);
    if (!yheight)  yheight=pTable_ymax-pTable_ymin;
    if (!focus_yh && !dist) focus_yh=fabs(pTable_dymax-pTable_dymin);
  } /* end ydiv file */

  /* tests for parameter values */
  if (Emin < 0 || Emax < 0 || Lmin < 0 || Lmax < 0 || E0 < 0 || dE < 0 || lambda0 < 0 || dlambda < 0)
  {
    fprintf(stderr,"Source_gen: %s: Error: Negative average\n"
                   "            or range values for wavelength or energy encountered\n",
                   NAME_CURRENT_COMP);
    exit(-1);
  }
  if ((Emin == 0 && Emax > 0) || (dE > 0 && dE >= E0))
  {
    fprintf(stderr,"Source_gen: %s: Error: minimal energy cannot be less or equal zero\n",
      NAME_CURRENT_COMP);
    exit(-1);
  }
  if ((Emax >= Emin) && (Emin > 0))
  { E0 = (Emax+Emin)/2;
    dE = (Emax-Emin)/2;
  }
  if ((E0 > dE) && (dE >= 0))
  {
    Lmin = sqrt(81.81/(E0+dE)); /* Angstroem */
    Lmax = sqrt(81.81/(E0-dE));
  }
  if (Lmax > 0)
  { lambda0 = (Lmax+Lmin)/2;
    dlambda = (Lmax-Lmin)/2;
  }
  if (lambda0 <= 0 || (lambda0 < dlambda) || (dlambda < 0))
  { fprintf(stderr,"Source_gen: %s: Error: Wavelength range %.3f +/- %.3f AA calculated \n",
      NAME_CURRENT_COMP, lambda0, dlambda);
    fprintf(stderr,"- whole wavelength range must be >= 0 \n");
    fprintf(stderr,"- range must be > 0; otherwise intensity gets zero, use other sources in this case \n\n");
    exit(-1);
  }

  radius = fabs(radius); xwidth=fabs(xwidth); yheight=fabs(yheight);  I1=fabs(I1);
  lambda0=fabs(lambda0); dlambda=fabs(dlambda);
  focus_xw = fabs(focus_xw); focus_yh=fabs(focus_yh); dist=fabs(dist);

  if ((!focus_ah && !focus_aw) && (!focus_xw && !focus_yh))
  {
    fprintf(stderr,"Source_gen: %s: Error: No focusing information.\n"
                   "            Specify focus_xw, focus_yh or focus_aw, focus_ah\n",
                   NAME_CURRENT_COMP);
    exit(-1);
  }
  Lmin = lambda0 - dlambda; /* Angstroem */
  Lmax = lambda0 + dlambda;

  /* compute initial weight factor p_in to get [n/s] */
  if ((I1 > 0  && T1 >= 0)
     || (flux_file && strlen(flux_file) && strcmp(flux_file,"NULL") && strcmp(flux_file,"0")))
  { /* the I1,2,3 are usually in [n/s/cm2/st/AA] */
    if (radius)
      source_area = radius*radius*PI*1e4; /* circular cm^2 */
    else
      source_area = yheight*xwidth*1e4; /* square cm^2 */
    p_in  = source_area; /* cm2 */
    p_in *= (Lmax-Lmin); /* AA. 1 bin=AA/n */
    if (flux_file && strlen(flux_file) && strcmp(flux_file,"NULL") && strcmp(flux_file,"0")
      && !flux_file_perAA)  p_in *= pTable.rows/(Lmax-Lmin);
  }
  else
    p_in = 1.0/4/PI; /* Small angle approx. */
  p_in /= mcget_ncount();
  if (!T1 && I1) p_in *= I1;

  if (radius == 0 && yheight == 0 && xwidth == 0)
  {
    fprintf(stderr,"Source_gen: %s: Error: Please specify source geometry (radius, yheight, xwidth)\n",
      NAME_CURRENT_COMP);
    exit(-1);
  }
  if (focus_xw*focus_yh == 0)
  {
    fprintf(stderr,"Source_gen: %s: Error: Please specify source target (focus_xw, focus_yh)\n",
      NAME_CURRENT_COMP);
    exit(-1);
  }
  MPI_MASTER(
  if (verbose)
  {
    printf("Source_gen: component %s ", NAME_CURRENT_COMP);
    if ((yheight == 0) || (xwidth == 0))
      printf("(disk, radius=%g)", radius);
    else
      printf("(square %g x %g)",xwidth,yheight);
    if (dist) printf("\n            focusing distance dist=%g area=%g x %g\n", dist, focus_xw, focus_yh);
    printf("            spectra ");
    printf("%.3f to %.3f AA (%.3f to %.3f meV)", Lmin, Lmax, 81.81/Lmax/Lmax, 81.81/Lmin/Lmin);
    printf("\n");
    if (flux_file && strlen(flux_file) && strcmp(flux_file,"NULL") && strcmp(flux_file,"0"))
    { printf("  File %s for flux distribution used. Flux is dPhi/dlambda in [n/s/AA]. \n", flux_file);
      Table_Info(pTable);
    }
    else if (T1>=0 && I1)
    { if (T1 != 0)
        printf("            T1=%.1f K (%.3f AA)", T1, lambda1);
      if (T2*I2 != 0)
        printf(", T2=%.1f K (%.3f AA)", T2, lambda2);
      if (T3*I3 != 0)
        printf(", T3=%.1f K (%.3f AA)", T3, lambda3);
      if (T1) printf("\n");
      printf("  Flux is dPhi/dlambda in [n/s/cm2].\n");
    }
    else
    { printf("  Flux is Phi in [n/s].\n");
    }
    if (xdiv_file && strlen(xdiv_file) && strcmp(xdiv_file,"NULL") && strcmp(xdiv_file,"0"))
      printf("  File %s x=[%g:%g] [m] xdiv=[%g:%g] [deg] used as horizontal phase space distribution.\n", xdiv_file, pTable_xmin, pTable_xmax, pTable_dxmin, pTable_dxmax);
    if (ydiv_file && strlen(ydiv_file) && strcmp(ydiv_file,"NULL") && strcmp(ydiv_file,"0"))
      printf("  File %s y=[%g:%g] [m] ydiv=[%g:%g] [deg] used as vertical phase space distribution.\n", ydiv_file, pTable_ymin, pTable_ymax, pTable_dymin, pTable_dymax);
  }
  else
    if (verbose == -1)
      printf("Source_gen: component %s unactivated", NAME_CURRENT_COMP);
  );
%}

TRACE
%{
  double dx=0,dy=0,xf,yf,rf,pdir,chi,v,r, lambda;
  double Maxwell;

  if (verbose >= 0)
  {

    z=0;

    if (radius)
    {
      chi=2*PI*rand01();                          /* Choose point on source */
      r=sqrt(rand01())*radius;                    /* with uniform distribution. */
      x=r*cos(chi);
      y=r*sin(chi);
    }
    else
    {
      x = xwidth*randpm1()/2;   /* select point on source (uniform) */
      y = yheight*randpm1()/2;
    }
    if (zdepth != 0)
      z = zdepth*randpm1()/2;
  /* Assume linear wavelength distribution */
    lambda = lambda0+dlambda*randpm1();
    if (lambda <= 0) ABSORB;
    v = K2V*(2*PI/lambda);

    if (!focus_ah && !focus_aw) {
      randvec_target_rect_real(&xf, &yf, &rf, &pdir,
       0, 0, dist, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);

      dx = xf-x;
      dy = yf-y;
      rf = sqrt(dx*dx+dy*dy+dist*dist);

      vz=v*dist/rf;
      vy=v*dy/rf;
      vx=v*dx/rf;
    } else {

      randvec_target_rect_angular(&vx, &vy, &vz, &pdir,
          0, 0, 1, focus_aw*DEG2RAD, focus_ah*DEG2RAD, ROT_A_CURRENT_COMP);
      dx = vx; dy = vy; /* from unit vector */
      vx *= v; vy *= v; vz *= v;
    }
    p = p_in*pdir;

    /* spectral dependency from files or Maxwellians */

    if (flux_file && strlen(flux_file) && strcmp(flux_file,"NULL") && strcmp(flux_file,"0"))
    {
       double binwidth=Table_Value(pTable, lambda, 1);
       if (flux_file_log) binwidth=exp(binwidth);
       p *= binwidth;
    }
    else 

if (T1 > 0 && I1 > 0)
    {
      Maxwell = I1 * SG_Maxwell(lambda, T1);;  /* 1/AA */

      if ((T2 > 0) && (I2 > 0))
      {
        Maxwell += I2 * SG_Maxwell(lambda, T2);
      }
      if ((T3 > 0) && (I3 > 0))
      {
        Maxwell += I3 * SG_Maxwell(lambda, T3);;
      }
      p *= Maxwell;
    }

    /* optional x-xdiv and y-ydiv weightening: position=along columns, div=along rows */
    if (xdiv_file && strlen(xdiv_file)
      && strcmp(xdiv_file,"NULL") && strcmp(xdiv_file,"0") && pTable_xsum > 0) {
      double i,j;
      j = (x-            pTable_xmin) /(pTable_xmax -pTable_xmin) *pTable_x.columns;
      i = (atan2(dx,rf)*RAD2DEG-pTable_dxmin)/(pTable_dxmax-pTable_dxmin)*pTable_x.rows;
      r = Table_Value2d(pTable_x, i,j); /* row, column */
      p *= r/pTable_xsum;
    }
    if (ydiv_file && strlen(ydiv_file)
       && strcmp(ydiv_file,"NULL") && strcmp(ydiv_file,"0") && pTable_ysum > 0) {
      double i,j;
      j = (y-            pTable_ymin) /(pTable_ymax -pTable_ymin) *pTable_y.columns;
      i = (atan2(dy,rf)*RAD2DEG-  pTable_dymin)/(pTable_dymax-pTable_dymin)*pTable_y.rows;
      r = Table_Value2d(pTable_y, i,j);
      p *= r/pTable_ysum;
    }

    SCATTER;
  }
%}

FINALLY
%{
  Table_Free(&pTable);
  Table_Free(&pTable_x);
  Table_Free(&pTable_y);
%}

MCDISPLAY
%{
  double xmin;
  double xmax;
  double ymin;
  double ymax;

  if (radius)
  {
    
    circle("xy",0,0,0,radius);
    if (zdepth) {
      circle("xy",0,0,-zdepth/2,radius);
      circle("xy",0,0, zdepth/2,radius);
    }
  }
  else
  {
    xmin = -xwidth/2; xmax = xwidth/2;
    ymin = -yheight/2; ymax = yheight/2;

    
    multiline(5, (double)xmin, (double)ymin, 0.0,
             (double)xmax, (double)ymin, 0.0,
             (double)xmax, (double)ymax, 0.0,
             (double)xmin, (double)ymax, 0.0,
             (double)xmin, (double)ymin, 0.0);
    if (zdepth) {
      multiline(5, (double)xmin, (double)ymin, -zdepth/2,
             (double)xmax, (double)ymin, -zdepth/2,
             (double)xmax, (double)ymax, -zdepth/2,
             (double)xmin, (double)ymax, -zdepth/2,
             (double)xmin, (double)ymin, -zdepth/2);
      multiline(5, (double)xmin, (double)ymin, zdepth/2,
             (double)xmax, (double)ymin, zdepth/2,
             (double)xmax, (double)ymax, zdepth/2,
             (double)xmin, (double)ymax, zdepth/2,
             (double)xmin, (double)ymin, zdepth/2);
    }
  }
  if (dist) {
    if (focus_aw) focus_xw=dist*tan(focus_aw*DEG2RAD);
    if (focus_ah) focus_yh=dist*tan(focus_ah*DEG2RAD);
    dashed_line(0,0,0, -focus_xw/2,-focus_yh/2,dist, 4);
    dashed_line(0,0,0,  focus_xw/2,-focus_yh/2,dist, 4);
    dashed_line(0,0,0,  focus_xw/2, focus_yh/2,dist, 4);
    dashed_line(0,0,0, -focus_xw/2, focus_yh/2,dist, 4);
  }
%}

END