File: PhononSimple_process.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (551 lines) | stat: -rw-r--r-- 20,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Anders Komar Ravn, based on template by Mads Bertelsen and Phonon_Simple
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Port of PhononSimple to Union components
*
* %D
*
* Port of the PhononSimple component from the McStas library to the Union
* components.
*
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components like this one
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before the master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* unit_cell_volume:  [AA^3]   Unit cell volume
* a:                 [AA]     fcc lattice constant
* c:                 [meV*AA] Velocity of sound
* M:                 [units]  Nucleus atomic mass in units
* b:                 [fm]     Scattring length
* T:                 [K]      Temperature
* longitudinal:      [0/1]    Simulate longitudinal branches
* transverse:        [0/1]    Simulate transverse branches
* packing_factor:    [1]      How dense is the material compared to optimal 0-1
* interact_fraction: [1]      How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1)
* init:              [string] Name of Union_init component (typically "init", default)
* DW:                [1]      Debye-Waller factor
* CALCULATED PARAMETERS:
* PhononSimple_storage      // Important to update this output paramter
* effective_my_scattering   // Variable used in initialize
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT PhononSimple_process

SETTING PARAMETERS(packing_factor=1,unit_cell_volume=13.8,interact_fraction=-1,a=4.95,c=10,M=207.2,b=9.4,T=290,DW=1,longitudinal=1,transverse=1, string init="init")


SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this PhononSimple_process component"
#endif

// Very important to add a pointer to this struct in the union-lib.c file
struct PhononSimple_physics_storage_struct{
    // Variables that needs to be transfered between any of the following places:
    // The initialize in this component
    // The function for calculating my
    // The function for calculating scattering
    
    double k_init;
    double kk_x;
    double kk_y;
    double kk_z;
    double ki_x;
    double ki_y;
    double ki_z;
    
    // Avoid duplicates of output parameters and setting parameters in naming
    double atom_mass_au;
    double V_rho;
    double my_scattering;
    int mc_steps;
    double DW_factor;
    
    double k_f[3];
    double k_final;
    double aa;
    double bb;
    double cc;
    double my_constant;
    double Temp;
    double solid_angle;
    double parms[10];
    int enable_longitudinal;
    int enable_transverse;
    
    Coords pol_vector;
    int pol_mode;
};

/* Ridder's false position algorithm for finding roots. */
#define T2E (1/11.605)   /* Kelvin to meV */

double nbose_union(double omega, double T)  /* Other name ?? */
  {
    double nb;

    nb= (omega>0) ? 1+1/(exp(omega/(T*T2E))-1) : 1/(exp(-omega/(T*T2E))-1);
    return nb;
  }
#undef T2E
/* Routine types from Numerical Recipies book */
#define UNUSED (-1.11e30)
#define MAXRIDD 60

void fatalerror_union(char *s)
  {
     fprintf(stderr,"%s \n",s);
     exit(1);
  }

double zridd_union(double (*func)(double*), double x1, double x2, double *parms, double xacc)
    {
      int j;
      double ans, fh, fl, fm, fnew, s, xh, xl, xm, xnew;

/*      printf("zridd called with brackets %g %g acceptance %g \n",x1,x2,xacc);
      printf("and %i parameters %g %g %g %g %g \n",Nparms,parms[0],parms[1],parms[2],parms[3], parms[4]); */
      parms[0]=x1;
      fl=(*func)(parms);
      parms[0]=x2;
      fh=(*func)(parms);
/*      printf("Function values: %g %g \n",fl,fh); */
      if (fl*fh >= 0)
      {
        if (fl==0) return x1;
        if (fh==0) return x2;
        return UNUSED;
      }
      else
      {
        xl=x1;
        xh=x2;
        ans=UNUSED;
        for (j=1; j<MAXRIDD; j++)
        {
          xm=0.5*(xl+xh);
          parms[0]=xm;
          fm=(*func)(parms);
          s=sqrt(fm*fm-fl*fh);
          if (s == 0.0)
            return ans;
          xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s);
          if (fabs(xnew-ans) <= xacc)
            return ans;
          ans=xnew;
          parms[0]=ans;
          fnew=(*func)(parms);
          if (fnew == 0.0) return ans;
          if (fabs(fm)*SIGN(fnew) != fm)
          {
            xl=xm;
            fl=fm;
            xh=ans;
            fh=fnew;
          }
          else
            if (fabs(fl)*SIGN(fnew) != fl)
            {
              xh=ans;
              fh=fnew;
            }
            else
              if(fabs(fh)*SIGN(fnew) != fh)
              {
                xl=ans;
                fl=fnew;
              }
              else
                fatalerror_union("never get here in zridd");
          if (fabs(xh-xl) <= xacc)
            return ans;
        }
        fatalerror_union("zridd exceeded maximum iterations");
      }
      return 0.0;  /* Never get here */
    }

#define ROOTACC 1e-8
  int findroots_union(double brack_low, double brack_mid, double brack_high, double *list, int* index, double (*f)(double*), double *parms)
    {
      double root,range=brack_mid-brack_low;
      int i, steps=100;

     for (i=0; i<steps; i++)
     {
      root = zridd_union(f, brack_low+range*i/(int)steps,
                   brack_low+range*(i+1)/(int)steps, 
                   (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
/*        printf("findroots found a  low root: %g \n",root); */
      }
     }
      root = zridd_union(f, brack_mid, brack_high, (double *)parms, ROOTACC);
      if (root != UNUSED)
      {
        list[(*index)++]=root;
/*        printf("findroots found a high root: %g \n",root); */
      }
    }

  double omega_q_union(double* parms)
    {
      /* dispersion in units of meV  */
      double vi, vf, vv_x, vv_y, vv_z, vi_x, vi_y, vi_z;
      double q, qx, qy, qz, Jq, res_phonon, res_neutron;
      double ah, a, c;

      vf=parms[0];
      vi=parms[1];
      vv_x=parms[2];
      vv_y=parms[3];
      vv_z=parms[4];
      vi_x=parms[5];
      vi_y=parms[6];
      vi_z=parms[7];
      a   =parms[8];
      c   =parms[9];
      ah=a/2.0;

/*    printf("omega_q called with parameters vf= %g, vi=%g (%g %g %g) vv=(%g, %g, %g) \n",vf,vi,vi_x,vi_y,vi_z,vv_x,vv_y,vv_z); */
      qx=V2K*(vi_x-vf*vv_x);
      qy=V2K*(vi_y-vf*vv_y);
      qz=V2K*(vi_z-vf*vv_z);
       q=sqrt(qx*qx+qy*qy+qz*qz);
      Jq=2*(cos(ah*(qx+qy))+cos(ah*(qx-qy))+cos(ah*(qx+qz))+cos(ah*(qx-qz))
             +cos(ah*(qy+qz))+cos(ah*(qy-qz)) );
      res_phonon=c/a*sqrt(12-Jq);
      res_neutron = fabs(VS2E*(vi*vi-vf*vf));
/*      if (fabs(res_phonon-res_neutron)<1e-3)
       printf("in omega_q: q=(%g %g %g), omega_phonon=%g, omega_neutron=%g\n ",
             qx,qy,qz,res_phonon,res_neutron); */
/*      printf("omega_q returning %g - %g\n",res_phonon,res_neutron); */

      return (res_phonon - res_neutron);
    }
#undef UNUSED
#undef MAXRIDD


// Function for calculating my, the inverse penetration depth (for only this scattering process).
// The input for this function and its order may not be changed, but the names may be updated.
int PhononSimple_physics_my(double *my, double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {

   double k_length = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]);
   //printf("energy = %f \n",k_length*K2V*k_length*K2V*VS2E);
   double v_i = k_length * K2V;
   
   double a,b,c,T;
   double vf_list[6]; /* List of allowed final velocities */
   int nf,index;
   double *parms;
   double f1,f2,J_factor;
   double DV = 0.001; /* Velocity change used for numerical derivative */
   double omega;
   double v_f;
   double k_f[3],k_final;
   double kappa2,kappa_x,kappa_y,kappa_z;
   double solid_angle;
   
   a=data_transfer.pointer_to_a_PhononSimple_storage_struct->aa;
   b=data_transfer.pointer_to_a_PhononSimple_storage_struct->bb;
   c=data_transfer.pointer_to_a_PhononSimple_storage_struct->cc;
   T=data_transfer.pointer_to_a_PhononSimple_storage_struct->Temp;
   
   Coords k_out;
   focus_data->focusing_function(&k_out,&solid_angle,focus_data);
   NORM(k_out.x,k_out.y,k_out.z);
   data_transfer.pointer_to_a_PhononSimple_storage_struct->solid_angle = solid_angle;
    
   // Avoid allocating the array for each neutron
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[0] = -1;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[1] = v_i;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[2] = k_out.x;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[3] = k_out.y;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[4] = k_out.z;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[5] = k_initial[0]*K2V;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[6] = k_initial[1]*K2V;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[7] = k_initial[2]*K2V;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[8] = a;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[9] = c;
   
   parms = &data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[0];
   
   nf = 0;
   findroots_union(0, v_i, v_i+2*c*V2K/VS2E, vf_list, &nf, omega_q_union, parms);
   index=(int)floor(rand01()*nf);

   if (nf > 4 || index > 3) {
     printf("index = %d, nf = %d \n",index, nf);
     printf("energy = %f \n",k_length*K2V*k_length*K2V*VS2E);
   }

   v_f=vf_list[index];
   //parms[0]=v_f-DV;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[0]=v_f-DV;
   f1=omega_q_union(parms);
   //parms[0]=v_f+DV;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->parms[0]=v_f+DV;
   f2=omega_q_union(parms);
   //J_factor = fabs(f2-f1)/(2*DV*K2V);
   J_factor = fabs(f2-f1)/(2*DV);
   omega=VS2E*(v_i*v_i-v_f*v_f); /* unit of energy */
   
   k_final = v_f * V2K;
   k_f[0] = k_out.x * k_final;
   k_f[1] = k_out.y * k_final;
   k_f[2] = k_out.z * k_final;
   
   kappa_x = k_initial[0]-k_f[0];
   kappa_y = k_initial[1]-k_f[1];
   kappa_z = k_initial[2]-k_f[2];
   kappa2=kappa_z*kappa_z+kappa_y*kappa_y+kappa_x*kappa_x;
   
   double pol_weight_factor;
   if (data_transfer.pointer_to_a_PhononSimple_storage_struct->enable_transverse == 1 && data_transfer.pointer_to_a_PhononSimple_storage_struct->enable_longitudinal == 1) {
     pol_weight_factor = kappa2;
   } else {
   // polarization mode
   // Find nearest bragg point. FCC: HKL all even or odd.
   double h_value,k_value,l_value;
   h_value = kappa_x*a*0.5/PI;
   k_value = kappa_y*a*0.5/PI;
   l_value = kappa_z*a*0.5/PI;
   
   int h_guess,k_guess,l_guess;
   h_guess = floor(h_value);
   k_guess = floor(k_value);
   l_guess = floor(l_value);
   
   int h_check,k_check,l_check;
   int nearest_bragg_h,nearest_bragg_k,nearest_bragg_l;
   int check_sum;
   
       double dist,min_dist = 99999;
       for (h_check=h_guess;h_check<h_guess+2;h_check++) {
         for (k_check=k_guess;k_check<k_guess+2;k_check++) {
           for (l_check=l_guess;l_check<l_guess+2;l_check++) {
             check_sum = h_check % 2 + k_check % 2 + l_check % 2;
             if (check_sum == 0 || check_sum==3) {
               dist=sqrt((h_value-h_check)*(h_value-h_check)+(k_value-k_check)*(k_value-k_check)+(l_value-l_check)*(l_value*l_check));
               if (dist < min_dist) {
                 min_dist = dist;
                 nearest_bragg_h = h_check;
                 nearest_bragg_k = k_check;
                 nearest_bragg_l = l_check;
               }
             }
           }
         }
       }
       
     double k_phonon_h,k_phonon_k,k_phonon_l;
     k_phonon_h = kappa_x - nearest_bragg_h;
     k_phonon_k = kappa_y - nearest_bragg_k;
     k_phonon_l = kappa_z - nearest_bragg_l;
     
     NORM(k_phonon_h,k_phonon_k,k_phonon_l);
     
     if (data_transfer.pointer_to_a_PhononSimple_storage_struct->enable_longitudinal == 1) {
       pol_weight_factor = (kappa_x*k_phonon_h+kappa_y*k_phonon_k+kappa_z*k_phonon_l)*(kappa_x*k_phonon_h+kappa_y*k_phonon_k+kappa_z*k_phonon_l);
     }
     
     if (data_transfer.pointer_to_a_PhononSimple_storage_struct->enable_transverse == 1) {
       pol_weight_factor = kappa_x*kappa_x+kappa_y*kappa_y+kappa_z*kappa_z - (kappa_x*k_phonon_h+kappa_y*k_phonon_k+kappa_z*k_phonon_l)*(kappa_x*k_phonon_h+kappa_y*k_phonon_k+kappa_z*k_phonon_l);
     }
     
     //Coords pol_vector = data_transfer.pointer_to_a_PhononSimple_storage_struct->pol_vector;
     //pol_weight_factor = k_phonon_h*pol_vector.x + k_phonon_k*pol_vector.y + k_phonon_l*pol_vector.z;
     /*
     // This test shows the predicted behavior where all nearest bragg sets corresponds to Bragg peaks.
     printf("--------------------------------------------\n");
     printf("hkl input     = [%1.3f %1.3f %1.3f] \n",h_value,k_value,l_value);
     printf("Nearest bragg = [%d     %d    %d] \n",nearest_bragg_h,nearest_bragg_k,nearest_bragg_l);
     */
   }
   
   

   //*my = nf*V_rho*(k_final/k_length)*DW*(kappa2*K2V*K2V*VS2E)/fabs(omega)*nbose(omega,T)*2*VS2E*K2V*k_final/J_factor*b*b/M;
   // my_constant = V_rho*DW*K2V*K2V*VS2E*2*VS2E*K2V*b*b/M // done in initialize

   //*my = (double) nf*k_final/k_length*kappa2/fabs(omega)*nbose_union(omega,T)*k_final/J_factor*data_transfer.pointer_to_a_PhononSimple_storage_struct->my_constant;
   
   *my = (double) nf*k_final/k_length*pol_weight_factor/fabs(omega)*nbose_union(omega,T)*k_final/J_factor*data_transfer.pointer_to_a_PhononSimple_storage_struct->my_constant;
   
   //*my = 10;
   
   data_transfer.pointer_to_a_PhononSimple_storage_struct->k_final = k_final;
   data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[0] = k_f[0];
   data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[1] = k_f[1];
   data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[2] = k_f[2];

    // Simple case, just retrive the parameter saved from initialize
    return 1;
};

// Function that provides description of a basic scattering event.
// Do not change the
int PhononSimple_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {

    // k_final and k_initial are passed as pointers to double vector[3]
    //double k_length = data_transfer.pointer_to_a_Template_physics_storage_struct->k_init;
    //printf("Naar vi her til?\n");
    
    k_final[0] = data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[0];
    k_final[1] = data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[1];
    k_final[2] = data_transfer.pointer_to_a_PhononSimple_storage_struct->k_f[2];
    
    *weight *= 0.25/PI*data_transfer.pointer_to_a_PhononSimple_storage_struct->solid_angle;
    
    // A pointer to k_final is returned, and the wavevector will be set to k_final after a scattering event
    return 1; // return 1 is sucess, return 0 is failure, and the ray will be absorbed.
              // failure should not happen, as this function will only be called when
              // the cross section for the current k_initial is above zero.

    // There is access to the data_transfer from within the scattering function
    // In this case the only variable is my, but it could be read by:
    // double my = data_transfer.pointer_to_a_Template_physics_storage_struct->my_scattering;
    // One can assume that if the scattering function is running, the my fuction was
    //  executed just before and for the same k_initial.

};

// These lines help with future error correction, and tell other Union components
//  that at least one process have been defined.
#ifndef PROCESS_DETECTOR
    #define PROCESS_DETECTOR dummy
#endif

#ifndef PROCESS_PHONONSIMPLE_DETECTOR
    #define PROCESS_PHONONSIMPLE_DETECTOR dummy
#endif
%}

DECLARE
%{
// Declare for this component, to do calculations on the input / store in the transported data
struct PhononSimple_physics_storage_struct PhononSimple_storage; // Replace template with your own name here

// Variables needed in initialize of this function.
double effective_my_scattering;
double sigma_const;

// Needed for transport to the main component, will be the same for all processes
struct global_process_element_struct global_process_element;
struct scattering_process_struct This_process;

%}

INITIALIZE
%{

  // Initialize done in the component
  //PhononSimple_storage.my_scattering = effective_my_scattering;
  PhononSimple_storage.aa = a; // lattice side length
  PhononSimple_storage.bb = b; // scattering length
  PhononSimple_storage.cc = c; // speed of sound
  //PhononSimple_storage.V_rho = 4.0/(a*a*a);
  //PhononSimple_storage.Atom_mass_au = M;
  //PhononSimple_storage.mc_steps = MCsteps;
  //PhononSimple_storage.DW_factor = DW;
  PhononSimple_storage.Temp = T;
  
  /*
  if (!pol_h && !pol_k && !pol_l)
    PhononSimple_storage.pol_mode = 0;
  else {
    PhononSimple_storage.pol_mode = 1;
    NORM(pol_h,pol_k,pol_l);
    PhononSimple_storage.pol_vector.x = pol_h;
    PhononSimple_storage.pol_vector.y = pol_k;
    PhononSimple_storage.pol_vector.z = pol_l;
  }
  */
  
  if (longitudinal > 0.5)
    PhononSimple_storage.enable_longitudinal = 1;
  else
    PhononSimple_storage.enable_longitudinal = 0;
  
  if (transverse > 0.5)
    PhononSimple_storage.enable_transverse = 1;
  else
    PhononSimple_storage.enable_transverse = 0;
    
  if (PhononSimple_storage.enable_transverse == 0 && PhononSimple_storage.enable_longitudinal == 0) {
    printf("PhononSimple_process named %s has no branches as both longitudinal and transverse is disabled! \n");
    exit(1);
  }
  
  PhononSimple_storage.my_constant = packing_factor*4.0/(a*a*a)*DW*K2V*K2V*VS2E*2*VS2E*K2V*b*b/M;
  // my_constant = V_rho*DW*K2V*K2V*VS2E*2*VS"E*K2V*b*b/M // done in initialize
  
  // Need to specify if this process is isotropic
  //This_process.non_isotropic_rot_index = -1; // Yes (powder)
  This_process.non_isotropic_rot_index =  1;  // No (single crystal)

  // The type of the process must be saved in the global enum process
  This_process.eProcess = PhononSimple;

  // Packing the data into a structure that is transported to the main component
  This_process.data_transfer.pointer_to_a_PhononSimple_storage_struct = &PhononSimple_storage;
  This_process.probability_for_scattering_function = &PhononSimple_physics_my;
  This_process.scattering_function = &PhononSimple_physics_scattering;

  // This will be the same for all process's, and can thus be moved to an include.
  sprintf(This_process.name,"%s",NAME_CURRENT_COMP);
  This_process.process_p_interact = interact_fraction;
  rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP);
  sprintf(global_process_element.name,"%s",NAME_CURRENT_COMP);
  global_process_element.component_index = INDEX_CURRENT_COMP;
  global_process_element.p_scattering_process = &This_process;

if (_getcomp_index(init) < 0) {
fprintf(stderr,"PhononSimple_process:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}

  
  struct pointer_to_global_process_list *global_process_list = COMP_GETPAR3(Union_init, init, global_process_list);
  add_element_to_process_list(global_process_list,global_process_element);
 %}

TRACE
%{
    // Trace should be empty, the simulation is done in Union_master
%}

END