1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Port of the PowderN process to the Union components
*
* %D
*
* This Union_process is based on the PowderN.comp component originally written
* by P. Willendrup, L. Chapon, K. Lefmann, A.B.Abrahamsen, N.B.Christensen,
* E.M.Lauridsen.
*
* Part of the Union components, a set of components that work together and thus
* sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components like this one
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
* defined before the master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* interact_fraction: [1] How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1)
* packing_factor: [1] How dense is the material compared to optimal 0-1
* reflections: [string] Input file for reflections. No scattering if NULL or "" [string]
* delta_d_d: [0/1] Global relative delta_d_d/d broadening when the 'w' column is not available. Use 0 if ideal.
* Strain: [ppm] Global relative delta_d_d/d shift when the 'Strain' column is not available. Use 0 if ideal.
* format: [no quotes] Name of the format, or list of column indexes (see Description).
* barns: [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2 (barns=1 for laz, barns=0 for lau type files).
* Vc: [AA^3] Volume of unit cell=nb atoms per cell/density of atoms.
* DW: [1] Global Debye-Waller factor when the 'DW' column is not available. Use 1 if included in F2
* weight: [g/mol] Atomic/molecular weight of material.
* density: [g/cm^3] Density of material. rho=density/weight/1e24*N_A.
* nb_atoms: [1] Number of sub-unit per unit cell, that is ratio of sigma for chemical formula to sigma per unit cell
* target_index: [1] Relative index of component to focus at, e.g. next is +1
* d_phi: [deg] Angle corresponding to the vertical angular range to focus to, e.g. detector height. 0 for no focusing.
*
* CALCULATED PARAMETERS:
* V_rho: [AA^-3] Atomic density
*
*
* %E
******************************************************************************/
DEFINE COMPONENT Powder_process
SETTING PARAMETERS(string reflections="NULL",packing_factor=1, Vc=0, delta_d_d=0, DW=0, nb_atoms=1, d_phi=0, density=0, weight=0, barns=1, Strain=0, interact_fraction=-1, vector format={0, 0, 0, 0, 0, 0, 0, 0, 0}, string init="init")
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Powder_process component"
#endif
// Share section of PowderN 8/3 2016 from McStas.org
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef POWDERN_DECL_UNION
#define POWDERN_DECL_UNION
/* format definitions in the order {j d F2 DW Dd inv2d q F strain} */
#ifndef Crystallographica
#define Crystallographica { 4,5,7,0,0,0,0,0,0 }
#define Fullprof { 4,0,8,0,0,5,0,0,0 }
#define Lazy {17,6,0,0,0,0,0,13,0 }
#define Undefined { 0,0,0,0,0,0,0,0,0 }
#endif
struct line_data_union
{
double F2; /* Value of structure factor */
double q; /* Qvector */
int j; /* Multiplicity */
double DWfactor; /* Debye-Waller factor */
double w; /* Intrinsic line width */
double Epsilon; /* Strain=delta_d_d/d shift in ppm */
};
struct line_info_struct_union
{
struct line_data_union *list; /* Reflection array */
int count; /* Number of reflections */
double Dd;
double DWfactor;
double V_0;
double rho;
double at_weight;
double at_nb;
double sigma_a; // should not be used
double sigma_i; // should not be used
char compname[256];
double flag_barns;
int shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
int column_order[9]; /* column signification */
int flag_warning;
char type; /* interaction type of event t=Transmit, i=Incoherent, c=Coherent */
double dq; /* wavevector transfer [Angs-1] */
double Epsilon; /* global strain in ppm */
double XsectionFactor;
double my_s_v2_sum;
double my_a_v;
double my_inc;
double *w_v,*q_v, *my_s_v2;
double radius_i,xwidth_i,yheight_i,zdepth_i; // not to be used, but still here
double v; /* last velocity (cached) */
double Nq;
int nb_reuses, nb_refl, nb_refl_count;
double v_min, v_max;
double xs_Nq[CHAR_BUF_LENGTH];
double xs_sum[CHAR_BUF_LENGTH];
double neutron_passed;
long xs_compute, xs_reuse, xs_calls;
};
off_struct offdata_union;
// PN_list_compare *****************************************************************
int PN_list_compare_union (void const *a, void const *b)
{
struct line_data_union const *pa = a;
struct line_data_union const *pb = b;
double s = pa->q - pb->q;
if (!s) return 0;
else return (s < 0 ? -1 : 1);
} /* PN_list_compare */
int read_line_data_union(char *SC_file, struct line_info_struct_union *info)
{
struct line_data_union *list = NULL;
int size = 0;
t_Table sTable; /* sample data table structure from SC_file */
int i=0;
int mult_count =0;
char flag=0;
double q_count=0, j_count=0, F2_count=0;
char **parsing;
int list_count=0;
if (!SC_file || !strlen(SC_file) || !strcmp(SC_file, "NULL")) {
printf("PowderN: %s: Using incoherent elastic scattering only\n",info->compname);
info->count = 0;
return(0);
}
Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/
/* parsing of header */
parsing = Table_ParseHeader(sTable.header,
"Vc","V_0",
"sigma_abs","sigma_a ",
"sigma_inc","sigma_i ",
"column_j",
"column_d",
"column_F2",
"column_DW",
"column_Dd",
"column_inv2d", "column_1/2d", "column_sintheta/lambda",
"column_q", /* 14 */
"DW", "Debye_Waller",
"delta_d_d/d",
"column_F ",
"V_rho",
"density",
"weight",
"nb_atoms","multiplicity", /* 23 */
"column_ppm","column_strain",
NULL);
if (parsing) {
if (parsing[0] && !info->V_0) info->V_0 =atof(parsing[0]);
if (parsing[1] && !info->V_0) info->V_0 =atof(parsing[1]);
if (parsing[2] && !info->sigma_a) info->sigma_a=atof(parsing[2]);
if (parsing[3] && !info->sigma_a) info->sigma_a=atof(parsing[3]);
if (parsing[4] && !info->sigma_i) info->sigma_i=atof(parsing[4]);
if (parsing[5] && !info->sigma_i) info->sigma_i=atof(parsing[5]);
if (parsing[6]) info->column_order[0]=atoi(parsing[6]);
if (parsing[7]) info->column_order[1]=atoi(parsing[7]);
if (parsing[8]) info->column_order[2]=atoi(parsing[8]);
if (parsing[9]) info->column_order[3]=atoi(parsing[9]);
if (parsing[10]) info->column_order[4]=atoi(parsing[10]);
if (parsing[11]) info->column_order[5]=atoi(parsing[11]);
if (parsing[12]) info->column_order[5]=atoi(parsing[12]);
if (parsing[13]) info->column_order[5]=atoi(parsing[13]);
if (parsing[14]) info->column_order[6]=atoi(parsing[14]);
if (parsing[15] && info->DWfactor<=0) info->DWfactor=atof(parsing[15]);
if (parsing[16] && info->DWfactor<=0) info->DWfactor=atof(parsing[16]);
if (parsing[17] && info->Dd <0) info->Dd =atof(parsing[17]);
if (parsing[18]) info->column_order[7]=atoi(parsing[18]);
if (parsing[19] && !info->V_0) info->V_0 =1/atof(parsing[19]);
if (parsing[20] && !info->rho) info->rho =atof(parsing[20]);
if (parsing[21] && !info->at_weight) info->at_weight =atof(parsing[21]);
if (parsing[22] && info->at_nb <= 1) info->at_nb =atof(parsing[22]);
if (parsing[23] && info->at_nb <= 1) info->at_nb =atof(parsing[23]);
if (parsing[24]) info->column_order[8]=atoi(parsing[24]);
if (parsing[25]) info->column_order[8]=atoi(parsing[25]);
for (i=0; i<=25; i++) if (parsing[i]) free(parsing[i]);
free(parsing);
}
if (!sTable.rows)
exit(fprintf(stderr, "PowderN: %s: Error: The number of rows in %s "
"should be at least %d\n", info->compname, SC_file, 1));
else size = sTable.rows;
Table_Info(sTable);
printf("PowderN: %s: Reading %d rows from %s\n",
info->compname, size, SC_file);
if (info->column_order[0] == 4 && info->flag_barns !=0)
printf("PowderN: %s: Powder file probably of type Crystallographica/Fullprof (lau)\n"
"WARNING: but F2 unit is set to barns=1 (barns). Intensity might be 100 times too high.\n",
info->compname);
if (info->column_order[0] == 17 && info->flag_barns == 0)
printf("PowderN: %s: Powder file probably of type Lazy Pulver (laz)\n"
"WARNING: but F2 unit is set to barns=0 (fm^2). Intensity might be 100 times too low.\n",
info->compname);
/* allocate line_data array */
list = (struct line_data_union*)malloc(size*sizeof(struct line_data_union));
for (i=0; i<size; i++)
{
/* printf("Reading in line %i\n",i);*/
double j=0, d=0, w=0, q=0, DWfactor=0, F2=0, Epsilon=0;
int index;
if (info->Dd >= 0) w = info->Dd;
if (info->DWfactor > 0) DWfactor = info->DWfactor;
if (info->Epsilon) Epsilon = info->Epsilon*1e-6;
/* get data from table using columns {j d F2 DW Dd inv2d q F} */
/* column indexes start at 1, thus need to substract 1 */
if (info->column_order[0] >0)
j = Table_Index(sTable, i, info->column_order[0]-1);
if (info->column_order[1] >0)
d = Table_Index(sTable, i, info->column_order[1]-1);
if (info->column_order[2] >0)
F2 = Table_Index(sTable, i, info->column_order[2]-1);
if (info->column_order[3] >0)
DWfactor = Table_Index(sTable, i, info->column_order[3]-1);
if (info->column_order[4] >0)
w = Table_Index(sTable, i, info->column_order[4]-1);
if (info->column_order[5] >0)
{ d = Table_Index(sTable, i, info->column_order[5]-1);
d = (d > 0? 1/d/2 : 0); }
if (info->column_order[6] >0)
{ q = Table_Index(sTable, i, info->column_order[6]-1);
d = (q > 0 ? 2*PI/q : 0); }
if (info->column_order[7] >0 && !F2)
{ F2 = Table_Index(sTable, i, info->column_order[7]-1); F2 *= F2; }
if (info->column_order[8] >0 && !Epsilon)
{ Epsilon = Table_Index(sTable, i, info->column_order[8]-1)*1e-6; }
/* assign and check values */
j = (j > 0 ? j : 0);
q = (d > 0 ? 2*PI/d : 0); /* this is q */
if (Epsilon && fabs(Epsilon) < 1e6) {
q -= Epsilon*q; /* dq/q = -delta_d_d/d = -Epsilon */
}
DWfactor = (DWfactor > 0 ? DWfactor : 1);
w = (w>0 ? w : 0); /* this is q and d relative spreading */
F2 = (F2 >= 0 ? F2 : 0);
if (j == 0 || q == 0) {
printf("PowderN: %s: line %i has invalid definition\n"
" (mult=0 or q=0 or d=0)\n", info->compname, i);
continue;
}
list[list_count].j = j;
list[list_count].q = q;
list[list_count].DWfactor = DWfactor;
list[list_count].w = w;
list[list_count].F2= F2;
list[list_count].Epsilon = Epsilon;
/* adjust multiplicity if j-column + multiple d-spacing lines */
/* if d = previous d, increase line duplication index */
if (!q_count) q_count = q;
if (!j_count) j_count = j;
if (!F2_count) F2_count = F2;
if (fabs(q_count-q) < 0.0001*fabs(q)
&& fabs(F2_count-F2) < 0.0001*fabs(F2) && j_count == j) {
mult_count++; flag=0; }
else flag=1;
if (i == size-1) flag=1;
/* else if d != previous d : just passed equivalent lines */
if (flag) {
if (i == size-1) list_count++;
/* if duplication index == previous multiplicity */
/* set back multiplicity of previous lines to 1 */
if ((mult_count && list_count>0)
&& (mult_count == list[list_count-1].j
|| ((list_count < size) && (i == size - 1)
&& (mult_count == list[list_count].j))) ) {
printf("PowderN: %s: Set multiplicity to 1 for lines [%i:%i]\n"
" (d-spacing %g is duplicated %i times)\n",
info->compname, list_count-mult_count, list_count-1, list[list_count-1].q, mult_count);
for (index=list_count-mult_count; index<list_count; list[index++].j = 1);
mult_count = 1;
q_count = q;
j_count = j;
F2_count = F2;
}
if (i == size-1) list_count--;
flag=0;
}
list_count++;
} /* end for */
Table_Free(&sTable);
/* sort the list with increasing q */
qsort(list, list_count, sizeof(struct line_data_union), PN_list_compare_union);
printf("PowderN: %s: Read %i reflections from file '%s'\n",
info->compname, list_count, SC_file);
info->list = list;
info->count = list_count;
return(list_count);
} /* read_line_data_union */
/* computes the number of possible reflections (return value), and the total xsection 'sum' */
/* this routine looks for a pre-computed value in the Nq and sum cache tables */
/* when found, the earch starts from the corresponding lower element in the table */
int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum,
struct line_info_struct_union *line_info) {
int Nq = 0, line=0, line0=0;
*sum=0;
//printf("Line_info when entering cross_section calculation\n");
//printf("v = %f, qv = %f, my_sv2 = %f, count = %d, sum = %f\n",v,*qv,*my_sv2,count,*sum);
//printf("v = %f\n",v);
//printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed);
//printf("line_info->xs_reuses = %d, line_info->xs_compute = %d\n",line_info->xs_reuse,line_info->xs_compute);
/* check if a line_info element has been recorded already */
if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
Nq = line_info->xs_Nq[line];
*sum = line_info->xs_sum[line];
if (!Nq && *sum == 0) {
/* not yet set: we compute the sum up to the corresponding speed in the table cache */
//printf("Nq and sum not yet set, have to do this calculation now\n");
double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
for(line0=0; line0<count; line0++) {
if (qv[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
*sum += my_sv2[line0];
if (Nq < line0+1) Nq=line0+1; /* determine maximum line index which can scatter */
} else break;
}
line_info->xs_Nq[line] = Nq;
line_info->xs_sum[line]= *sum;
line_info->xs_compute++;
//printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute);
} else line_info->xs_reuse++;
line0 = Nq;
}
line_info->xs_calls++;
for(line=line0; line<count; line++) {
if (qv[line] <= 2*v) { /* q < 2*kf: restrict structural range */
*sum += my_sv2[line];
if (Nq < line+1) Nq=line+1; /* determine maximum line index which can scatter */
} else break;
}
//printf("cross_section function to return %d lines to scatter with, with cross section sum %f \n",Nq,*sum);
return(Nq);
} /* calc_xsect_union */
#endif /* !POWDERN_DECL */
struct Powder_physics_storage_struct{
// Variables that needs to be transfered between any of the following places:
// The initialize in this component
// The function for calculating my
// The function for calculating scattering
struct line_info_struct_union *line_info_storage;
double my_scattering;
double vertical_angular_limit;
};
// Obsolete: Function for initializing test_physics. Done in component instead.
int Powder_physics_initialize(union data_transfer_union data_transfer) {
// Obsolte
return 1;
};
// Function for calculating my in a test case.
int Powder_physics_my(double *my,double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
//*my = data_transfer.pointer_to_a_Powder_physics_storage_struct->my_scattering;
int method_switch = 1;
// For test
int line_v,line0,line,count;
// Should not interfer with the global variables
double vx = k_initial[0]*K2V;
double vy = k_initial[1]*K2V;
double vz = k_initial[2]*K2V;
// Not sure one can do this, but I do not see why not
struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage;
double v = sqrt(vx*vx + vy*vy + vz*vz);
//printf("Velocity = %f \n",v);
//printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed);
// Here the maximum and minimum v is recorded, should this be for scattering events or cross section calculations?
if (line_info->neutron_passed < CHAR_BUF_LENGTH) {
if (v < line_info->v_min) line_info->v_min = v;
if (v > line_info->v_max) line_info->v_max = v;
line_info->neutron_passed++;
}
if (method_switch == 1) {
// Here the cross section is calculated and stored
if ( fabs(v - line_info->v) < 1e-6) {
line_info->nb_reuses++;
} else {
//printf("calling crosssection calculation \n");
// int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum, struct line_info_struct *line_info)
line_info->Nq = calc_xsect_union(v, line_info->q_v, line_info->my_s_v2, line_info->count, &line_info->my_s_v2_sum, line_info);
line_info->v = v;
line_info->nb_refl += line_info->Nq;
line_info->nb_refl_count++;
}
} else {
if ( fabs(v - line_info->v) < 1e-6) {
line_info->nb_reuses++;
} else {
//printf("calling crosssection calculation \n");
if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
line_info->Nq = line_info->xs_Nq[line];
line_info->my_s_v2_sum = line_info->xs_sum[line];
if (!line_info->Nq && line_info->my_s_v2_sum == 0) {
/* not yet set: we compute the sum up to the corresponding speed in the table cache */
//printf("Nq and sum not yet set, have to do this calculation now\n");
double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
for(line0=0; line0<count; line0++) {
if (line_info->q_v[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
line_info->my_s_v2_sum += line_info->my_s_v2[line0];
if (line_info->Nq < line0+1) line_info->Nq=line0+1; /* determine maximum line index which can scatter */
} else break;
}
line_info->xs_Nq[line] = line_info->Nq;
line_info->xs_sum[line]= line_info->my_s_v2_sum;
line_info->xs_compute++;
//printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute);
} else line_info->xs_reuse++;
line0 = line_info->Nq;
}
line_info->xs_calls++;
for(line=line0; line<count; line++) {
if (line_info->q_v[line] <= 2*v) { /* q < 2*kf: restrict structural range */
line_info->my_s_v2_sum += line_info->my_s_v2[line];
if (line_info->Nq < line+1) line_info->Nq=line+1; /* determine maximum line index which can scatter */
} else break;
}
line_info->v = v;
line_info->nb_refl += line_info->Nq;
line_info->nb_refl_count++;
}
}
*my = line_info->my_s_v2_sum/(v*v);
//printf("Returned my scattering of %f \n",*my);
//printf("compute = %d and reuse = %d \n",line_info->xs_compute,line_info->xs_reuse);
return 1;
};
// Function that provides a basic nonuniform elastic scattering. Unphysical for testing purposes.
int Powder_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
// This component need to write to its storage transfer for each event, is that possible with this structure?
struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage;
double vertical_angular_limit = data_transfer.pointer_to_a_Powder_physics_storage_struct->vertical_angular_limit;
// Should not interfer with the global variables
double vx = k_initial[0]*K2V;
double vy = k_initial[1]*K2V;
double vz = k_initial[2]*K2V;
double v = sqrt(vx*vx + vy*vy + vz*vz);
int line;
double arg;
double theta;
double alpha,alpha0;
double vout_x,vout_y,vout_z;
double tmp_vx,tmp_vy,tmp_vz;
double nx,ny,nz;
double my_s_n;
// copy from PowderN component
if (line_info->count > 0) {
/* choose line */
if (line_info->Nq > 1) line=floor(line_info->Nq*rand01()); /* Select between Nq powder lines */
else line = 0;
if (line_info->w_v[line])
arg = line_info->q_v[line]*(1+line_info->w_v[line]*randnorm())/(2.0*v);
else
arg = line_info->q_v[line]/(2.0*v);
my_s_n = line_info->my_s_v2[line]/(v*v);
if(fabs(arg) > 1) {
//printf("Powder scattering function returned 0, should not happen\n");
return 0; /* No bragg scattering possible (was absorb)*/
}
theta = asin(arg); /* Bragg scattering law */
/* Choose point on Debye-Scherrer cone */
if (vertical_angular_limit)
{ /* relate height of detector to the height on DS cone */
arg = sin(vertical_angular_limit*DEG2RAD/2)/sin(2*theta);
/* If full Debye-Scherrer cone is within d_phi, don't focus */
if (arg < -1 || arg > 1) vertical_angular_limit = 0;
/* Otherwise, determine alpha to rotate from scattering plane
into vertical_angular_limit focusing area*/
else alpha = 2*asin(arg);
}
if (vertical_angular_limit) {
/* Focusing */
alpha = fabs(alpha);
/* Trick to get scattering for pos/neg theta's */
alpha0= 2*rand01()*alpha;
if (alpha0 > alpha) {
alpha0=PI+(alpha0-1.5*alpha);
} else {
alpha0=alpha0-0.5*alpha;
}
}
else
alpha0 = PI*randpm1();
/* now find a nearly vertical rotation axis:
* Either
* (v along Z) x (X axis) -> nearly Y axis
* Or
* (v along X) x (Z axis) -> nearly Y axis
*/
if (fabs(scalar_prod(1,0,0,vx/v,vy/v,vz/v)) < fabs(scalar_prod(0,0,1,vx/v,vy/v,vz/v))) {
nx = 1; ny = 0; nz = 0;
} else {
nx = 0; ny = 0; nz = 1;
}
vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, nx,ny,nz);
/* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */
rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*theta, tmp_vx,tmp_vy,tmp_vz);
/* tmp_v = rotate v_out by alpha0 around 'v' (Debye-Scherrer cone) */
rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, alpha0, vx, vy, vz);
vx = tmp_vx;
vy = tmp_vy;
vz = tmp_vz;
k_final[0] = V2K*vx; k_final[1] = V2K*vy; k_final[2] = V2K*vz;
//*weight *= line_info->Nq*my_s_n; I believe my_s_n is part of the correction for sampling posistion, not to be done here
*weight *= line_info->Nq*my_s_n/line_info->my_s_v2_sum*v*v;
//printf("my_s_n = %f \n",my_s_n);
// What to do with my_s_n ?
/*
pmul = line_info->Nq*l_full*my_s_n*exp(-(line_info->my_a_v/v+my_s)*(l+l_1))
/(1-(p_inc+p_transmit));
*/
// Correction in case of vertical_angular_limit focusing - BUT only when d_phi != 0
if (vertical_angular_limit) *weight *= alpha/PI;
line_info->type = 'c';
line_info->dq = line_info->q_v[line]*V2K;
} else {
/* else transmit <-- No powder lines in file */
printf("Error, need lines in the PowderN input file\n");
}
//printf("Powder scattering function returned 1\n");
return 1;
};
#ifndef PROCESS_DETECTOR
#define PROCESS_DETECTOR dummy
#endif
#ifndef PROCESS_POWDER_DETECTOR
#define PROCESS_POWDER_DETECTOR dummy
#endif
%}
DECLARE
%{
// Needed for transport to the main component
struct global_process_element_struct global_process_element;
struct scattering_process_struct This_process;
// Declare for this component, to do calculations on the input / store in the transported data
struct Powder_physics_storage_struct Powder_storage;
struct line_info_struct_union line_info;
double effective_my_scattering;
double *columns;
%}
INITIALIZE
%{
// Initialize done in the component
columns = format;
// Copy from PowderN component
int i=0;
struct line_data_union *L;
line_info.Dd = delta_d_d;
line_info.DWfactor = DW;
line_info.V_0 = Vc;
line_info.rho = density;
line_info.at_weight= weight;
line_info.at_nb = nb_atoms;
line_info.sigma_a = 0; // This inputs are not needed, as absorption is handled elsewhere
line_info.sigma_i = 0; // This input is not needed, as incoherent scattering is handled elsewhere
line_info.flag_barns=barns;
//line_info.shape = 0;
line_info.flag_warning=0;
line_info.Epsilon = Strain;
line_info.radius_i =line_info.xwidth_i=line_info.yheight_i=line_info.zdepth_i=0;
line_info.v = 0;
line_info.Nq = 0;
//line_info.v_min = FLT_MAX; line_info.v_max = 0;
line_info.v_min = 10000000000; line_info.v_max = 0;
line_info.neutron_passed=0;
line_info.nb_reuses = line_info.nb_refl = line_info.nb_refl_count = 0;
line_info.xs_compute= line_info.xs_reuse= line_info.xs_calls =0;
for (i=0; i< 9; i++) line_info.column_order[i] = columns[i];
strncpy(line_info.compname, NAME_CURRENT_COMP, 256);
// p_interact handled elsewhere
//if (p_interact) {
// if (p_interact < p_inc) { double tmp=p_interact; p_interact=p_inc; p_inc=tmp; }
// p_transmit = 1-p_interact-p_inc;
//}
if (reflections && strlen(reflections) && strcmp(reflections, "NULL") && strcmp(reflections, "0")) {
i = read_line_data_union(reflections, &line_info);
if (i == 0)
exit(fprintf(stderr,"PowderN: %s: reflection file %s is not valid.\n"
"ERROR Please check file format (laz or lau).\n", NAME_CURRENT_COMP, reflections));
}
/* compute the scattering unit density from material weight and density */
/* the weight of the scattering element is the chemical formula molecular weight
* times the nb of chemical formulae in the scattering element (nb_atoms) */
if (!line_info.V_0 && line_info.at_nb > 0
&& line_info.at_weight > 0 && line_info.rho > 0) {
/* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
/* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
line_info.V_0 = line_info.at_nb
/(line_info.rho/line_info.at_weight/1e24*6.02214199e23);
}
/* the scattering unit cross sections are the chemical formula onces
* times the nb of chemical formulae in the scattering element */
if (line_info.at_nb > 0) {
line_info.sigma_a *= line_info.at_nb; line_info.sigma_i *= line_info.at_nb;
}
if (line_info.V_0 <= 0)
fprintf(stderr,"PowderN: %s: density/unit cell volume is NULL (Vc). Unactivating component.\n", NAME_CURRENT_COMP);
if (line_info.flag_barns) { /* Factor 100 to convert from barns to fm^2 */
line_info.XsectionFactor = 100;
} else {
line_info.XsectionFactor = 1;
}
if (line_info.V_0 && i) {
L = line_info.list;
line_info.q_v = malloc(line_info.count*sizeof(double));
line_info.w_v = malloc(line_info.count*sizeof(double));
line_info.my_s_v2 = malloc(line_info.count*sizeof(double));
if (!line_info.q_v || !line_info.w_v || !line_info.my_s_v2)
exit(fprintf(stderr,"PowderN: %s: ERROR allocating memory (init)\n", NAME_CURRENT_COMP));
for(i=0; i<line_info.count; i++)
{
line_info.my_s_v2[i] = 4*PI*PI*PI*packing_factor*(L[i].DWfactor ? L[i].DWfactor : 1)
/(line_info.V_0*line_info.V_0*V2K*V2K)
*(L[i].j * L[i].F2 / L[i].q)*line_info.XsectionFactor;
/* Is not yet divided by v^2 */
/* Squires [3.103] */
line_info.q_v[i] = L[i].q*K2V;
line_info.w_v[i] = L[i].w;
}
}
if (line_info.V_0) {
/* Is not yet divided by v */
line_info.my_a_v = packing_factor*line_info.sigma_a/line_info.V_0*2200*100; // Factor 100 to convert from barns to fm^2
line_info.my_inc = packing_factor*line_info.sigma_i/line_info.V_0*100; // Factor 100 to convert from barns to fm^2
printf("PowderN: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
NAME_CURRENT_COMP, line_info.V_0, line_info.sigma_a, line_info.sigma_i, reflections && strlen(reflections) ? reflections : "NULL");
}
//printf("INTIALIZE line_info.v = %f, line_info.v_min = %f, line_info.v_max = %f, line_info.neutron_passed = %f\n",line_info.v,line_info.v_min,line_info.v_max,line_info.neutron_passed);
Powder_storage.line_info_storage = &line_info;
Powder_storage.vertical_angular_limit = d_phi;
// Need to specify if this process is isotropic
This_process.non_isotropic_rot_index = -1; // Yes (powder)
//This_process.non_isotropic_rot_index = 1; // No (single crystal)
// The type of the process must be saved in the global enum process
This_process.eProcess = Powder;
// Packing the data into a structure that is transported to the main component
This_process.data_transfer.pointer_to_a_Powder_physics_storage_struct = &Powder_storage;
This_process.data_transfer.pointer_to_a_Powder_physics_storage_struct->my_scattering = effective_my_scattering;
This_process.probability_for_scattering_function = &Powder_physics_my;
This_process.scattering_function = &Powder_physics_scattering;
// This will be the same for all process's, and can thus be moved to an include.
This_process.process_p_interact = interact_fraction;
sprintf(This_process.name,"%s",NAME_CURRENT_COMP);
rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP);
sprintf(global_process_element.name,"%s",NAME_CURRENT_COMP);
global_process_element.component_index = INDEX_CURRENT_COMP;
global_process_element.p_scattering_process = &This_process;
if (_getcomp_index(init) < 0) {
fprintf(stderr,"Powder_process:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
struct pointer_to_global_process_list *global_process_list = COMP_GETPAR3(Union_init, init, global_process_list);
add_element_to_process_list(global_process_list,global_process_element);
%}
TRACE
%{
%}
FINALLY
%{
free(line_info.list);
free(line_info.q_v);
free(line_info.w_v);
free(line_info.my_s_v2);
%}
END
|