File: Powder_process.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (793 lines) | stat: -rwxr-xr-x 33,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Port of the PowderN process to the Union components
*
* %D
*
* This Union_process is based on the PowderN.comp component originally written
*  by P. Willendrup, L. Chapon, K. Lefmann, A.B.Abrahamsen, N.B.Christensen,
*  E.M.Lauridsen.
*
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components like this one
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before the master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* interact_fraction: [1]         How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1)
* packing_factor:    [1]         How dense is the material compared to optimal 0-1
* reflections:       [string]    Input file for reflections. No scattering if NULL or "" [string]
* delta_d_d:         [0/1]       Global relative delta_d_d/d broadening when the 'w' column is not available. Use 0 if ideal.
* Strain:            [ppm]       Global relative delta_d_d/d shift when the 'Strain' column is not available. Use 0 if ideal.
* format:            [no quotes] Name of the format, or list of column indexes (see Description).
* barns:             [1]         Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2 (barns=1 for laz, barns=0 for lau type files).
* Vc:                [AA^3]      Volume of unit cell=nb atoms per cell/density of atoms.
* DW:                [1]         Global Debye-Waller factor when the 'DW' column is not available. Use 1 if included in F2
* weight:            [g/mol]     Atomic/molecular weight of material.
* density:           [g/cm^3]    Density of material. rho=density/weight/1e24*N_A.
* nb_atoms:          [1]         Number of sub-unit per unit cell, that is ratio of sigma for chemical formula to sigma per unit cell
* target_index:      [1]         Relative index of component to focus at, e.g. next is +1
* d_phi: [deg]         Angle corresponding to the vertical angular range to focus to, e.g. detector height. 0 for no focusing.
*
* CALCULATED PARAMETERS:
* V_rho:  [AA^-3] Atomic density
*
*
* %E
******************************************************************************/

DEFINE COMPONENT Powder_process

SETTING PARAMETERS(string reflections="NULL",packing_factor=1, Vc=0, delta_d_d=0, DW=0, nb_atoms=1, d_phi=0, density=0, weight=0, barns=1, Strain=0, interact_fraction=-1, vector format={0, 0, 0, 0, 0, 0, 0, 0, 0}, string init="init")


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Powder_process component"
#endif



// Share section of PowderN 8/3 2016 from McStas.org

  /* used for reading data table from file */
  %include "read_table-lib"
  %include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef POWDERN_DECL_UNION
#define POWDERN_DECL_UNION
/* format definitions in the order {j d F2 DW Dd inv2d q F strain} */
#ifndef Crystallographica
#define Crystallographica { 4,5,7,0,0,0,0,0,0 }
#define Fullprof          { 4,0,8,0,0,5,0,0,0 }
#define Lazy              {17,6,0,0,0,0,0,13,0 }
#define Undefined         { 0,0,0,0,0,0,0,0,0 }
#endif

  struct line_data_union
    {
      double F2;                  /* Value of structure factor */
      double q;                   /* Qvector */
      int j;                      /* Multiplicity */
      double DWfactor;            /* Debye-Waller factor */
      double w;                   /* Intrinsic line width */
      double Epsilon;             /* Strain=delta_d_d/d shift in ppm */
    };

  struct line_info_struct_union
    {
      struct line_data_union *list;     /* Reflection array */
      int  count;                  /* Number of reflections */
      double Dd;
      double DWfactor;
      double V_0;
      double rho;
      double at_weight;
      double at_nb;
      double sigma_a; // should not be used
      double sigma_i; // should not be used
      char   compname[256];
      double flag_barns;
      int    shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
      int    column_order[9]; /* column signification */
      int    flag_warning;
      char   type;  /* interaction type of event t=Transmit, i=Incoherent, c=Coherent */
      double dq;    /* wavevector transfer [Angs-1] */
      double Epsilon; /* global strain in ppm */
      double XsectionFactor;
      double my_s_v2_sum;
      double my_a_v;
      double my_inc;
      double *w_v,*q_v, *my_s_v2;
      double radius_i,xwidth_i,yheight_i,zdepth_i; // not to be used, but still here
      double v; /* last velocity (cached) */
      double Nq;
      int    nb_reuses, nb_refl, nb_refl_count;
      double v_min, v_max;
      double xs_Nq[CHAR_BUF_LENGTH];
      double xs_sum[CHAR_BUF_LENGTH];
      double neutron_passed;
      long   xs_compute, xs_reuse, xs_calls;
    };

  off_struct offdata_union;
  
  // PN_list_compare *****************************************************************

  int PN_list_compare_union (void const *a, void const *b)
  {
     struct line_data_union const *pa = a;
     struct line_data_union const *pb = b;
     double s = pa->q - pb->q;
     
     if (!s) return 0;
     else    return (s < 0 ? -1 : 1);
  } /* PN_list_compare */

  int read_line_data_union(char *SC_file, struct line_info_struct_union *info)
  {
    struct line_data_union *list = NULL;
    int    size = 0;
    t_Table sTable; /* sample data table structure from SC_file */
    int    i=0;
    int    mult_count  =0;
    char   flag=0;
    double q_count=0, j_count=0, F2_count=0;
    char **parsing;
    int    list_count=0;

    if (!SC_file || !strlen(SC_file) || !strcmp(SC_file, "NULL")) {
      printf("PowderN: %s: Using incoherent elastic scattering only\n",info->compname);
      info->count = 0;
      return(0);
    }
    Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/

    /* parsing of header */
    parsing = Table_ParseHeader(sTable.header,
      "Vc","V_0",
      "sigma_abs","sigma_a ",
      "sigma_inc","sigma_i ",
      "column_j",
      "column_d",
      "column_F2",
      "column_DW",
      "column_Dd",
      "column_inv2d", "column_1/2d", "column_sintheta/lambda",
      "column_q", /* 14 */
      "DW", "Debye_Waller",
      "delta_d_d/d",
      "column_F ",
      "V_rho",
      "density",
      "weight",
      "nb_atoms","multiplicity", /* 23 */
      "column_ppm","column_strain",
      NULL);

    if (parsing) {
      if (parsing[0] && !info->V_0)     info->V_0    =atof(parsing[0]);
      if (parsing[1] && !info->V_0)     info->V_0    =atof(parsing[1]);
      if (parsing[2] && !info->sigma_a) info->sigma_a=atof(parsing[2]);
      if (parsing[3] && !info->sigma_a) info->sigma_a=atof(parsing[3]);
      if (parsing[4] && !info->sigma_i) info->sigma_i=atof(parsing[4]);
      if (parsing[5] && !info->sigma_i) info->sigma_i=atof(parsing[5]);
      if (parsing[6])                   info->column_order[0]=atoi(parsing[6]);
      if (parsing[7])                   info->column_order[1]=atoi(parsing[7]);
      if (parsing[8])                   info->column_order[2]=atoi(parsing[8]);
      if (parsing[9])                   info->column_order[3]=atoi(parsing[9]);
      if (parsing[10])                  info->column_order[4]=atoi(parsing[10]);
      if (parsing[11])                  info->column_order[5]=atoi(parsing[11]);
      if (parsing[12])                  info->column_order[5]=atoi(parsing[12]);
      if (parsing[13])                  info->column_order[5]=atoi(parsing[13]);
      if (parsing[14])                  info->column_order[6]=atoi(parsing[14]);
      if (parsing[15] && info->DWfactor<=0)    info->DWfactor=atof(parsing[15]);
      if (parsing[16] && info->DWfactor<=0)    info->DWfactor=atof(parsing[16]);
      if (parsing[17] && info->Dd <0)          info->Dd      =atof(parsing[17]);
      if (parsing[18])                  info->column_order[7]=atoi(parsing[18]);
      if (parsing[19] && !info->V_0)    info->V_0    =1/atof(parsing[19]);
      if (parsing[20] && !info->rho)    info->rho    =atof(parsing[20]);
      if (parsing[21] && !info->at_weight)     info->at_weight    =atof(parsing[21]);
      if (parsing[22] && info->at_nb <= 1)  info->at_nb    =atof(parsing[22]);
      if (parsing[23] && info->at_nb <= 1)  info->at_nb    =atof(parsing[23]);
      if (parsing[24])                  info->column_order[8]=atoi(parsing[24]);
      if (parsing[25])                  info->column_order[8]=atoi(parsing[25]);
      for (i=0; i<=25; i++) if (parsing[i]) free(parsing[i]);
      free(parsing);
    }

    if (!sTable.rows)
      exit(fprintf(stderr, "PowderN: %s: Error: The number of rows in %s "
       "should be at least %d\n", info->compname, SC_file, 1));
    else size = sTable.rows;
    Table_Info(sTable);
    printf("PowderN: %s: Reading %d rows from %s\n",
          info->compname, size, SC_file);

    if (info->column_order[0] == 4 && info->flag_barns !=0)
    printf("PowderN: %s: Powder file probably of type Crystallographica/Fullprof (lau)\n"
           "WARNING: but F2 unit is set to barns=1 (barns). Intensity might be 100 times too high.\n",
           info->compname);
  if (info->column_order[0] == 17 && info->flag_barns == 0)
    printf("PowderN: %s: Powder file probably of type Lazy Pulver (laz)\n"
           "WARNING: but F2 unit is set to barns=0 (fm^2). Intensity might be 100 times too low.\n",
           info->compname);
    /* allocate line_data array */
    list = (struct line_data_union*)malloc(size*sizeof(struct line_data_union));

    for (i=0; i<size; i++)
    {
      /*      printf("Reading in line %i\n",i);*/
      double j=0, d=0, w=0, q=0, DWfactor=0, F2=0, Epsilon=0;
      int index;

      if (info->Dd >= 0)      w         = info->Dd;
      if (info->DWfactor > 0) DWfactor  = info->DWfactor;
      if (info->Epsilon)      Epsilon   = info->Epsilon*1e-6;

      /* get data from table using columns {j d F2 DW Dd inv2d q F} */
      /* column indexes start at 1, thus need to substract 1 */
      if (info->column_order[0] >0)
        j = Table_Index(sTable, i, info->column_order[0]-1);
      if (info->column_order[1] >0)
        d = Table_Index(sTable, i, info->column_order[1]-1);
      if (info->column_order[2] >0)
        F2 = Table_Index(sTable, i, info->column_order[2]-1);
      if (info->column_order[3] >0)
        DWfactor = Table_Index(sTable, i, info->column_order[3]-1);
      if (info->column_order[4] >0)
        w = Table_Index(sTable, i, info->column_order[4]-1);
      if (info->column_order[5] >0)
        { d = Table_Index(sTable, i, info->column_order[5]-1);
          d = (d > 0? 1/d/2 : 0); }
      if (info->column_order[6] >0)
        { q = Table_Index(sTable, i, info->column_order[6]-1);
          d = (q > 0 ? 2*PI/q : 0); }
      if (info->column_order[7] >0  && !F2)
        { F2 = Table_Index(sTable, i, info->column_order[7]-1); F2 *= F2; }
      if (info->column_order[8] >0  && !Epsilon)
        { Epsilon = Table_Index(sTable, i, info->column_order[8]-1)*1e-6; }

      /* assign and check values */
      j        = (j > 0 ? j : 0);
      q        = (d > 0 ? 2*PI/d : 0); /* this is q */
      if (Epsilon && fabs(Epsilon) < 1e6) {
        q     -= Epsilon*q; /* dq/q = -delta_d_d/d = -Epsilon */
      }
      DWfactor = (DWfactor > 0 ? DWfactor : 1);
      w        = (w>0 ? w : 0); /* this is q and d relative spreading */
      F2       = (F2 >= 0 ? F2 : 0);
      if (j == 0 || q == 0) {
        printf("PowderN: %s: line %i has invalid definition\n"
               "         (mult=0 or q=0 or d=0)\n", info->compname, i);
        continue;
      }
      list[list_count].j = j;
      list[list_count].q = q;
      list[list_count].DWfactor = DWfactor;
      list[list_count].w = w;
      list[list_count].F2= F2;
      list[list_count].Epsilon = Epsilon;

      /* adjust multiplicity if j-column + multiple d-spacing lines */
      /* if  d = previous d, increase line duplication index */
      if (!q_count)      q_count  = q;
      if (!j_count)      j_count  = j;
      if (!F2_count)     F2_count = F2;
      if (fabs(q_count-q) < 0.0001*fabs(q)
       && fabs(F2_count-F2) < 0.0001*fabs(F2) && j_count == j) {
       mult_count++; flag=0; }
      else flag=1;
      if (i == size-1) flag=1;
      /* else if d != previous d : just passed equivalent lines */
      if (flag) {
        if (i == size-1) list_count++;
      /*   if duplication index == previous multiplicity */
      /*      set back multiplicity of previous lines to 1 */
        if ((mult_count && list_count>0)
            && (mult_count == list[list_count-1].j
                || ((list_count < size) && (i == size - 1)
                    && (mult_count == list[list_count].j))) ) {
          printf("PowderN: %s: Set multiplicity to 1 for lines [%i:%i]\n"
                  "         (d-spacing %g is duplicated %i times)\n",
            info->compname, list_count-mult_count, list_count-1, list[list_count-1].q, mult_count);
          for (index=list_count-mult_count; index<list_count; list[index++].j = 1);
          mult_count = 1;
          q_count   = q;
          j_count   = j;
          F2_count  = F2;
        }
        if (i == size-1) list_count--;
        flag=0;
      }
      list_count++;
    } /* end for */ 
    
    Table_Free(&sTable);
    
    /* sort the list with increasing q */
    qsort(list, list_count, sizeof(struct line_data_union),  PN_list_compare_union);
    
    printf("PowderN: %s: Read %i reflections from file '%s'\n", 
      info->compname, list_count, SC_file);
    
    info->list  = list;
    info->count = list_count;

    return(list_count);
  } /* read_line_data_union */


/* computes the number of possible reflections (return value), and the total xsection 'sum' */
/* this routine looks for a pre-computed value in the Nq and sum cache tables               */
/* when found, the earch starts from the corresponding lower element in the table           */
int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum,
  struct line_info_struct_union *line_info) {
  int    Nq = 0, line=0, line0=0;
  *sum=0;
  
  //printf("Line_info when entering cross_section calculation\n");
  //printf("v = %f, qv = %f, my_sv2 = %f, count = %d, sum = %f\n",v,*qv,*my_sv2,count,*sum);
  //printf("v = %f\n",v);
  //printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed);
  //printf("line_info->xs_reuses = %d, line_info->xs_compute = %d\n",line_info->xs_reuse,line_info->xs_compute);
  
  
  /* check if a line_info element has been recorded already */
  if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
    line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
    Nq    = line_info->xs_Nq[line];
    *sum  = line_info->xs_sum[line];
    if (!Nq && *sum == 0) {
      /* not yet set: we compute the sum up to the corresponding speed in the table cache */
      //printf("Nq and sum not yet set, have to do this calculation now\n");
      double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
      for(line0=0; line0<count; line0++) {
        if (qv[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
          *sum += my_sv2[line0];
          if (Nq < line0+1) Nq=line0+1; /* determine maximum line index which can scatter */
        } else break;
      }
      line_info->xs_Nq[line] = Nq;
      line_info->xs_sum[line]= *sum;
      line_info->xs_compute++;
      //printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute);
    } else line_info->xs_reuse++;
    line0 = Nq;
  }
  
  line_info->xs_calls++;
  
  for(line=line0; line<count; line++) {
    if (qv[line] <= 2*v) { /* q < 2*kf: restrict structural range */
      *sum += my_sv2[line];
      if (Nq < line+1) Nq=line+1; /* determine maximum line index which can scatter */
    } else break;
  }
  
  //printf("cross_section function to return %d lines to scatter with, with cross section sum %f \n",Nq,*sum);
  return(Nq);
} /* calc_xsect_union */

#endif /* !POWDERN_DECL */



struct Powder_physics_storage_struct{
    // Variables that needs to be transfered between any of the following places:
    // The initialize in this component
    // The function for calculating my
    // The function for calculating scattering
    
    struct line_info_struct_union *line_info_storage;
    double my_scattering;
    double vertical_angular_limit;
};

// Obsolete: Function for initializing test_physics. Done in component instead.
int Powder_physics_initialize(union data_transfer_union data_transfer) {
      // Obsolte
      return 1;
};

// Function for calculating my in a test case.
int Powder_physics_my(double *my,double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {
    //*my = data_transfer.pointer_to_a_Powder_physics_storage_struct->my_scattering;
    
    
    int method_switch = 1;
    // For test
    int line_v,line0,line,count;
    
    // Should not interfer with the global variables
    double vx = k_initial[0]*K2V;
    double vy = k_initial[1]*K2V;
    double vz = k_initial[2]*K2V;
    
    // Not sure one can do this, but I do not see why not
    struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage;
    
    double v = sqrt(vx*vx + vy*vy + vz*vz);
    //printf("Velocity = %f \n",v);
    
    //printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed);
    // Here the maximum and minimum v is recorded, should this be for scattering events or cross section calculations?
    if (line_info->neutron_passed < CHAR_BUF_LENGTH) {
      if (v < line_info->v_min) line_info->v_min = v;
      if (v > line_info->v_max) line_info->v_max = v;
      line_info->neutron_passed++;
    }
    
    if (method_switch == 1) {
    // Here the cross section is calculated and stored
    if ( fabs(v - line_info->v) < 1e-6) {
        line_info->nb_reuses++;
      } else {
        //printf("calling crosssection calculation \n");
        // int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum, struct line_info_struct *line_info)
        line_info->Nq = calc_xsect_union(v, line_info->q_v, line_info->my_s_v2, line_info->count, &line_info->my_s_v2_sum, line_info);
        line_info->v = v;
        line_info->nb_refl += line_info->Nq;
        line_info->nb_refl_count++;
      }
    } else {
    if ( fabs(v - line_info->v) < 1e-6) {
        line_info->nb_reuses++;
      } else {
        //printf("calling crosssection calculation \n");
        if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
        line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
        line_info->Nq = line_info->xs_Nq[line];
        line_info->my_s_v2_sum  = line_info->xs_sum[line];
        if (!line_info->Nq && line_info->my_s_v2_sum == 0) {
          /* not yet set: we compute the sum up to the corresponding speed in the table cache */
          //printf("Nq and sum not yet set, have to do this calculation now\n");
          double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
          for(line0=0; line0<count; line0++) {
            if (line_info->q_v[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
              line_info->my_s_v2_sum += line_info->my_s_v2[line0];
              if (line_info->Nq < line0+1) line_info->Nq=line0+1; /* determine maximum line index which can scatter */
            } else break;
          }
          line_info->xs_Nq[line] = line_info->Nq;
          line_info->xs_sum[line]= line_info->my_s_v2_sum;
          line_info->xs_compute++;
          //printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute);
        } else line_info->xs_reuse++;
        line0 = line_info->Nq;
        }
          
        line_info->xs_calls++;
          
        for(line=line0; line<count; line++) {
          if (line_info->q_v[line] <= 2*v) { /* q < 2*kf: restrict structural range */
            line_info->my_s_v2_sum += line_info->my_s_v2[line];
            if (line_info->Nq < line+1) line_info->Nq=line+1; /* determine maximum line index which can scatter */
          } else break;
        }
        line_info->v = v;
        line_info->nb_refl += line_info->Nq;
        line_info->nb_refl_count++;
      }
    }
    
     *my = line_info->my_s_v2_sum/(v*v);
    //printf("Returned my scattering of %f \n",*my);
    //printf("compute = %d and reuse = %d \n",line_info->xs_compute,line_info->xs_reuse);
    
    return 1;
};

// Function that provides a basic nonuniform elastic scattering. Unphysical for testing purposes.
int Powder_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data, _class_particle *_particle) {

    // This component need to write to its storage transfer for each event, is that possible with this structure?
    struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage;
    double vertical_angular_limit = data_transfer.pointer_to_a_Powder_physics_storage_struct->vertical_angular_limit;
    
    
    // Should not interfer with the global variables
    double vx = k_initial[0]*K2V;
    double vy = k_initial[1]*K2V;
    double vz = k_initial[2]*K2V;
    
    double v = sqrt(vx*vx + vy*vy + vz*vz);
    
    int line;
    double arg;
    double theta;
    double alpha,alpha0;
    
    double vout_x,vout_y,vout_z;
    double tmp_vx,tmp_vy,tmp_vz;
    double nx,ny,nz;
    double my_s_n;
    
    // copy from PowderN component
    if (line_info->count > 0) {
          /* choose line */
          if (line_info->Nq > 1) line=floor(line_info->Nq*rand01());  /* Select between Nq powder lines */
          else line = 0;
          if (line_info->w_v[line])
            arg = line_info->q_v[line]*(1+line_info->w_v[line]*randnorm())/(2.0*v);
          else
            arg = line_info->q_v[line]/(2.0*v);
            my_s_n = line_info->my_s_v2[line]/(v*v);
          if(fabs(arg) > 1) {
            //printf("Powder scattering function returned 0, should not happen\n");
            return 0; /* No bragg scattering possible (was absorb)*/
          }
          theta = asin(arg);          /* Bragg scattering law */

          /* Choose point on Debye-Scherrer cone */
          if (vertical_angular_limit)
          { /* relate height of detector to the height on DS cone */
            arg = sin(vertical_angular_limit*DEG2RAD/2)/sin(2*theta);
            /* If full Debye-Scherrer cone is within d_phi, don't focus */
            if (arg < -1 || arg > 1) vertical_angular_limit = 0;
            /* Otherwise, determine alpha to rotate from scattering plane
               into vertical_angular_limit focusing area*/
            else alpha = 2*asin(arg);
          }
          if (vertical_angular_limit) {
            /* Focusing */
            alpha = fabs(alpha);
            /* Trick to get scattering for pos/neg theta's */
            alpha0= 2*rand01()*alpha;
            if (alpha0 > alpha) {
              alpha0=PI+(alpha0-1.5*alpha);
            } else {
              alpha0=alpha0-0.5*alpha;
            }
          }
          else
            alpha0 = PI*randpm1();

          /* now find a nearly vertical rotation axis:
           * Either
           *  (v along Z) x (X axis) -> nearly Y axis
           * Or
           *  (v along X) x (Z axis) -> nearly Y axis
           */
          if (fabs(scalar_prod(1,0,0,vx/v,vy/v,vz/v)) < fabs(scalar_prod(0,0,1,vx/v,vy/v,vz/v))) {
            nx = 1; ny = 0; nz = 0;
          } else {
            nx = 0; ny = 0; nz = 1;
          }
          vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, nx,ny,nz);

          /* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */
          rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*theta, tmp_vx,tmp_vy,tmp_vz);

          /* tmp_v = rotate v_out by alpha0 around 'v' (Debye-Scherrer cone) */
          rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, alpha0, vx, vy, vz);
          vx = tmp_vx;
          vy = tmp_vy;
          vz = tmp_vz;
        
          k_final[0] = V2K*vx; k_final[1] = V2K*vy; k_final[2] = V2K*vz;
        
          //*weight *= line_info->Nq*my_s_n; I believe my_s_n is part of the correction for sampling posistion, not to be done here
          *weight *= line_info->Nq*my_s_n/line_info->my_s_v2_sum*v*v;
        
          //printf("my_s_n = %f \n",my_s_n);
        
          // What to do with my_s_n ?
          /*
          pmul  = line_info->Nq*l_full*my_s_n*exp(-(line_info->my_a_v/v+my_s)*(l+l_1))
                                  /(1-(p_inc+p_transmit));
          */
          // Correction in case of vertical_angular_limit focusing - BUT only when d_phi != 0
          if (vertical_angular_limit) *weight *= alpha/PI;
          
        
          line_info->type = 'c';
          line_info->dq = line_info->q_v[line]*V2K;
          
          
        } else {
        /* else transmit <-- No powder lines in file */
        printf("Error, need lines in the PowderN input file\n");
        }


    //printf("Powder scattering function returned 1\n");
    return 1;
};
#ifndef PROCESS_DETECTOR
    #define PROCESS_DETECTOR dummy
#endif

#ifndef PROCESS_POWDER_DETECTOR
    #define PROCESS_POWDER_DETECTOR dummy
#endif
%}

DECLARE
%{
// Needed for transport to the main component
struct global_process_element_struct global_process_element;
struct scattering_process_struct This_process;

// Declare for this component, to do calculations on the input / store in the transported data
struct Powder_physics_storage_struct Powder_storage;
struct line_info_struct_union line_info;
double effective_my_scattering;

double *columns;
%}

INITIALIZE
%{

  // Initialize done in the component
  columns = format;
  
  // Copy from PowderN component
  int i=0;
  struct line_data_union *L;
  line_info.Dd       = delta_d_d;
  line_info.DWfactor = DW;
  line_info.V_0      = Vc;
  line_info.rho      = density;
  line_info.at_weight= weight;
  line_info.at_nb    = nb_atoms;
  line_info.sigma_a  = 0; // This inputs are not needed, as absorption is handled elsewhere
  line_info.sigma_i  = 0; // This input is not needed, as incoherent scattering is handled elsewhere
  line_info.flag_barns=barns;
  //line_info.shape    = 0;
  line_info.flag_warning=0;
  line_info.Epsilon  = Strain;
  line_info.radius_i =line_info.xwidth_i=line_info.yheight_i=line_info.zdepth_i=0;
  line_info.v  = 0;
  line_info.Nq = 0;
  //line_info.v_min = FLT_MAX; line_info.v_max = 0;
  line_info.v_min = 10000000000; line_info.v_max = 0;
  line_info.neutron_passed=0;
  line_info.nb_reuses = line_info.nb_refl = line_info.nb_refl_count = 0;
  line_info.xs_compute= line_info.xs_reuse= line_info.xs_calls =0;
  for (i=0; i< 9; i++) line_info.column_order[i] = columns[i];
  strncpy(line_info.compname, NAME_CURRENT_COMP, 256);

  // p_interact handled elsewhere
  //if (p_interact) {
  //  if (p_interact < p_inc) { double tmp=p_interact; p_interact=p_inc; p_inc=tmp; }
  //  p_transmit = 1-p_interact-p_inc;
  //}

  if (reflections && strlen(reflections) && strcmp(reflections, "NULL") && strcmp(reflections, "0")) {
    i = read_line_data_union(reflections, &line_info);
    if (i == 0)
      exit(fprintf(stderr,"PowderN: %s: reflection file %s is not valid.\n"
                          "ERROR    Please check file format (laz or lau).\n", NAME_CURRENT_COMP, reflections));
  }

  /* compute the scattering unit density from material weight and density */
  /* the weight of the scattering element is the chemical formula molecular weight
   * times the nb of chemical formulae in the scattering element (nb_atoms) */
  if (!line_info.V_0 && line_info.at_nb > 0
    && line_info.at_weight > 0 && line_info.rho > 0) {
    /* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
    /* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
    line_info.V_0 = line_info.at_nb
      /(line_info.rho/line_info.at_weight/1e24*6.02214199e23);
  }

  /* the scattering unit cross sections are the chemical formula onces
   * times the nb of chemical formulae in the scattering element */
  if (line_info.at_nb > 0) {
    line_info.sigma_a *= line_info.at_nb; line_info.sigma_i *= line_info.at_nb;
  }

  if (line_info.V_0 <= 0)
    fprintf(stderr,"PowderN: %s: density/unit cell volume is NULL (Vc). Unactivating component.\n", NAME_CURRENT_COMP);


  if (line_info.flag_barns) { /* Factor 100 to convert from barns to fm^2 */
    line_info.XsectionFactor = 100;
  } else {
    line_info.XsectionFactor = 1;
  }

  if (line_info.V_0 && i) {
    L = line_info.list;

    line_info.q_v = malloc(line_info.count*sizeof(double));
    line_info.w_v = malloc(line_info.count*sizeof(double));
    line_info.my_s_v2 = malloc(line_info.count*sizeof(double));
    if (!line_info.q_v || !line_info.w_v || !line_info.my_s_v2)
      exit(fprintf(stderr,"PowderN: %s: ERROR allocating memory (init)\n", NAME_CURRENT_COMP));
    for(i=0; i<line_info.count; i++)
    {
      line_info.my_s_v2[i] = 4*PI*PI*PI*packing_factor*(L[i].DWfactor ? L[i].DWfactor : 1)
                 /(line_info.V_0*line_info.V_0*V2K*V2K)
                 *(L[i].j * L[i].F2 / L[i].q)*line_info.XsectionFactor;
      /* Is not yet divided by v^2 */
      /* Squires [3.103] */
      line_info.q_v[i] = L[i].q*K2V;
      line_info.w_v[i] = L[i].w;
    }
  }
  if (line_info.V_0) {
    /* Is not yet divided by v */
    line_info.my_a_v = packing_factor*line_info.sigma_a/line_info.V_0*2200*100;   // Factor 100 to convert from barns to fm^2
    line_info.my_inc = packing_factor*line_info.sigma_i/line_info.V_0*100;   // Factor 100 to convert from barns to fm^2

    printf("PowderN: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
      NAME_CURRENT_COMP, line_info.V_0, line_info.sigma_a, line_info.sigma_i, reflections && strlen(reflections) ? reflections : "NULL");
  }

  //printf("INTIALIZE line_info.v = %f, line_info.v_min = %f, line_info.v_max = %f, line_info.neutron_passed = %f\n",line_info.v,line_info.v_min,line_info.v_max,line_info.neutron_passed);

  Powder_storage.line_info_storage = &line_info;
  Powder_storage.vertical_angular_limit = d_phi;
  
  // Need to specify if this process is isotropic
  This_process.non_isotropic_rot_index = -1; // Yes (powder)
  //This_process.non_isotropic_rot_index =  1;  // No (single crystal)

  // The type of the process must be saved in the global enum process
  This_process.eProcess = Powder;

  // Packing the data into a structure that is transported to the main component
  This_process.data_transfer.pointer_to_a_Powder_physics_storage_struct = &Powder_storage;
  This_process.data_transfer.pointer_to_a_Powder_physics_storage_struct->my_scattering = effective_my_scattering;
  This_process.probability_for_scattering_function = &Powder_physics_my;
  This_process.scattering_function = &Powder_physics_scattering;
    
  // This will be the same for all process's, and can thus be moved to an include.
  This_process.process_p_interact = interact_fraction;
  sprintf(This_process.name,"%s",NAME_CURRENT_COMP);
  rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP);
  sprintf(global_process_element.name,"%s",NAME_CURRENT_COMP);
  global_process_element.component_index = INDEX_CURRENT_COMP;
  global_process_element.p_scattering_process = &This_process;

if (_getcomp_index(init) < 0) {
fprintf(stderr,"Powder_process:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}


struct pointer_to_global_process_list *global_process_list = COMP_GETPAR3(Union_init, init, global_process_list);
  add_element_to_process_list(global_process_list,global_process_element);
 %}

TRACE
%{
%}

FINALLY
%{
  free(line_info.list);
  free(line_info.q_v);
  free(line_info.w_v);
  free(line_info.my_s_v2);
%}

END