File: Union_box.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (448 lines) | stat: -rwxr-xr-x 22,689 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Origin: University of Copenhagen
*
* A box geometry component for the Union components
*
* %D
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union components
*
* The position of this component is the center of the box, zdepth/2 in each direction.
*
* It is allowed to overlap components, but it is not allowed to have two
*  parallel planes that coincides. This will crash the code on run time.
*
*
* Algorithm:
* Described elsewhere
*
* %P
* INPUT PARAMETERS:
* xwidth:                [m]      Width of the box volume
* yheight:               [m]      Height of the box volume
* zdepth:                [m]      Depth of the box volume
* xwidth2:               [m]      Optional different width at the +z box face
* yheight2:              [m]      Optional different height at the +z box face
* material_string:       [string] Material name of this volume, defined using Union_make_material
* priority:              [1]      Priotiry of the volume (can not be the same as another volume) A high priority is on top of low.
* p_interact:            [1]      Probability to interact with this geometry [0-1]
* visualize:             [1]      Set to 0 if you wish to hide this geometry in mcdisplay
* number_of_activations: [1]      Number of subsequent Union_master components that will simulate this geometry
* mask_string:           [string] Comma seperated list of geometry names which this geometry should mask
* mask_setting:          [string]  "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all.
* target_index:          [string]  Focuses on component a component this many steps further in the component sequence
* target_x:              [m]      X position of target to focus at
* target_y:              [m]      Y position of target to focus at
* target_z:              [m]      Z position of target to focus at
* focus_aw:              [deg]    Horiz. angular dimension of a rectangular area
* focus_ah:              [deg]    Vert. angular dimension of a rectangular area
* focus_xw:              [m]      Horiz. dimension of a rectangular area
* focus_xh:              [m]      Vert. dimension of a rectangular area
* focus_r:               [m]      Focusing on circle with this radius
* init:                  [string] name of Union_init component (typically "init", default)
* CALCULATED PARAMETERS:
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT Union_box

SETTING PARAMETERS(string material_string=0, priority, xwidth, yheight, zdepth, xwidth2=-1, yheight2=-1, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact = 0, string mask_string=0, string mask_setting=0,number_of_activations=1, string init="init")


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{

#ifndef Union
#error "The Union_init component must be included before this Union_box component"
#endif

void mcdisplay_box_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) {
    // Function to call in mcdisplay section of the sample component for this volume
    // One can assume that Volumes[index] refers to a volume with the geometry described in this file
    
    double depth = Geometries[index]->geometry_parameters.p_box_storage->z_depth;
    double width1 = Geometries[index]->geometry_parameters.p_box_storage->x_width1;
    double width2 = Geometries[index]->geometry_parameters.p_box_storage->x_width2;
    double height1 = Geometries[index]->geometry_parameters.p_box_storage->y_height1;
    double height2 = Geometries[index]->geometry_parameters.p_box_storage->y_height2;
    
    Coords x_vector = Geometries[index]->geometry_parameters.p_box_storage->x_vector;
    Coords y_vector = Geometries[index]->geometry_parameters.p_box_storage->y_vector;
    Coords z_vector = Geometries[index]->geometry_parameters.p_box_storage->z_vector;
    
    Coords center = Geometries[index]->center;
    
    Coords square1[4],square2[4];
    
    square1[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,-0.5*depth)),coords_scalar_mult(x_vector,-0.5*width1)),coords_scalar_mult(y_vector,-0.5*height1));
    
    square1[1] = coords_add(square1[0],coords_scalar_mult(x_vector,width1));
    square1[2] = coords_add(square1[1],coords_scalar_mult(y_vector,height1));
    square1[3] = coords_add(square1[0],coords_scalar_mult(y_vector,height1));
    
    square2[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,0.5*depth)),coords_scalar_mult(x_vector,-0.5*width2)),coords_scalar_mult(y_vector,-0.5*height2));
    
    square2[1] = coords_add(square2[0],coords_scalar_mult(x_vector,width2));
    square2[2] = coords_add(square2[1],coords_scalar_mult(y_vector,height2));
    square2[3] = coords_add(square2[0],coords_scalar_mult(y_vector,height2));
    
    struct lines_to_draw lines_to_draw_temp;
    lines_to_draw_temp.number_of_lines = 0;
    
    int iterate;
    for (iterate=0;iterate<3;iterate++) {
        lines_to_draw_temp = draw_line_with_highest_priority(square1[iterate],square1[iterate+1],index,Geometries,number_of_volumes,2);
        merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
    }
    lines_to_draw_temp = draw_line_with_highest_priority(square1[3],square1[0],index,Geometries,number_of_volumes,2);
    merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);

    for (iterate=0;iterate<3;iterate++) {
        lines_to_draw_temp = draw_line_with_highest_priority(square2[iterate],square2[iterate+1],index,Geometries,number_of_volumes,2);
        merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
    }
    lines_to_draw_temp = draw_line_with_highest_priority(square2[3],square2[0],index,Geometries,number_of_volumes,2);
    merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);

    for (iterate=0;iterate<4;iterate++) {
        lines_to_draw_temp = draw_line_with_highest_priority(square1[iterate],square2[iterate],index,Geometries,number_of_volumes,2);
        merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
    }
};

void initialize_box_geometry_from_main_component(struct geometry_struct *box) {
    // Function to be called in initialize of the main component
    // This is done as the rotation matrix needs to be relative to the main component instead of global
    // Everything done in initialize in this component file has the rotation matrix relative to global
    Coords simple_vector = coords_set(1,0,0);
    Coords rotated_vector;
    
    rotated_vector = rot_apply(box->rotation_matrix,simple_vector);
    NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z);
    box->geometry_parameters.p_box_storage->x_vector = rotated_vector;
    
    simple_vector = coords_set(0,1,0);
    rotated_vector = rot_apply(box->rotation_matrix,simple_vector);
    NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z);
    box->geometry_parameters.p_box_storage->y_vector = rotated_vector;
    
    simple_vector = coords_set(0,0,1);
    rotated_vector = rot_apply(box->rotation_matrix,simple_vector);
    NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z);
    box->geometry_parameters.p_box_storage->z_vector = rotated_vector;
};

struct pointer_to_1d_coords_list box_shell_points(struct geometry_struct *geometry,int max_number_of_points) {
  // This function returns an array of corner positions for the box in the main coordinate system.
  // Normally one would limit it to a maximum number of points, but as there are only 8 for the box,
  //  it is hardcoded to 8. Other geometries can be approximated with a variable number of points.
  
  struct pointer_to_1d_coords_list corner_points;
  corner_points.elements = malloc(8*sizeof(Coords));
  corner_points.num_elements = 8;
  
  double depth = geometry->geometry_parameters.p_box_storage->z_depth;
  double width1 = geometry->geometry_parameters.p_box_storage->x_width1;
  double width2 = geometry->geometry_parameters.p_box_storage->x_width2;
  double height1 = geometry->geometry_parameters.p_box_storage->y_height1;
  double height2 = geometry->geometry_parameters.p_box_storage->y_height2;
    
  Coords x_vector = geometry->geometry_parameters.p_box_storage->x_vector;
  Coords y_vector = geometry->geometry_parameters.p_box_storage->y_vector;
  Coords z_vector = geometry->geometry_parameters.p_box_storage->z_vector;
    
  Coords center = geometry->center;
    
  corner_points.elements[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,-0.5*depth)),coords_scalar_mult(x_vector,-0.5*width1)),coords_scalar_mult(y_vector,-0.5*height1));
    
  corner_points.elements[1] = coords_add(corner_points.elements[0],coords_scalar_mult(x_vector,width1));
  corner_points.elements[2] = coords_add(corner_points.elements[1],coords_scalar_mult(y_vector,height1));
  corner_points.elements[3] = coords_add(corner_points.elements[0],coords_scalar_mult(y_vector,height1));
    
  corner_points.elements[4] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,0.5*depth)),coords_scalar_mult(x_vector,-0.5*width2)),coords_scalar_mult(y_vector,-0.5*height2));
    
  corner_points.elements[5] = coords_add(corner_points.elements[4],coords_scalar_mult(x_vector,width2));
  corner_points.elements[6] = coords_add(corner_points.elements[5],coords_scalar_mult(y_vector,height2));
  corner_points.elements[7] = coords_add(corner_points.elements[4],coords_scalar_mult(y_vector,height2));
  
  return corner_points;

}

#ifndef ANY_GEOMETRY_DETECTOR_DECLARE
    #define ANY_GEOMETRY_DETECTOR_DECLARE dummy
    //struct pointer_to_global_geometry_list global_geometry_list = {0,NULL};
#endif

%}

DECLARE
%{
// Needed for transport to the main component
struct global_geometry_element_struct global_geometry_element;

int loop_index;

double x_component;
double y_component;
double z_component;

struct Volume_struct this_box_volume;
struct box_storage this_box_storage;

%}

INITIALIZE
%{
// Initializes the focusing system for this volume including input sanitation.
focus_initialize(&this_box_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP);

// Input sanitation for this geometry
if (xwidth <= 0) {
  printf("\nERROR in Union_box named %s, the xwidth is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}
if (yheight <= 0) {
  printf("\nERROR in Union_box named %s, yheight is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}
if (zdepth <= 0) {
  printf("\nERROR in Union_box named %s, zdepth is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}
if (xwidth2 <= 0 && xwidth2 != -1) {
  printf("\nERROR in Union_box named %s, the xwidth2 is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}
if (yheight2 <= 0 && yheight2 != -1) {
  printf("\nERROR in Union_box named %s, yheight2 is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}

if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_box:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}

struct pointer_to_global_material_list *global_material_list = COMP_GETPAR3(Union_init, init, global_material_list);
// Use sanitation
if (global_material_list->num_elements == 0) {
  printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
  printf("       %s was defined before first use of Union_make_material.\n", NAME_CURRENT_COMP);
  exit(1);
}

this_box_volume.geometry.is_masked_volume = 0;
this_box_volume.geometry.is_exit_volume = 0;
this_box_volume.geometry.is_mask_volume = 0;
struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);
// check if the volume is a mask, if it is the material string is irelevant.
if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) {
    // A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string.
    // In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume.
    // When more than
    this_box_volume.geometry.mask_mode = 1; // Default is mask mode is ALL
    if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) {
        if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_box_volume.geometry.mask_mode = 1;
        else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_box_volume.geometry.mask_mode = 2;
        else {
            printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting);
            exit(1);
        }
    }
    
    int found_geometries = 0;
    for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
        // Add mask list
        if (1 == manual_linking_function(global_geometry_list->elements[loop_index].name,mask_string)) {
            add_element_to_int_list(&this_box_volume.geometry.mask_list,global_geometry_list->elements[loop_index].component_index);
            add_element_to_int_list(&global_geometry_list->elements[loop_index].Volume->geometry.masked_by_list,INDEX_CURRENT_COMP);
            global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume = 1;
            if (this_box_volume.geometry.mask_mode == 2)
                global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 2;
            if (this_box_volume.geometry.mask_mode == 1) {
                if (global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list->elements[loop_index].Volume->geometry.mask_mode != 2)
                    // If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode.
                    global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 1;
            }
            
            found_geometries = 1;
        }
    }
    if (found_geometries == 0) {
        printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string);
        exit(1);
    }
    this_box_volume.p_physics = malloc(sizeof(struct physics_struct));
    this_box_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum
    this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
    this_box_volume.p_physics->my_a = 0; // Should not be used.
    sprintf(this_box_volume.p_physics->name,"Mask");
    this_box_volume.geometry.is_mask_volume = 1;
    
    
// Read the material input, or if it lacks, use automatic linking.
} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) {
    // A geometry string was given, use it to determine which material
    if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) {
        // One could have a global physics struct for vacuum instead of creating one for each
        this_box_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_box_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
        this_box_volume.p_physics->my_a = 0; // Should not be used.
        sprintf(this_box_volume.p_physics->name,"Vacuum");
    } else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) {
        // One could have a global physics struct for vacuum instead of creating one for each
        this_box_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_box_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
        this_box_volume.p_physics->my_a = 0; // Should not be used.
        this_box_volume.geometry.is_exit_volume = 1;
        sprintf(this_box_volume.p_physics->name,"Exit");
    } else {
        #ifndef MATERIAL_DETECTOR
            printf("Need to define a material before refering to it in a geometry %s.\n",NAME_CURRENT_COMP);
            exit(1);
        #endif
        for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++) {
            if (0 == strcmp(material_string,global_material_list->elements[loop_index].name)) {
                this_box_volume.p_physics = global_material_list->elements[loop_index].physics;
                break;
            }
            if (loop_index == global_material_list->num_elements-1) {
            printf("\n");
            printf("ERROR: The material string \"%s\" in Union geometry \"%s\" did not match a specified material. \n",material_string,NAME_CURRENT_COMP);
            printf("       The materials available at this point (need to be defined before the geometry): \n");
            for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++)
              printf("         %s\n",global_material_list->elements[loop_index].name);
            printf("\n");
            printf("       It is also possible to use one of the defualt materials avaiable: \n");
            printf("           Vacuum (for a Volume without scattering or absorption)\n");
            printf("           Exit (for a Volume where the ray exits the component if it enters)\n");
            printf("           Mask (for a Volume that masks existing volumes specified in the mask_string\n");
            exit(1);
          }
        }
    }
} else {
    // Automatic linking, simply using the last defined material.
    #ifndef MATERIAL_DETECTOR
        printf("Need to define a material before the geometry to use automatic linking %s.\n",NAME_CURRENT_COMP);
        exit(1);
    #endif
    this_box_volume.p_physics = global_material_list->elements[global_material_list->num_elements-1].physics;
}

sprintf(this_box_volume.name,"%s",NAME_CURRENT_COMP);
sprintf(this_box_volume.geometry.shape,"box");
this_box_volume.geometry.eShape = box;
this_box_volume.geometry.priority_value = priority;
this_box_volume.geometry.geometry_p_interact = p_interact;
// Currently the coordinates will be in absolute space.
this_box_volume.geometry.center = POS_A_CURRENT_COMP;

this_box_storage.z_depth = zdepth;
this_box_storage.x_width1 = xwidth;
this_box_storage.y_height1 = yheight;

this_box_storage.is_rectangle = 0;
if (xwidth2 < 0 && yheight2 < 0) this_box_storage.is_rectangle = 1;
if (xwidth == xwidth2 && yheight == yheight2) this_box_storage.is_rectangle = 1;

if (xwidth2 < 0) {
    this_box_storage.x_width2 = xwidth;
    xwidth2 = xwidth;
} else this_box_storage.x_width2 = xwidth2;

if (yheight2 < 0) {
    this_box_storage.y_height2 = yheight;
    yheight2 = yheight;
} else this_box_storage.y_height2 = yheight2;


this_box_storage.normal_vectors[0] = coords_set(0,0,1);
this_box_storage.normal_vectors[1] = coords_set(0,0,1);

// for sides with y component = 0
x_component = 2*zdepth/sqrt((xwidth-xwidth2)*(xwidth-xwidth2)+4*zdepth*zdepth);
z_component = (xwidth-xwidth2)/sqrt(4*zdepth*zdepth+(xwidth-xwidth2)*(xwidth-xwidth2));

this_box_storage.normal_vectors[2] = coords_set(x_component,0,z_component);
this_box_storage.normal_vectors[3] = coords_set(-x_component,0,z_component);

// for sides with x component = 0
y_component = 2*zdepth/sqrt((yheight-yheight2)*(yheight-yheight2)+4*zdepth*zdepth);
z_component = (yheight-yheight2)/sqrt(4*zdepth*zdepth+(yheight-yheight2)*(yheight-yheight2));

this_box_storage.normal_vectors[4] = coords_set(0,y_component,z_component);
this_box_storage.normal_vectors[5] = coords_set(0,-y_component,z_component);

this_box_volume.geometry.visualization_on = visualize;

this_box_volume.geometry.geometry_parameters.p_box_storage = &this_box_storage;

// Assign pointers to functions for intersection with the shape, checking if a point is inside the shape
if (this_box_storage.is_rectangle == 1) {
this_box_volume.geometry.intersect_function = &sample_box_intersect_simple;
this_box_volume.geometry.within_function = &r_within_box_simple;
}
else {
this_box_volume.geometry.intersect_function = &sample_box_intersect_advanced;
this_box_volume.geometry.within_function = &r_within_box_advanced;
}

this_box_volume.geometry.shell_points = &box_shell_points;
this_box_volume.geometry.mcdisplay_function = &mcdisplay_box_function;
this_box_volume.geometry.initialize_from_main_function = &initialize_box_geometry_from_main_component;
this_box_volume.geometry.process_rot_allocated = 0;

this_box_volume.geometry.copy_geometry_parameters = &allocate_box_storage_copy;

rot_copy(this_box_volume.geometry.rotation_matrix,ROT_A_CURRENT_COMP); //check how ROT_R_CURRENT_COMP would work
rot_transpose(ROT_A_CURRENT_COMP,this_box_volume.geometry.transpose_rotation_matrix);

// Initialize loggers
this_box_volume.loggers.num_elements = 0;
this_box_volume.abs_loggers.num_elements = 0;

// packing the information into the global_geometry_element, which is then included in the global_geometry_list.
sprintf(global_geometry_element.name,"%s",NAME_CURRENT_COMP);
global_geometry_element.activation_counter = number_of_activations;
global_geometry_element.component_index = INDEX_CURRENT_COMP;
global_geometry_element.Volume = &this_box_volume; // Would be nicer if this m was a pointer, now we have the (small) data two places
//char *test_component;
//char *sigma_name;
//COMP_GETPAR(test_component, sigma_name);
add_element_to_geometry_list(global_geometry_list, global_geometry_element);
%}

TRACE
%{
%}

END