File: Union_logger_2D_space_time.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (776 lines) | stat: -rw-r--r-- 34,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Version: $Revision: 0.1 $
* Origin: University of Copenhagen
*
* Two dimensional spatail logger for a number of time bins
*
* %D
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
* This logger logs a 2D projection of the position of each scattering in the lab
*  frame. Using the time_bins one can select to get this project for different
*  time slots, effectively making a small animation of what happens.
*
* A logger will log something for scattering events happening to certain volumes,
*  which are specified in the target_geometry string. By leaving it blank, all
*  geometries are logged, even the ones not defined at this point in the
*  instrument file. If a list og target_geometries is selected, one can further
*  narrow the events logged by providing a list of process names in target_process
*  which need to correspond with names of defined Union_process components.
*
* To use the logger_conditional_extend function, set it to some integer value n
*  and make and extend section to the master component that runs the geometry.
* In this extend function, logger_conditional_extend[n] is 1 if the conditional
*  stack evaluated to true, 0 if not. This way one can check what rays is logged
*  using regular McStas monitors. Only works if a conditional is applied to this
*  logger.
*
* %P
* INPUT PARAMETERS:
* D_direction_1:        [string] Direction for first axis ("x", "y" or "z")
* D1_max:               [m]      Histogram boundery, max position value for first axis
* D1_min:               [m]      Histogram boundery, min position value for first axis
* n1:                   [1]      Number of bins for first axis
* D_direction_2:        [string] Direction for second axis ("x", "y" or "z")
* D2_max:               [m]      Histogram boundery, max position value for second axis
* D2_min:               [m]      Histogram boundery, min position value for second axis
* n2:                   [1]      Number of bins for second axis
* time_bins:            [1]      Number of time bins
* time_min:             [s]      Minimum time
* time_max:             [s]      Maximum time
* filename:             [string] Filename of produced data file
* target_geometry:      [string] Comma seperated list of geometry names that will be logged, leave empty for all volumes (even not defined yet)
* target_process:       [string] Comma seperated names of physical processes, if volumes are selected, one can select Union_process names
* order_total:          [1]      Only log rays that scatter for the n'th time, 0 for all orders
* order_volume:         [1]      Only log rays that scatter for the n'th time in the same geometry
* order_volume_process: [1]      Only log rays that scatter for the n'th time in the same geometry, using the same process
* logger_conditional_extend_index: [1] If a conditional is used with this logger, the result of each conditional calculation can be made available in extend as a array called "logger_conditional_extend", and one would then acces logger_conditional_extend[n] if logger_conditional_extend_index is set to n
* init:                 [string] Name of Union_init component (typically "init", default)
*
* CALCULATED PARAMETERS:
*
* GLOBAL PARAMETERS:
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT Union_logger_2D_space_time

SETTING PARAMETERS(string target_geometry="NULL",string target_process="NULL",D1_min=-5,D1_max=5,D2_min=-5,D2_max=5,time_min=0,time_max=1,string D_direction_1="x", string D_direction_2="z",string filename="NULL", n1=90, n2=90, time_bins=10, order_total=0,order_volume=0,order_volume_process=0,logger_conditional_extend_index=-1, string init="init")


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Union_logger_2D_space_time component"
#endif

struct temp_2DS_t_data_element_struct {
 int index_1;
 int index_2;
 int index_3;
 double weight;
};

struct temp_2DS_t_data_struct {
  int num_elements;
  int allocated_elements;
  struct temp_2DS_t_data_element_struct *elements;
};

struct a_2DS_t_storage_struct {
  struct Detector_3D_struct Detector_3D;
  struct temp_2DS_t_data_struct temp_2DS_t_data;
  int dim_1_choice;
  int dim_2_choice;
  int dim_3_choice;
  int order;
  int order_in_this_volume;
  int order_process_in_this_volume;
  
  Coords position;
  Rotation rotation;
  Rotation t_rotation;
};

// record_to_temp
// Would be nice if x y z, k_new and k_old were all coords
void record_to_temp_2DS_t(Coords *position, double *k_new, double *k_old, double p, double p_old, double time, int scattered_in_this_volume, int scattered_in_this_volume_by_this_process, int total_number_of_scattering_events, struct logger_struct *logger, struct logger_with_data_struct *logger_with_data_array) {

  struct a_2DS_t_storage_struct *storage;
  storage = logger->data_union.p_2DS_t_storage;
  
  int add_point = 1;

  if (storage->order != 0) {
    if (storage->order - 1 == total_number_of_scattering_events)
      add_point = 1;
    else
      add_point = 0;
  }
  
  if (storage->order_in_this_volume != 0) {
    if (storage->order_in_this_volume - 1 == scattered_in_this_volume)
      add_point = 1;
    else
      add_point = 0;
  }
  
  if (storage->order_process_in_this_volume != 0) {
    if (storage->order_process_in_this_volume - 1 == scattered_in_this_volume_by_this_process)
      add_point = 1;
    else
      add_point = 0;
  }

  if (add_point == 1) {

    double p1,p2;

    // dim_1_choice = 0 for x, 1 for y, 2 for z. Done in initialize from input. "x" "y" "z".
    if (storage->dim_1_choice == 0)
      p1 = position->x - storage->position.x;
    else if (storage->dim_1_choice == 1)
      p1 = position->y - storage->position.y;
    else if (storage->dim_1_choice == 2)
      p1 = position->z - storage->position.z;
    
    if (storage->dim_2_choice == 0)
      p2 = position->x - storage->position.x;
    else if (storage->dim_2_choice == 1)
      p2 = position->y - storage->position.y;
    else if (storage->dim_2_choice == 2)
      p2 = position->z - storage->position.z;
  
    int i,j,k;
  
    // Find bin in histogram
    if (p1>storage->Detector_3D.D1min && p1<storage->Detector_3D.D1max && p2>storage->Detector_3D.D2min && p2<storage->Detector_3D.D2max && time>storage->Detector_3D.D3min && time<storage->Detector_3D.D3max) {
      i = floor((p1 - storage->Detector_3D.D1min)*storage->Detector_3D.bins_1/(storage->Detector_3D.D1max - storage->Detector_3D.D1min));
      j = floor((p2 - storage->Detector_3D.D2min)*storage->Detector_3D.bins_2/(storage->Detector_3D.D2max - storage->Detector_3D.D2min));
      k = floor((time - storage->Detector_3D.D3min)*storage->Detector_3D.bins_3/(storage->Detector_3D.D3max - storage->Detector_3D.D3min));
    

      // Save bin in histogram to temp (may need to allocate more memory)
      int index;
      //printf("number of data points used: %d space allocated for %d data points. \n",storage->temp_2DS_t_data.num_elements,storage->temp_2DS_t_data.allocated_elements);
  
      if (storage->temp_2DS_t_data.num_elements < storage->temp_2DS_t_data.allocated_elements) {
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_1 = k;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_2 = i;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_3 = j;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements++].weight = p;
      } else {
        // No more space, need to allocate a larger buffer for this logger. Wish I had generics.
    
        // copy current data to temp
        struct temp_2DS_t_data_struct temporary_storage;
        temporary_storage.num_elements = storage->temp_2DS_t_data.num_elements;
        temporary_storage.elements = malloc(temporary_storage.num_elements*sizeof(struct temp_2DS_t_data_element_struct));
    
        for (index=0;index<storage->temp_2DS_t_data.num_elements;index++) {
          temporary_storage.elements[index].index_1 = storage->temp_2DS_t_data.elements[index].index_1;
          temporary_storage.elements[index].index_2 = storage->temp_2DS_t_data.elements[index].index_2;
          temporary_storage.elements[index].index_3 = storage->temp_2DS_t_data.elements[index].index_3;
          temporary_storage.elements[index].weight = storage->temp_2DS_t_data.elements[index].weight;
        }
      
        // free current data
        free(storage->temp_2DS_t_data.elements);
    
        // allocate larger array (10 larger)
        storage->temp_2DS_t_data.allocated_elements = 10 + storage->temp_2DS_t_data.num_elements;
        storage->temp_2DS_t_data.elements = malloc(storage->temp_2DS_t_data.allocated_elements*sizeof(struct temp_2DS_t_data_element_struct));
    
        // copy back from temp
        for (index=0;index<storage->temp_2DS_t_data.num_elements;index++) {
          storage->temp_2DS_t_data.elements[index].index_1 = temporary_storage.elements[index].index_1;
          storage->temp_2DS_t_data.elements[index].index_2 = temporary_storage.elements[index].index_2;
          storage->temp_2DS_t_data.elements[index].index_3 = temporary_storage.elements[index].index_3;
          storage->temp_2DS_t_data.elements[index].weight = temporary_storage.elements[index].weight;
        }
    
        // free temporary data
        free(temporary_storage.elements);
    
        // add new data point
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_1 = k;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_2 = i;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements].index_3 = j;
        storage->temp_2DS_t_data.elements[storage->temp_2DS_t_data.num_elements++].weight = p;
      }
  
      // If this is the first time this ray is being recorded in this logger, add it to the list of loggers that write to temp and may get it moved to perm
      if (storage->temp_2DS_t_data.num_elements == 1)
        add_to_logger_with_data(logger_with_data_array,logger);
      
    }
  }
  
}

// clear_temp
void clear_temp_2DS_t(union logger_data_union *data_union) {
  data_union->p_2DS_t_storage->temp_2DS_t_data.num_elements = 0;
}

// record_to_perm
void record_to_perm_2DS_t(Coords *position, double *k_new, double *k_old, double p, double p_old, double time, int scattered_in_this_volume, int scattered_in_this_volume_by_this_process, int total_number_of_scattering_events, struct logger_struct *logger, struct logger_with_data_struct *logger_with_data_array) {
  
  //printf("In record to permanent \n");
  struct a_2DS_t_storage_struct *storage;
  storage = logger->data_union.p_2DS_t_storage;

  int add_point = 1;

  if (storage->order != 0) {
    if (storage->order - 1 == total_number_of_scattering_events)
      add_point = 1;
    else
      add_point = 0;
  }
  
  if (storage->order_in_this_volume != 0) {
    if (storage->order_in_this_volume - 1 == scattered_in_this_volume)
      add_point = 1;
    else
      add_point = 0;
  }
  
  if (storage->order_process_in_this_volume != 0) {
    if (storage->order_process_in_this_volume - 1 == scattered_in_this_volume_by_this_process)
      add_point = 1;
    else
      add_point = 0;
  }

  if (add_point == 1) {
    //printf("storage was set \n");
    double p1,p2;

    // dim_1_choice = 0 for x, 1 for y, 2 for z. Done in initialize from input. "x" "y" "z".
    if (storage->dim_1_choice == 0)
      p1 = position->x - storage->position.x;
      //p1 = position->x;
    else if (storage->dim_1_choice == 1)
      p1 = position->y - storage->position.y;
      //p1 = position->y;
    else if (storage->dim_1_choice == 2)
      p1 = position->z - storage->position.z;
      //p1 = position->z;
    
    if (storage->dim_2_choice == 0)
      p2 = position->x - storage->position.x;
      //p2 = position->x;
    else if (storage->dim_2_choice == 1)
      p2 = position->y - storage->position.y;
      //p2 = position->y;
    else if (storage->dim_2_choice == 2)
      p2 = position->z - storage->position.z;
      //p2 = position->z;
      
  
    int i,j,k;
  
    // Find bin in histogram
    if (p1>storage->Detector_3D.D1min && p1<storage->Detector_3D.D1max && p2>storage->Detector_3D.D2min && p2<storage->Detector_3D.D2max && time>storage->Detector_3D.D3min && time<storage->Detector_3D.D3max) {
      i = floor((p1 - storage->Detector_3D.D1min)*storage->Detector_3D.bins_1/(storage->Detector_3D.D1max - storage->Detector_3D.D1min));
      j = floor((p2 - storage->Detector_3D.D2min)*storage->Detector_3D.bins_2/(storage->Detector_3D.D2max - storage->Detector_3D.D2min));
      k = floor((time - storage->Detector_3D.D3min)*storage->Detector_3D.bins_3/(storage->Detector_3D.D3max - storage->Detector_3D.D3min));
    
    
      //printf("Added to statistics for monitor [%d] [%d] \n",i,j);
      //printf("indicies found\n");
      
      // because of the order in which the elements are laid out in memory, the k index must be first.
      storage->Detector_3D.Array_N[k][i][j]++;
      storage->Detector_3D.Array_p[k][i][j] += p;
      storage->Detector_3D.Array_p2[k][i][j] += p*p;
    }
  }

}

// write_temp_to_perm
void write_temp_to_perm_2DS_t(union logger_data_union *data_union) {

  struct a_2DS_t_storage_struct *storage;
  storage = data_union->p_2DS_t_storage;

  int index;
  // Add all data points to the historgram, they are saved as index / weight combinations
  for (index=0;index<storage->temp_2DS_t_data.num_elements;index++) {
    storage->Detector_3D.Array_N[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3]++;
    
    storage->Detector_3D.Array_p[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3] += storage->temp_2DS_t_data.elements[index].weight;
    
    storage->Detector_3D.Array_p2[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3] += storage->temp_2DS_t_data.elements[index].weight*storage->temp_2DS_t_data.elements[index].weight;
  }
  clear_temp_2DS_t(data_union);
}

// write_temp_to_perm
void write_temp_to_perm_final_p_2DS_t(union logger_data_union *data_union, double final_weight) {

  struct a_2DS_t_storage_struct *storage;
  storage = data_union->p_2DS_t_storage;

  int index;
  // Add all data points to the historgram, they are saved as index / weight combinations
  for (index=0;index<storage->temp_2DS_t_data.num_elements;index++) {
    storage->Detector_3D.Array_N[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3]++;
    
    storage->Detector_3D.Array_p[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3] += final_weight;
    
    storage->Detector_3D.Array_p2[storage->temp_2DS_t_data.elements[index].index_1][storage->temp_2DS_t_data.elements[index].index_2][storage->temp_2DS_t_data.elements[index].index_3] += final_weight;
  }
  clear_temp_2DS_t(data_union);
}

// Only need to define linking function for loggers once.
#ifndef UNION_LOGGER
#define UNION_LOGGER Dummy
// Linking function for loggers, finds the indicies of the specified geometries on the global_geometry_list
void manual_linking_function_logger_volumes(char *input_string, struct pointer_to_global_geometry_list *global_geometry_list, struct pointer_to_1d_int_list *accepted_volumes, char *component_name) {
    // Need to check a input_string of text for an occurance of name. If it is in the inputstring, yes return 1, otherwise 0.
   char *token;
   int loop_index;
   char local_string[512];
   
   strcpy(local_string,input_string);
   // get the first token
   token = strtok(local_string,",");
   
   // walk through other tokens
   while( token != NULL ) 
   {
      //printf( " %s\n", token );
      for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
        if (strcmp(token,global_geometry_list->elements[loop_index].name) == 0) {
          add_element_to_int_list(accepted_volumes,loop_index);
          break;
        }
        
        if (loop_index == global_geometry_list->num_elements - 1) {
          // All possible geometry names have been looked through, and the break was not executed.
          // Alert the user to this problem by showing the geometry name that was not found and the currently available geometires
            printf("\n");
            printf("ERROR: The target_geometry string \"%s\" in Union logger component \"%s\" had an entry that did not match a specified geometry. \n",input_string,component_name);
            printf("       The unrecoignized geometry name was: \"%s\" \n",token);
            printf("       The geometries available at this point (need to be defined before the logger): \n");
            for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++)
              printf("         %s\n",global_geometry_list->elements[loop_index].name);
            exit(1);
        }
      }
      
      // Updates the token
      token = strtok(NULL,",");
   }
}

void manual_linking_function_logger_processes(char *input_string, struct physics_struct *p_physics, struct pointer_to_1d_int_list *accepted_processes, char *component_name, char *Volume_name) {
    // Need to check a input_string of text for an occurance of name. If it is in the inputstring, yes return 1, otherwise 0.
   char *token;
   int loop_index;
   char local_string[256];
   
   strcpy(local_string,input_string);
   // get the first token
   token = strtok(local_string,",");
   
   // walk through other tokens
   while( token != NULL ) 
   {
      //printf( " %s\n", token );
      for (loop_index=0;loop_index<p_physics->number_of_processes;loop_index++) {
        if (strcmp(token,p_physics->p_scattering_array[loop_index].name) == 0) {
          add_element_to_int_list(accepted_processes,loop_index);
          break;
        }
        
        if (loop_index == p_physics->number_of_processes - 1) {
          // All possible process names have been looked through, and the break was not executed.
          // Alert the user to this problem by showing the process name that was not found and the currently available processes
            printf("\n");
            printf("ERROR: The target process string \"%s\" in Union logger \"%s\" had an entry that did not match a specified process in assosiated volume \"%s\". \n",input_string,component_name,Volume_name);
            printf("       The unrecoignized process name was: \"%s\" \n",token);
            printf("       The processes defined in material \"%s\" of which  Volume \"%s\" is made: \n",p_physics->name,Volume_name);
            for (loop_index=0;loop_index<p_physics->number_of_processes;loop_index++)
              printf("         %s\n",p_physics->p_scattering_array[loop_index].name);
            exit(1);
        }
      }
      
      // Updates the token
      token = strtok(NULL,",");
   }
}
#endif

double*** allocate3Ddouble_2DS_t(int count_x, int count_y, int count_z, double *storage) {
   //double *storage = malloc(count_x * count_y * count_z * sizeof(double));
   storage = malloc(count_x * count_y * count_z * sizeof(double));
   double *alloc = storage;
   double ***x;
   int i,j;
   x = malloc(count_x * sizeof(*x));
   for (i = 0; i < count_x; i++) {
     x[i] = malloc(count_y * sizeof(**x));
     for (j = 0; j < count_y; j++) {
       x[i][j] = alloc;
       alloc += count_z;
     }
   }
   return x;
 }

void free3Ddouble_2DS_t(double*** ptr_array, int count_x, double *storage) {
    if (!ptr_array) return;
    int x;
    
    free(storage);
    for (x=0;x<count_x;x++) {
      free(ptr_array[x]);
    }
    free(ptr_array);
}

%}

DECLARE
%{
// From make material
// Needed for transport to the main component
//struct global_material_element_struct global_material_element;
//struct physics_struct this_material;

int loop_index;

int found_process;
int specified_processes;
char local_string[256];

char number_string[16];
char part_filename[256];

// Reused for logger
struct pointer_to_1d_int_list accepted_processes;

struct global_logger_element_struct logger_list_element;

struct pointer_to_1d_int_list accepted_volumes;

struct logger_struct this_logger;
struct a_2DS_t_storage_struct this_storage;

struct loggers_struct *loggers_on_target_volume;
struct Volume_struct *target_volume;

double *storage_N;
double *storage_p;
double *storage_2p;

%}

INITIALIZE
%{

  accepted_processes.elements = NULL;
  accepted_processes.num_elements = 0;

  accepted_volumes.elements = NULL;
  accepted_volumes.num_elements = 0;
  
  // Initialize storage from input
  if (D1_min >= D1_max) {
    printf("ERROR, Union logger \"%s\" had D1_min >= D1_max.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.D1min = D1_min;
  this_storage.Detector_3D.D1max = D1_max;
  
  if (D2_min >= D2_max) {
    printf("ERROR, Union logger \"%s\" had D2_min >= D2_max.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.D2min = D2_min;
  this_storage.Detector_3D.D2max = D2_max;
  
  if (time_min >= time_max) {
    printf("ERROR, Union logger \"%s\" had time_min >= time_max.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.D3min = time_min;
  this_storage.Detector_3D.D3max = time_max;
  
  if (n1 <= 0) {
    printf("ERROR, Union logger \"%s\" had n1 <= 0.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.bins_1 = n1;
  
  if (n2 <= 0) {
    printf("ERROR, Union logger \"%s\" had n2 <= 0.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.bins_2 = n2;
  
  if (time_bins <= 0) {
    printf("ERROR, Union logger \"%s\" had time_bins <= 0.\n",NAME_CURRENT_COMP);
    exit(1);
  }
  this_storage.Detector_3D.bins_3 = time_bins;
  
  //printf("past input sanitation \n");
  
  
  printf("Allocating 3D arrays \n");
  // Remember to take special care when deallocating this array, use free3Ddouble
  
  /*
  this_storage.Detector_3D.Array_N = allocate3Ddouble_2DS_t(n1,n2,time_bins); // Here the n1 double is cast to an int
  this_storage.Detector_3D.Array_p = allocate3Ddouble_2DS_t(n1,n2,time_bins);
  this_storage.Detector_3D.Array_p2 = allocate3Ddouble_2DS_t(n1,n2,time_bins);
  */
  // D3 is in poisition 1, because that gives continous memory in XY plane for easy plotting
  
  
  this_storage.Detector_3D.Array_N = allocate3Ddouble_2DS_t(time_bins,n1,n2,storage_N); // Here the n1 double is cast to an int
  this_storage.Detector_3D.Array_p = allocate3Ddouble_2DS_t(time_bins,n1,n2,storage_p);
  this_storage.Detector_3D.Array_p2 = allocate3Ddouble_2DS_t(time_bins,n1,n2,storage_2p);
  
  /*
  // Error in the order?
  this_storage.Detector_3D.Array_N = allocate3Ddouble_2DS_t(n1,time_bins,n2); // Here the n1 double is cast to an int
  this_storage.Detector_3D.Array_p = allocate3Ddouble_2DS_t(n1,time_bins,n2);
  this_storage.Detector_3D.Array_p2 = allocate3Ddouble_2DS_t(n1,time_bins,n2);
  */
  

  //printf("Allocated 3D arrays \n");
  int l1,l2,l3;
  for (l1=0;l1<n1;l1++) { //n1 is technically a double, but this works fine
    for (l2=0;l2<n2;l2++) {
      for (l3=0;l3<time_bins;l3++) {
      this_storage.Detector_3D.Array_N[l3][l1][l2] = 0;
      this_storage.Detector_3D.Array_p[l3][l1][l2] = 0;
      this_storage.Detector_3D.Array_p2[l3][l1][l2] = 0;
      
      }
    }
  }

  
  //printf("Initialized 3D arrays \n");
  
  //printf("past 3D pointer assignment \n");
  
  // Input sanitation for filename apparently done in 3D_detector_out
  
  if (strcmp(D_direction_1,"x") == 0 || strcmp(D_direction_1,"X") == 0) {
      this_storage.dim_1_choice = 0;
      sprintf(this_storage.Detector_3D.string_axis_1,"x [m]");
      sprintf(this_storage.Detector_3D.title_string,"2D position / time Union logger in plane x");
  } else if (strcmp(D_direction_1,"y") == 0 || strcmp(D_direction_1,"Y") == 0) {
      this_storage.dim_1_choice = 1;
      sprintf(this_storage.Detector_3D.string_axis_1,"y [m]");
      sprintf(this_storage.Detector_3D.title_string,"2D position / time Union logger in plane y");
  } else if (strcmp(D_direction_1,"z") == 0 || strcmp(D_direction_1,"Z") == 0) {
      this_storage.dim_1_choice = 2;
      sprintf(this_storage.Detector_3D.string_axis_1,"z [m]");
      sprintf(this_storage.Detector_3D.title_string,"2D position / time Union logger in plane z");
  } else {
      printf("ERROR, Union logger 2DS_t named \"%s\" has an invalid D_direction_1 string, it should be \"x\",\"y\" or \"z\".\n",NAME_CURRENT_COMP);
      exit(1);
  }
  
  char temp_string[2];
  if (strcmp(D_direction_2,"x") == 0 || strcmp(D_direction_2,"X") == 0) {
      this_storage.dim_2_choice = 0;
      sprintf(this_storage.Detector_3D.string_axis_2,"x [m]");
      sprintf(temp_string,"x");
  } else if (strcmp(D_direction_2,"y") == 0 || strcmp(D_direction_2,"Y") == 0) {
      this_storage.dim_2_choice = 1;
      sprintf(this_storage.Detector_3D.string_axis_2,"y [m]");
      sprintf(temp_string,"y");
  } else if (strcmp(D_direction_2,"z") == 0 || strcmp(D_direction_2,"Z") == 0) {
      this_storage.dim_2_choice = 2;
      sprintf(this_storage.Detector_3D.string_axis_2,"z [m]");
      sprintf(temp_string,"z");
  } else {
      printf("ERROR, Union logger 2DS_t named \"%s\" has an invalid D_direction_2 string, it should be \"x\",\"y\" or \"z\".\n",NAME_CURRENT_COMP);
      exit(1);
  }
  
  strcat(this_storage.Detector_3D.title_string,temp_string); // Connects the title string started in D_direction_1 part with the ending in D_direction_2 part
  
  sprintf(this_storage.Detector_3D.Filename,"%s",filename);
  
  
  this_storage.order = order_total;
  this_storage.order_in_this_volume = order_volume;
  this_storage.order_process_in_this_volume = order_volume_process;
  this_storage.temp_2DS_t_data.num_elements=0;
  this_storage.temp_2DS_t_data.allocated_elements = 10;
  this_storage.temp_2DS_t_data.elements = malloc(this_storage.temp_2DS_t_data.allocated_elements*sizeof(struct temp_2DS_t_data_element_struct));


if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_logger_2D_space_time:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}

struct global_positions_to_transform_list_struct *global_positions_to_transform_list = COMP_GETPAR3(Union_init, init, global_positions_to_transform_list);
  struct global_rotations_to_transform_list_struct *global_rotations_to_transform_list = COMP_GETPAR3(Union_init, init, global_rotations_to_transform_list);
  this_storage.position = POS_A_CURRENT_COMP;
  add_position_pointer_to_list(global_positions_to_transform_list,&this_storage.position);
  
  rot_copy(this_storage.rotation,ROT_A_CURRENT_COMP);
  add_rotation_pointer_to_list(global_rotations_to_transform_list,&this_storage.rotation);
  
  rot_transpose(ROT_A_CURRENT_COMP,this_storage.t_rotation);
  add_rotation_pointer_to_list(global_rotations_to_transform_list,&this_storage.t_rotation);
  
  
  //printf("past direction choices sanitation \n");
  
  // Book keeping
  this_logger.logger_extend_index = logger_conditional_extend_index;
  this_logger.function_pointers.active_record_function = &record_to_perm_2DS_t;  // Assume no conditional
  this_logger.function_pointers.inactive_record_function = &record_to_temp_2DS_t; // If an assume is present, these two pointers are switched
  
  // Temp to perm functions, and standard identifier
  this_logger.function_pointers.select_t_to_p = 1; // 1: temp_to_perm, 2: temp_to_perm_final_p
  this_logger.function_pointers.temp_to_perm = &write_temp_to_perm_2DS_t;
  this_logger.function_pointers.temp_to_perm_final_p = &write_temp_to_perm_final_p_2DS_t;
  this_logger.function_pointers.clear_temp = &clear_temp_2DS_t;
  // Initializing for conditional
  this_logger.conditional_list.num_elements = 0;
  
  //this_logger.function_pointers.perm_to_disk = &write_perm_to_disk_2DS_t; //Obsolete
  
  //printf("past this_logger function assignment \n");
  
  this_logger.data_union.p_2DS_t_storage = &this_storage;
  
  sprintf(this_logger.name,"%s",NAME_CURRENT_COMP);
  
  //printf("past this_logger assignment \n");
  
  sprintf(logger_list_element.name,"%s",NAME_CURRENT_COMP);
  logger_list_element.component_index = INDEX_CURRENT_COMP;
  logger_list_element.logger = &this_logger;
  
  //printf("past logger_list_element assignment \n");
  
  // In order to run the logger at the right times, pointers to this logger is stored in each volume it logs,
  //  and additionally for each avaiable process. If a process is not logged, the pointer is simply not stored.
  struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);
  struct pointer_to_global_logger_list *global_specific_volumes_logger_list = COMP_GETPAR3(Union_init, init, global_specific_volumes_logger_list);
  // Need to find the volumes for which the processes should have a reference to this logger
  if (target_geometry && strlen(target_geometry) && strcmp(target_geometry,"NULL") && strcmp(target_geometry, "0")) {
    // Certain volumes were selected, find the indicies in the global_geometry_list
    manual_linking_function_logger_volumes(target_geometry, global_geometry_list, &accepted_volumes, NAME_CURRENT_COMP);
    // Add this logger to the global_specific_volumes_logger_list (so that conditionals can affect it)
    add_element_to_logger_list(global_specific_volumes_logger_list,logger_list_element);
    
    int process_index;
    for (loop_index=0;loop_index<accepted_volumes.num_elements;loop_index++) {
      target_volume = global_geometry_list->elements[accepted_volumes.elements[loop_index]].Volume;
      // Add an element to its logger list
      add_initialized_logger_in_volume(&target_volume->loggers,target_volume->p_physics->number_of_processes);
    
      if (target_process && strlen(target_process) && strcmp(target_process,"NULL") && strcmp(target_process, "0")) {
        // Unused process pointers should point to NULL
        for (process_index=0;process_index<target_volume->p_physics->number_of_processes;process_index++) {
          target_volume->loggers.p_logger_volume[target_volume->loggers.num_elements-1].p_logger_process[process_index]=NULL;
        }
        // A target_process was set, find it within the volume structure (can be many processes)
        manual_linking_function_logger_processes(target_process, target_volume->p_physics, &accepted_processes, NAME_CURRENT_COMP,target_volume->name);
        for (process_index=0;process_index<accepted_processes.num_elements;process_index++) {
          // Add pointer to this logger for all the accepted processes in this newly added loggers element
          target_volume->loggers.p_logger_volume[target_volume->loggers.num_elements-1].p_logger_process[accepted_processes.elements[process_index]]=&this_logger;
        }
      } else {
        // No target_process was set, attatch the logger to all processes
        for (process_index=0;process_index<target_volume->p_physics->number_of_processes;process_index++) {
          target_volume->loggers.p_logger_volume[target_volume->loggers.num_elements-1].p_logger_process[process_index]=&this_logger;
        }
      }
    }
  } else {
    // Send to global_all_volumes_logger_list
    // Here there is no system for selecting processes as well
    struct pointer_to_global_logger_list *global_all_volume_logger_list = COMP_GETPAR3(Union_init, init, global_all_volume_logger_list);
    add_element_to_logger_list(global_all_volume_logger_list,logger_list_element);
  }
  

 %}

TRACE
%{
%}

SAVE
%{
// Write to disk

for (loop_index=0;loop_index<this_storage.Detector_3D.bins_3;loop_index++) {
  sprintf(number_string,"%d",loop_index);
  sprintf(part_filename,"%s_%s",this_storage.Detector_3D.Filename,number_string);

  DETECTOR_OUT_2D(
   this_storage.Detector_3D.title_string,
   this_storage.Detector_3D.string_axis_1,
   this_storage.Detector_3D.string_axis_2,
   this_storage.Detector_3D.D1min, this_storage.Detector_3D.D1max,
   this_storage.Detector_3D.D2min, this_storage.Detector_3D.D2max,
   this_storage.Detector_3D.bins_1, this_storage.Detector_3D.bins_2,
   &this_storage.Detector_3D.Array_N[loop_index][0][0], &this_storage.Detector_3D.Array_p[loop_index][0][0], &this_storage.Detector_3D.Array_p2[loop_index][0][0],
   part_filename);
}

%}

FINALLY
%{
// Remember to clean up allocated lists
if (this_storage.temp_2DS_t_data.allocated_elements>0) free(this_storage.temp_2DS_t_data.elements);

free3Ddouble_2DS_t(this_storage.Detector_3D.Array_N,time_bins,storage_N);
free3Ddouble_2DS_t(this_storage.Detector_3D.Array_p,time_bins,storage_p);
free3Ddouble_2DS_t(this_storage.Detector_3D.Array_p2,time_bins,storage_2p);

if (accepted_processes.num_elements > 0) free(accepted_processes.elements);
if (accepted_volumes.num_elements > 0) free(accepted_volumes.elements);

%}

END