1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Martin Olsen
* On a template by: Mads Bertelsen
* Date: 17.09.18
* Origin: University of Copenhagen
*
* Component for including 3D mesh in Union geometry
*
* %D
* Part of the Union components, a set of components that work together and thus
* sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
* defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
* The mesh component loads a 3D stl file as the geometry. The mesh geometry
* can not yet be overlapped with the basic geometries (sphere, cylinder, box, cone),
* but can be overlapped with other mesh geometries.
*
* It is allowed to overlap components, but it is not allowed to have two
* parallel planes that coincides. This will crash the code on run time.
*
*
*
* %P
* INPUT PARAMETERS:
* filename: [str] Name of stl file that contains the 3D geometry
* material_string: [string] material name of this volume, defined using Union_make_material
* priority: [1] priotiry of the volume (can not be the same as another volume) A high priority is on top of low.
* p_interact: [1] probability to interact with this geometry [0-1]
* visualize: [1] set to 0 if you wish to hide this geometry in mcdisplay
* number_of_activations: [1] Number of subsequent Union_master components that will simulate this geometry
* mask_string: [string] Comma seperated list of geometry names which this geometry should mask
* mask_setting: [string] "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all.
* target_index: [1] Focuses on component a component this many steps further in the component sequence
* target_x: [m]
* target_y: [m] Position of target to focus at
* target_z: [m]
* focus_aw: [deg] horiz. angular dimension of a rectangular area
* focus_ah: [deg] vert. angular dimension of a rectangular area
* focus_xw: [m] horiz. dimension of a rectangular area
* focus_xh: [m] vert. dimension of a rectangular area
* focus_r: [m] focusing on circle with this radius
* init: [string] name of Union_init component (typically "init", default)
*
* CALCULATED PARAMETERS:
*
* %L
*
* %E
******************************************************************************/
DEFINE COMPONENT Union_mesh
SETTING PARAMETERS(string filename = 0,string material_string=0, priority, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact=0, string mask_string=0, string mask_setting=0,number_of_activations=1, string init="init")
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Union_mesh component"
#endif
Coords get_coords_from_string(char *line){
int i;
// Find index first number
int first_number_index = 0;
int chars_in_line = strlen(line);
//printf("\n length of line = %i",chars_in_line);
for (i=0 ; i < chars_in_line ; i++ ) {
////printf("\n line[%i] = %i",i,line[i]);
if (line[i] > 44 && line[i] < 58 && first_number_index == 0 && line[i-1] == 32) {
first_number_index = i;
i = chars_in_line;
}
}
int space_index[2];
int counter = 0;
// Find index of spaces
for (i=first_number_index ; i < chars_in_line ; i++ ) {
////printf("\n line[%i] = %i",i,line[i]);
if (line[i] == 32) {
space_index[counter] = i;
////printf("\n space_index[%i] = %i",i,space_index[counter]);
counter ++;
}
}
char dest[15];
// Assign x
////printf("\n %s ",line+(first_number_index));
////printf("\n %i ",(space_index[0]-first_number_index));
//strncpy(dest, line+(first_number_index), (space_index[0]-first_number_index));
for (i = 0 ; i < space_index[0]-first_number_index ; i++ ){
dest[i] = line[first_number_index + i];
}
////printf("\n %s ",dest);
double X = atof(dest);
for (i = 0 ; i < space_index[1]-space_index[0] ; i++ ){
dest[i] = line[space_index[0] + 1 + i];
}
////printf("\n %s ",dest);
double Y = atof(dest);
for (i = 0 ; i < chars_in_line-space_index[1] ; i++ ){
dest[i] = line[space_index[1] + i];
//printf("\n Current index is %i, max is %i",space_index[1] + 1 + i,chars_in_line);
}
////printf("\n %s ",dest);
double Z = atof(dest);
Coords fromString = coords_set(X,Y,Z);
return fromString;
};
int coord_comp(Coords A,Coords B) {
if (A.x==B.x && A.y==B.y && A.z==B.z){
return 1;
}
return 0;
};
void mcdisplay_mesh_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) {
// Function to call in mcdisplay section of the sample component for this volume
printf("\nTEST 0");
int n_facets = Geometries[index]->geometry_parameters.p_mesh_storage->n_facets;
double *v1_x = Geometries[index]->geometry_parameters.p_mesh_storage->v1_x;
double *v1_y = Geometries[index]->geometry_parameters.p_mesh_storage->v1_y;
double *v1_z = Geometries[index]->geometry_parameters.p_mesh_storage->v1_z;
double *v2_x = Geometries[index]->geometry_parameters.p_mesh_storage->v2_x;
double *v2_y = Geometries[index]->geometry_parameters.p_mesh_storage->v2_y;
double *v2_z = Geometries[index]->geometry_parameters.p_mesh_storage->v2_z;
double *v3_x = Geometries[index]->geometry_parameters.p_mesh_storage->v3_x;
double *v3_y = Geometries[index]->geometry_parameters.p_mesh_storage->v3_y;
double *v3_z = Geometries[index]->geometry_parameters.p_mesh_storage->v3_z;
Coords center = Geometries[index]->center;
struct lines_to_draw lines_to_draw_temp;
lines_to_draw_temp.number_of_lines = 0;
Coords point1,point2,point3;
int iterate, i,j;
int print1 = 0;
int print2 = 0;
int print3 = 0;
Coords list_startpoints[n_facets*3];
Coords list_endpoints[n_facets*3];
int counter=0;
// For every triangle it should ad three lines
for (iterate=0 ; iterate<n_facets ; iterate++) {
point1 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v1_x+iterate),*(v1_y+iterate),*(v1_z+iterate))),center);
point2 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v2_x+iterate),*(v2_y+iterate),*(v2_z+iterate))),center);
point3 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v3_x+iterate),*(v3_y+iterate),*(v3_z+iterate))),center);
print1 = 1;
print2 = 1;
print3 = 1;
// Make sure it does not print a line if it is already printed.... (might take a while?)
for (i = 0 ; i < counter ; i++){
if (print1 == 1 && coord_comp(point1 , list_startpoints[i])){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point2 , list_startpoints[i])){
print1 = 0;
}
}
}
if (print2 == 1 && coord_comp(point2 , list_startpoints[i])){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point1 , list_startpoints[i])){
print1 = 0;
}
}
}
if (print2 == 1 && coord_comp(point2 , list_startpoints[i]) ){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point3 , list_startpoints[i])){
print2 = 0;
}
}
}
if (print3 == 1 && coord_comp(point3 , list_startpoints[i]) ){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point2 , list_startpoints[i])){
print2 = 0;
}
}
}
if (print1 == 1 && coord_comp(point1 , list_startpoints[i]) ){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point1 , list_startpoints[i])){
print3 = 0;
}
}
}
if (print3 == 1 && coord_comp(point3 , list_startpoints[i])){
for (j = 0 ; j < counter ; j++){
if (coord_comp(point1 , list_startpoints[i])){
print3 = 0;
}
}
}
}
// Create lines
// Line 1
if (print1 == 1){
lines_to_draw_temp = draw_line_with_highest_priority(point1,point2,index,Geometries,number_of_volumes,100);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
list_startpoints[counter] = point1;
list_endpoints[counter] = point2;
counter++;
}
// Line 2
if (print2 == 1){
lines_to_draw_temp = draw_line_with_highest_priority(point2,point3,index,Geometries,number_of_volumes,100);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
list_startpoints[counter] = point2;
list_endpoints[counter] = point3;
counter++;
}
// Line 3
if (print3 == 1){
lines_to_draw_temp = draw_line_with_highest_priority(point3,point1,index,Geometries,number_of_volumes,100);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
list_startpoints[counter] = point3;
list_endpoints[counter] = point1;
counter++;
}
}
};
void initialize_mesh_geometry_from_main_component(struct geometry_struct *mesh) {
// Function to be called in initialize of the main component
// This is done as the rotation matrix needs to be relative to the main component instead of global
// Everything done in initialize in this component file has the rotation matrix relative to global
Coords simple_vector;
Coords mesh_vector;
// Start with vector that points along the mesh in the local frame
simple_vector = coords_set(0,1,0);
// Rotate the direction vector of the mesh to the master component frame of reference
mesh_vector = rot_apply(mesh->rotation_matrix,simple_vector);
NORM(mesh_vector.x,mesh_vector.y,mesh_vector.z);
mesh->geometry_parameters.p_mesh_storage->direction_vector.x = mesh_vector.x;
mesh->geometry_parameters.p_mesh_storage->direction_vector.y = mesh_vector.y;
mesh->geometry_parameters.p_mesh_storage->direction_vector.z = mesh_vector.z;
// if (verbal == 1) printf("Cords vector1 = (%f,%f,%f)\n",mesh_vector.x,mesh_vector.y,
mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center = rot_apply(mesh->rotation_matrix, mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center);
/*
// Works for pure translation
print_position(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, "BB before adjustment");
mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center = coords_add(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, mesh->center);
print_position(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, "BB after adjustment");
*/
}
struct pointer_to_1d_coords_list mesh_shell_points(struct geometry_struct *geometry,int max_number_of_points) {
// Function that returns a number (less than max) of points on the geometry surface
// Run trhough all points in list of faces, and remove dublicates
// There are three points in a face and very often these will be dublicated a few times. This removes dublicates to boost performance down stream...
struct pointer_to_1d_coords_list mesh_shell_array;
int n_facets = geometry->geometry_parameters.p_mesh_storage->n_facets;
double *v1_x = geometry->geometry_parameters.p_mesh_storage->v1_x;
double *v1_y = geometry->geometry_parameters.p_mesh_storage->v1_y;
double *v1_z = geometry->geometry_parameters.p_mesh_storage->v1_z;
double *v2_x = geometry->geometry_parameters.p_mesh_storage->v2_x;
double *v2_y = geometry->geometry_parameters.p_mesh_storage->v2_y;
double *v2_z = geometry->geometry_parameters.p_mesh_storage->v2_z;
double *v3_x = geometry->geometry_parameters.p_mesh_storage->v3_x;
double *v3_y = geometry->geometry_parameters.p_mesh_storage->v3_y;
double *v3_z = geometry->geometry_parameters.p_mesh_storage->v3_z;
int number_of_points_in_array = 0;
mesh_shell_array.elements = malloc(3*n_facets * sizeof(Coords));
int is_dublicate = 0;
Coords this_vert;
int i,j;
printf("\n CREATE SHELL POINTS");
printf("\n n_verts (likely dublicated) = %i",n_facets*3);
for (i=0 ; i < n_facets ; i++){
// v1
is_dublicate = 0;
this_vert = coords_set(*(v1_x+i),*(v1_y+i),*(v1_z+i));
//printf("\n this point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
// test if dublicate
for (j = 0; j < number_of_points_in_array ; j++ ){
if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
is_dublicate = 1;
//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
j = number_of_points_in_array;
}
}
if (is_dublicate == 0){
mesh_shell_array.elements[number_of_points_in_array] = this_vert;
number_of_points_in_array += 1;
//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
}
// v2
is_dublicate = 0;
this_vert = coords_set(*(v2_x+i),*(v2_y+i),*(v2_z+i));
// test if dublicate
for (j = 0; j < number_of_points_in_array ; j++){
if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
is_dublicate = 1;
//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
j = number_of_points_in_array;
}
}
if (is_dublicate == 0){
mesh_shell_array.elements[number_of_points_in_array] = this_vert;
number_of_points_in_array += 1;
//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
}
// v3
is_dublicate = 0;
this_vert = coords_set(*(v3_x+i),*(v3_y+i),*(v3_z+i));
// test if dublicate
for (j = 0; j < number_of_points_in_array ; j++ ){
if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
is_dublicate = 1;
//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
j = number_of_points_in_array;
}
}
if (is_dublicate == 0){
mesh_shell_array.elements[number_of_points_in_array] = this_vert;
number_of_points_in_array += 1;
//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
}
}
printf("\n test is there to high j? j = %i, number_of_points_in_array = %i , lenght of array = %i ",j,number_of_points_in_array,3*n_facets * sizeof(Coords));
j = number_of_points_in_array - 1; // Last legal index, currently j is out of bounds.
printf("\n test= [%f,%f,%f]",mesh_shell_array.elements[j].x ,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
mesh_shell_array.num_elements = number_of_points_in_array;
//free(mesh_shell_array.elements);
printf("\n SHELL POINTS: DONE");
printf("\n SHELL POINTS: created %i shell points in mesh",mesh_shell_array.num_elements);
//printf("\n test last element = [%f,%f,%f]",mesh_shell_array.elements[mesh_shell_array.num_elements-1].x ,mesh_shell_array.elements[mesh_shell_array.num_elements-1].y,mesh_shell_array.elements[mesh_shell_array.num_elements-1].z);
return mesh_shell_array;
}
#ifndef ANY_GEOMETRY_DETECTOR_DECLARE
#define ANY_GEOMETRY_DETECTOR_DECLARE dummy
//struct pointer_to_global_geometry_list global_geometry_list = {0,NULL};
#endif
%}
DECLARE
%{
// Needed for transport to the main component
//
struct global_geometry_element_struct global_geometry_element;
int loop_index;
int loop_2_index;
int material_index;
struct Volume_struct this_mesh_volume;
struct mesh_storage this_mesh_storage;
%}
INITIALIZE
%{
// Initializes the focusing system for this volume including input sanitation.
focus_initialize(&this_mesh_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP);
if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_mesh:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
struct pointer_to_global_material_list *global_material_list = COMP_GETPAR3(Union_init, init, global_material_list);
// Use sanitation
#ifdef MATERIAL_DETECTOR
if (global_material_list->num_elements == 0) {
// Here if the user have defined a material, but only after this material
printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
printf(" %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP);
exit(1);
}
#endif
#ifndef MATERIAL_DETECTOR
printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
exit(1);
#endif
this_mesh_volume.geometry.is_masked_volume = 0;
this_mesh_volume.geometry.is_exit_volume = 0;
this_mesh_volume.geometry.is_mask_volume = 0;
struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);
// Read the material input, or if it lacks, use automatic linking.
if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) {
// A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string.
// In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume.
// When more than
this_mesh_volume.geometry.mask_mode = 1; // Default mask mode is ALL
if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) {
if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_mesh_volume.geometry.mask_mode = 1;
else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_mesh_volume.geometry.mask_mode = 2;
else {
printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting);
exit(1);
}
}
int found_geometries = 0;
for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
// Add mask list
if (1 == manual_linking_function(global_geometry_list->elements[loop_index].name,mask_string)) {
add_element_to_int_list(&this_mesh_volume.geometry.mask_list,global_geometry_list->elements[loop_index].component_index);
add_element_to_int_list(&global_geometry_list->elements[loop_index].Volume->geometry.masked_by_list,INDEX_CURRENT_COMP);
global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume = 1;
if (this_mesh_volume.geometry.mask_mode == 2)
global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 2;
if (this_mesh_volume.geometry.mask_mode == 1) {
if (global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list->elements[loop_index].Volume->geometry.mask_mode != 2)
// If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode.
global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 1;
}
found_geometries = 1;
}
}
if (found_geometries == 0) {
printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string);
exit(1);
}
this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
this_mesh_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum
this_mesh_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
this_mesh_volume.p_physics->my_a = 0; // Should not be used.
sprintf(this_mesh_volume.p_physics->name,"Mask");
this_mesh_volume.geometry.is_mask_volume = 1;
// Read the material input, or if it lacks, use automatic linking.
} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) {
// A geometry string was given, use it to determine which material
if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) {
// One could have a global physics struct for vacuum instead of creating one for each
this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
this_mesh_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
this_mesh_volume.p_physics->number_of_processes = (int) 0;
this_mesh_volume.p_physics->my_a = 0; // Should not be used.
sprintf(this_mesh_volume.p_physics->name,"Vacuum");
} else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) {
// One could have a global physics struct for exit instead of creating one for each
this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
this_mesh_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
this_mesh_volume.p_physics->number_of_processes = (int) 0;
this_mesh_volume.p_physics->my_a = 0; // Should not be used.
this_mesh_volume.geometry.is_exit_volume = 1;
sprintf(this_mesh_volume.p_physics->name,"Exit");
} else {
for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++) {
if (0 == strcmp(material_string,global_material_list->elements[loop_index].name)) {
this_mesh_volume.p_physics = global_material_list->elements[loop_index].physics;
break;
}
if (loop_index == global_material_list->num_elements-1) {
printf("\n");
printf("ERROR: The material string \"%s\" in Union geometry \"%s\" did not match a specified material. \n",material_string,NAME_CURRENT_COMP);
printf(" The materials available at this point (need to be defined before the geometry): \n");
for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++)
printf(" %s\n",global_material_list->elements[loop_index].name);
printf("\n");
printf(" It is also possible to use one of the defualt materials avaiable: \n");
printf(" Vacuum (for a Volume without scattering or absorption)\n");
printf(" Exit (for a Volume where the ray exits the component if it enters)\n");
printf(" Mask (for a Volume that masks existing volumes specified in the mask_string\n");
exit(1);
}
}
}
} else {
// Automatic linking, simply using the last defined material.
#ifndef MATERIAL_DETECTOR
printf("Need to define a material before the geometry to use automatic linking %s.\n",NAME_CURRENT_COMP);
exit(1);
#endif
this_mesh_volume.p_physics = global_material_list->elements[global_material_list->num_elements-1].physics;
}
// Read input file and put into storage
// test 2
printf("\n START read file: ");
//char *filename = "text.stl";
FILE *fp;
fp = fopen(filename,"r");
int n_lines;
char buffer[250];
printf("\n test1");
n_lines = 0;
while (fgets(buffer, sizeof buffer, fp)) {
++n_lines;
}
fclose(fp);
printf("\n n_lines: %i",n_lines);
printf("\n n_facets: %i",(n_lines-2)/7);
int n_facets = (n_lines-2)/7;
printf("\n done");
//printf("\n n_facets: %i",n_facets);
char *line = NULL;
size_t len = 0;
char dest[9]; // 8 chars + terminator
int iter = 0; int counter = 0;
ssize_t read;
Coords normal[n_facets+1];
Coords v1[n_facets+1];
Coords v2[n_facets+1];
Coords v3[n_facets+1];
//#include "MeshFunctions/get_coords_from_string.c"
printf("\nTEST n_facets = %i\n",n_facets);
Coords fromString;
fp = fopen(filename, "r");
if (fp == NULL)
exit(EXIT_FAILURE);
while ((read = getline(&line, &len, fp)) != -1) {
//printf("______________________-----NEW------_____________________\n");
//printf("%s\n", line);
if (iter==1){
if (line[0] == 101){
//printf("\nDone reading file\n");
}else{
// Normal vector
fromString = get_coords_from_string(line);
normal[counter]=fromString;
//printf("\n normal: [%i]: normal[%i] = [%f,%f,%f] \n",iter,counter,normal[counter].x,normal[counter].y,normal[counter].z);
}
}
if (iter==3){
fromString = get_coords_from_string(line);
v1[counter]=fromString;
//printf("\n v1 [%i]: v1[%i] = [%f,%f,%f] \n",iter,counter,v1[counter].x,v1[counter].y,v1[counter].z);
}
if (iter==4){
fromString = get_coords_from_string(line);
v2[counter]=fromString;
//printf("\n v2 [%i]: v2[%i] = [%f,%f,%f] \n",iter,counter,v2[counter].x,v2[counter].y,v2[counter].z);
}
if (iter==5){
fromString = get_coords_from_string(line);
v3[counter]=fromString;
//printf("\n v3 [%i]: v3[%i] = [%f,%f,%f] \n",iter,counter,v3[counter].x,v3[counter].y,v3[counter].z);
}
if (iter==7){
iter = 0;
counter ++;
}
//printf("\n TESTTESTTEST: [%f,%f,%f] \n",this_mesh_storage.poligon_list[counter].normal.x,this_mesh_storage.poligon_list[counter].normal.y,this_mesh_storage.poligon_list[counter].normal.z);
iter++;
}
fclose(fp);
int i;
// Transform coordinate (translate then rotate)
printf("\n\nPOS_A_CURRENT_COMP [%f,%f,%f]",POS_A_CURRENT_COMP.x,POS_A_CURRENT_COMP.y,POS_A_CURRENT_COMP.z);
for (i = 0 ; i < counter ; i++ ){
// run through existing arrays without creating new ones. This is a very bad habbit! PLZ fix
/*
// v1
v1[i].x = v1[i].x + POS_A_CURRENT_COMP.x;
v1[i].y = v1[i].y + POS_A_CURRENT_COMP.y;
v1[i].z = v1[i].z + POS_A_CURRENT_COMP.z;
//v1[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v1[i]);
// v2
v2[i].x = v2[i].x + POS_A_CURRENT_COMP.x;
v2[i].y = v2[i].y + POS_A_CURRENT_COMP.y;
v2[i].z = v2[i].z + POS_A_CURRENT_COMP.z;
//v2[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v2[i]);
// v3
v3[i].x = v3[i].x + POS_A_CURRENT_COMP.x;
v3[i].y = v3[i].y + POS_A_CURRENT_COMP.y;
v3[i].z = v3[i].z + POS_A_CURRENT_COMP.z;
//v3[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v3[i]);
*/
/*
// v1
v1[i].x = v1[i].x + POS_A_CURRENT_COMP.x;
v1[i].y = v1[i].y + POS_A_CURRENT_COMP.y;
v1[i].z = v1[i].z + POS_A_CURRENT_COMP.z;
//v1[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v1[i]);
// v2
v2[i].x = v2[i].x + POS_A_CURRENT_COMP.x;
v2[i].y = v2[i].y + POS_A_CURRENT_COMP.y;
v2[i].z = v2[i].z + POS_A_CURRENT_COMP.z;
//v2[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v2[i]);
// v3
v3[i].x = v3[i].x + POS_A_CURRENT_COMP.x;
v3[i].y = v3[i].y + POS_A_CURRENT_COMP.y;
v3[i].z = v3[i].z + POS_A_CURRENT_COMP.z;
*/
}
printf("\n TEST inf v1 is long enough! i = %i , n_facets = %i, counter = %i \n",i,n_facets,counter);
// Create bounding sphere using Ritter [https://en.wikipedia.org/wiki/Bounding_sphere#cite_note-Ritter1990-2]
// Ritter, Jack (1990), "An efficient bounding sphere", in Glassner, Andrew S., Graphics Gems, San Diego, CA, US: Academic Press Professional, Inc., pp. 301–303, ISBN 0-12-286166-3
double max_dist=0;
Coords B_sphere_x = v1[0];
Coords B_sphere_y = B_sphere_x ;
for (i = 1 ; i < counter ; i++ ){
if (sqrt(v1[0].x-v1[i].x+v1[0].y-v1[i].y+v1[0].z-v1[i].z) > max_dist){
max_dist = sqrt(v1[0].x-v1[i].x+v1[0].y-v1[i].y+v1[0].z-v1[i].z);
B_sphere_y = v1[i];
}
if (sqrt(v1[0].x-v2[i].x+v1[0].y-v2[i].y+v1[0].z-v2[i].z) > max_dist){
max_dist = sqrt(v1[0].x-v2[i].x+v1[0].y-v2[i].y+v1[0].z-v2[i].z);
B_sphere_y = v2[i];
}
if (sqrt(v1[0].x-v3[i].x+v1[0].y-v3[i].y+v1[0].z-v3[i].z) > max_dist){
max_dist = sqrt(v1[0].x-v3[i].x+v1[0].y-v3[i].y+v1[0].z-v3[i].z);
B_sphere_y = v3[i];
}
}
Coords B_sphere_z = B_sphere_y ;
max_dist=0;
for (i = 1 ; i < counter ; i++ ){
if (sqrt(pow(B_sphere_y.x-v1[i].x,2) + pow(B_sphere_y.y-v1[i].y,2) + pow(B_sphere_y.z-v1[i].z,2)) > max_dist){
max_dist = sqrt(pow(B_sphere_y.x-v1[i].x,2) + pow(B_sphere_y.y-v1[i].y,2) + pow(B_sphere_y.z-v1[i].z,2));
B_sphere_z = v1[i];
}
if (sqrt(pow(B_sphere_y.x-v2[i].x,2) + pow(B_sphere_y.y-v2[i].y,2) + pow(B_sphere_y.z-v2[i].z,2)) > max_dist){
max_dist = sqrt(pow(B_sphere_y.x-v2[i].x,2) + pow(B_sphere_y.y-v2[i].y,2) + pow(B_sphere_y.z-v2[i].z,2));
B_sphere_z = v2[i];
}
if (sqrt(pow(B_sphere_y.x-v3[i].x,2) + pow(B_sphere_y.y-v3[i].y,2) + pow(B_sphere_y.z-v3[i].z,2)) > max_dist){
max_dist = sqrt(pow(B_sphere_y.x-v3[i].x,2) + pow(B_sphere_y.y-v3[i].y,2) + pow(B_sphere_y.z-v3[i].z,2));
B_sphere_z = v3[i];
}
}
double tmp_Radius = sqrt(pow(B_sphere_y.x-B_sphere_z.x,2.0) + pow(B_sphere_y.y-B_sphere_z.y,2.0) + pow(B_sphere_y.z-B_sphere_z.z,2.0))/2;
Coords bbcenter = coords_set((B_sphere_y.x+B_sphere_z.x)/2 , (B_sphere_y.y+B_sphere_z.y)/2 , (B_sphere_y.z+B_sphere_z.z)/2);
this_mesh_storage.Bounding_Box_Center = bbcenter;
for (i = 0 ; i < counter ; i++ ){
if (sqrt(pow(bbcenter.x-v1[i].x,2.0) + pow(bbcenter.y-v1[i].y,2.0) + pow(bbcenter.z-v1[i].z,2.0)) > tmp_Radius){
tmp_Radius = sqrt(pow(bbcenter.x-v1[i].x,2.0) + pow(bbcenter.y-v1[i].y,2.0) + pow(bbcenter.z-v1[i].z,2.0));
}
if (sqrt(pow(bbcenter.x-v2[i].x,2.0) + pow(bbcenter.y-v2[i].y,2.0) + pow(bbcenter.z-v2[i].z,2.0)) > tmp_Radius){
tmp_Radius = sqrt(pow(bbcenter.x-v2[i].x,2.0) + pow(bbcenter.y-v2[i].y,2.0) + pow(bbcenter.z-v2[i].z,2.0));
}
if (sqrt(pow(bbcenter.x-v3[i].x,2.0) + pow(bbcenter.y-v3[i].y,2.0) + pow(bbcenter.z-v3[i].z,2.0)) > tmp_Radius){
tmp_Radius = sqrt(pow(bbcenter.x-v3[i].x,2.0) + pow(bbcenter.y-v3[i].y,2.0) + pow(bbcenter.z-v3[i].z,2.0));
}
}
this_mesh_storage.Bounding_Box_Radius = tmp_Radius;
printf("\n__________________________________\n BOUNDING BOX: \n\t Center = [%f , %f , %f]\n\t Radius = %f\n__________________________________\n", this_mesh_storage.Bounding_Box_Center.x,this_mesh_storage.Bounding_Box_Center.y,this_mesh_storage.Bounding_Box_Center.z,this_mesh_storage.Bounding_Box_Radius);
// Convert to double arrays for further parsing (Coord has problems here - might be possible to do much faster!!)
// Seriously not optimal... plz fix
double v1_x[counter];
double v1_y[counter];
double v1_z[counter];
double v2_x[counter];
double v2_y[counter];
double v2_z[counter];
double v3_x[counter];
double v3_y[counter];
double v3_z[counter];
double normal_x[counter];
double normal_y[counter];
double normal_z[counter];
for (i = 0 ; i < counter ; i++ ){
/*
v1_x[i] = v1[i].x;
v1_y[i] = v1[i].y;
v1_z[i] = v1[i].z;
v2_x[i] = v2[i].x;
v2_y[i] = v2[i].y;
v2_z[i] = v2[i].z;
v3_x[i] = v3[i].x;
v3_y[i] = v3[i].y;
v3_z[i] = v3[i].z;
normal_x[i] = normal[i].x;
normal_y[i] = normal[i].y;
normal_z[i] = normal[i].z;
*/
this_mesh_storage.v1_x[i] = v1[i].x;
this_mesh_storage.v1_y[i] = v1[i].y;
this_mesh_storage.v1_z[i] = v1[i].z;
this_mesh_storage.v2_x[i] = v2[i].x;
this_mesh_storage.v2_y[i] = v2[i].y;
this_mesh_storage.v2_z[i] = v2[i].z;
this_mesh_storage.v3_x[i] = v3[i].x;
this_mesh_storage.v3_y[i] = v3[i].y;
this_mesh_storage.v3_z[i] = v3[i].z;
this_mesh_storage.normal_x[i] = normal[i].x;
this_mesh_storage.normal_y[i] = normal[i].y;
this_mesh_storage.normal_z[i] = normal[i].z;
//printf("\n v2 [%i]: v2[%i] = [%f,%f,%f] \n",iter,v2_x[i],v2_y[i],v2_z[i]);
}
// check if this is a cylinder and add coordinates of tip if it is a mesh
this_mesh_storage.counter = counter;
this_mesh_storage.n_facets = n_facets;
sprintf(this_mesh_volume.name,"%s",NAME_CURRENT_COMP);
sprintf(this_mesh_volume.geometry.shape,"mesh");
this_mesh_volume.geometry.priority_value = priority;
// Currently the coordinates will be in absolute space.
this_mesh_volume.geometry.center = POS_A_CURRENT_COMP;
this_mesh_volume.geometry.geometry_p_interact = p_interact;
this_mesh_volume.geometry.visualization_on = visualize;
this_mesh_volume.geometry.geometry_parameters.p_mesh_storage = &this_mesh_storage;
this_mesh_volume.geometry.within_function = &r_within_mesh;
this_mesh_volume.geometry.intersect_function = &sample_mesh_intersect;
this_mesh_volume.geometry.mcdisplay_function = &mcdisplay_mesh_function;
this_mesh_volume.geometry.shell_points = &mesh_shell_points;
this_mesh_volume.geometry.initialize_from_main_function = &initialize_mesh_geometry_from_main_component;
this_mesh_volume.geometry.process_rot_allocated = 0;
this_mesh_volume.geometry.copy_geometry_parameters = &allocate_mesh_storage_copy;
rot_copy(this_mesh_volume.geometry.rotation_matrix,ROT_A_CURRENT_COMP);
rot_transpose(ROT_A_CURRENT_COMP,this_mesh_volume.geometry.transpose_rotation_matrix);
// Initialize loggers
this_mesh_volume.loggers.num_elements = 0;
// packing the information into the global_geometry_element, which is then included in the global_geometry_list.
sprintf(global_geometry_element.name,"%s",NAME_CURRENT_COMP);
global_geometry_element.activation_counter = number_of_activations;
global_geometry_element.component_index = INDEX_CURRENT_COMP;
global_geometry_element.Volume = &this_mesh_volume; // Would be nicer if this m was a pointer, now we have the (small) data two places
add_element_to_geometry_list(global_geometry_list,global_geometry_element);
%}
TRACE
%{
%}
END
|