File: Union_mesh.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (838 lines) | stat: -rw-r--r-- 34,248 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Martin Olsen
* On a template by: Mads Bertelsen
* Date: 17.09.18
* Origin: University of Copenhagen
*
* Component for including 3D mesh in Union geometry
*
* %D
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union_components
*
* The mesh component loads a 3D stl file as the geometry. The mesh geometry
* can not yet be overlapped with the basic geometries (sphere, cylinder, box, cone),
* but can be overlapped with other mesh geometries.
*
* It is allowed to overlap components, but it is not allowed to have two
*  parallel planes that coincides. This will crash the code on run time.
*
*
*
* %P
* INPUT PARAMETERS:
* filename: [str] Name of stl file that contains the 3D geometry
* material_string: [string]  material name of this volume, defined using Union_make_material
* priority:   [1]  priotiry of the volume (can not be the same as another volume) A high priority is on top of low.
* p_interact: [1]  probability to interact with this geometry [0-1]
* visualize:  [1]  set to 0 if you wish to hide this geometry in mcdisplay
* number_of_activations: [1]  Number of subsequent Union_master components that will simulate this geometry
* mask_string: [string]      Comma seperated list of geometry names which this geometry should mask
* mask_setting: [string]     "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all.
* target_index:  [1]    Focuses on component a component this many steps further in the component sequence
* target_x:      [m]
* target_y:      [m] Position of target to focus at
* target_z:      [m]
* focus_aw:      [deg] horiz. angular dimension of a rectangular area
* focus_ah:      [deg] vert. angular dimension of a rectangular area
* focus_xw:      [m]   horiz. dimension of a rectangular area
* focus_xh:      [m]   vert. dimension of a rectangular area
* focus_r:       [m]   focusing on circle with this radius
* init:          [string] name of Union_init component (typically "init", default)
*
* CALCULATED PARAMETERS:
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT Union_mesh

SETTING PARAMETERS(string filename = 0,string material_string=0, priority, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact=0, string mask_string=0, string mask_setting=0,number_of_activations=1, string init="init")


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Union_mesh component"
#endif



Coords get_coords_from_string(char *line){

int i;

// Find index first number
int first_number_index = 0;
int chars_in_line = strlen(line);
//printf("\n length of line = %i",chars_in_line);

for (i=0 ; i < chars_in_line ; i++ ) {
    ////printf("\n line[%i] = %i",i,line[i]);
    if (line[i] > 44 && line[i] < 58 && first_number_index == 0 && line[i-1] == 32) {
        first_number_index = i;
        i = chars_in_line;
    }
}

int space_index[2];
int counter = 0;
// Find index of spaces
for (i=first_number_index ; i < chars_in_line ; i++ ) {
    ////printf("\n line[%i] = %i",i,line[i]);
    if (line[i] == 32) {
        space_index[counter] = i;
        ////printf("\n space_index[%i] = %i",i,space_index[counter]);
        counter ++;
    }

}

char dest[15];

// Assign x
////printf("\n %s ",line+(first_number_index));
////printf("\n %i ",(space_index[0]-first_number_index));
//strncpy(dest, line+(first_number_index), (space_index[0]-first_number_index));
for (i = 0 ; i < space_index[0]-first_number_index ; i++ ){
    dest[i] = line[first_number_index + i];
}
////printf("\n %s ",dest);
double X = atof(dest);

for (i = 0 ; i < space_index[1]-space_index[0] ; i++ ){
    dest[i] = line[space_index[0] + 1 + i];
}
////printf("\n %s ",dest);
double Y = atof(dest);


for (i = 0 ; i < chars_in_line-space_index[1] ; i++ ){
    dest[i] = line[space_index[1]  + i];
    //printf("\n Current index is %i, max is %i",space_index[1] + 1 + i,chars_in_line);
}
////printf("\n %s ",dest);
double Z = atof(dest);

Coords fromString = coords_set(X,Y,Z);

return fromString;

};

int coord_comp(Coords A,Coords B) {
    if (A.x==B.x && A.y==B.y && A.z==B.z){
        return 1;
    }
    return 0;
};



void mcdisplay_mesh_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) {
    // Function to call in mcdisplay section of the sample component for this volume

    printf("\nTEST 0");
    int n_facets = Geometries[index]->geometry_parameters.p_mesh_storage->n_facets;
	double *v1_x = Geometries[index]->geometry_parameters.p_mesh_storage->v1_x;
	double *v1_y = Geometries[index]->geometry_parameters.p_mesh_storage->v1_y;
	double *v1_z = Geometries[index]->geometry_parameters.p_mesh_storage->v1_z;
	double *v2_x = Geometries[index]->geometry_parameters.p_mesh_storage->v2_x;
	double *v2_y = Geometries[index]->geometry_parameters.p_mesh_storage->v2_y;
	double *v2_z = Geometries[index]->geometry_parameters.p_mesh_storage->v2_z;
	double *v3_x = Geometries[index]->geometry_parameters.p_mesh_storage->v3_x;
	double *v3_y = Geometries[index]->geometry_parameters.p_mesh_storage->v3_y;
	double *v3_z = Geometries[index]->geometry_parameters.p_mesh_storage->v3_z;

    Coords center = Geometries[index]->center;

    struct lines_to_draw lines_to_draw_temp;
    lines_to_draw_temp.number_of_lines = 0;
    
    Coords point1,point2,point3;
    int iterate, i,j;
    int print1 = 0;
    int print2 = 0;
    int print3 = 0;

    Coords list_startpoints[n_facets*3];
    Coords list_endpoints[n_facets*3];

	int counter=0;
    // For every triangle it should ad three lines    
    for (iterate=0 ; iterate<n_facets ; iterate++) {
        point1 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v1_x+iterate),*(v1_y+iterate),*(v1_z+iterate))),center);
        point2 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v2_x+iterate),*(v2_y+iterate),*(v2_z+iterate))),center);
	    point3 = coords_add(rot_apply(Geometries[index]->rotation_matrix,coords_set(*(v3_x+iterate),*(v3_y+iterate),*(v3_z+iterate))),center);

	    print1 = 1;
    	print2 = 1;
    	print3 = 1;
	
	// Make sure it does not print a line if it is already printed.... (might take a while?)
	for (i = 0 ; i < counter ; i++){
		if (print1 == 1 && coord_comp(point1 , list_startpoints[i])){
			for (j = 0 ; j < counter  ; j++){
				if (coord_comp(point2 , list_startpoints[i])){
					print1 = 0;
				}
			}
		}
		if (print2 == 1 && coord_comp(point2 , list_startpoints[i])){
			for (j = 0 ; j < counter  ; j++){
				if (coord_comp(point1 , list_startpoints[i])){
					print1 = 0;
				}
			}
		}
		if (print2 == 1 && coord_comp(point2 , list_startpoints[i]) ){
			for (j = 0 ; j < counter  ; j++){
				if (coord_comp(point3 , list_startpoints[i])){
					print2 = 0;
				}
			}
		}
		if (print3 == 1 && coord_comp(point3 , list_startpoints[i]) ){
			for (j = 0 ; j < counter  ; j++){
				if (coord_comp(point2 , list_startpoints[i])){
					print2 = 0;
				}
			}
		}
		if (print1 == 1 && coord_comp(point1 , list_startpoints[i]) ){
			for (j = 0 ; j < counter ; j++){
				if (coord_comp(point1 , list_startpoints[i])){
					print3 = 0;
				}
			}
		}
		if (print3 == 1 && coord_comp(point3 , list_startpoints[i])){
			for (j = 0 ; j < counter  ; j++){
				if (coord_comp(point1 , list_startpoints[i])){
					print3 = 0;
				}
			}
		}

	}
	
	
	// Create lines	
	// Line 1
	if (print1 == 1){
		lines_to_draw_temp = draw_line_with_highest_priority(point1,point2,index,Geometries,number_of_volumes,100);
		merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
		list_startpoints[counter] = point1;
		list_endpoints[counter] = point2;
		counter++;
	}
	// Line 2
	if (print2 == 1){
		lines_to_draw_temp = draw_line_with_highest_priority(point2,point3,index,Geometries,number_of_volumes,100);
		merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
		list_startpoints[counter] = point2;
		list_endpoints[counter] = point3;
		counter++;
	}
	// Line 3
	if (print3 == 1){
		lines_to_draw_temp = draw_line_with_highest_priority(point3,point1,index,Geometries,number_of_volumes,100);
	 	merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
		list_startpoints[counter] = point3;
		list_endpoints[counter] = point1;
		counter++;
	}
	
    }
};

void initialize_mesh_geometry_from_main_component(struct geometry_struct *mesh) {
    // Function to be called in initialize of the main component
    // This is done as the rotation matrix needs to be relative to the main component instead of global
    // Everything done in initialize in this component file has the rotation matrix relative to global
    
    Coords simple_vector;
    Coords mesh_vector;
    
    // Start with vector that points along the mesh in the local frame
    simple_vector = coords_set(0,1,0);

    // Rotate the direction vector of the mesh to the master component frame of reference
    mesh_vector = rot_apply(mesh->rotation_matrix,simple_vector);
    NORM(mesh_vector.x,mesh_vector.y,mesh_vector.z);
    mesh->geometry_parameters.p_mesh_storage->direction_vector.x = mesh_vector.x;
    mesh->geometry_parameters.p_mesh_storage->direction_vector.y = mesh_vector.y;
    mesh->geometry_parameters.p_mesh_storage->direction_vector.z = mesh_vector.z;
    // if (verbal == 1) printf("Cords vector1 = (%f,%f,%f)\n",mesh_vector.x,mesh_vector.y,
    
    mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center = rot_apply(mesh->rotation_matrix, mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center);
    
    /*
    // Works for pure translation
    print_position(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, "BB before adjustment");
    mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center = coords_add(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, mesh->center);
    print_position(mesh->geometry_parameters.p_mesh_storage->Bounding_Box_Center, "BB after adjustment");
    */
}

struct pointer_to_1d_coords_list mesh_shell_points(struct geometry_struct *geometry,int max_number_of_points) {
  // Function that returns a number (less than max) of points on the geometry surface
  // Run trhough all points in list of faces, and remove dublicates
  // There are three points in a face and very often these will be dublicated a few times. This removes dublicates to boost performance down stream...
  
  
  struct pointer_to_1d_coords_list mesh_shell_array;
  
	int n_facets = geometry->geometry_parameters.p_mesh_storage->n_facets;
	double *v1_x = geometry->geometry_parameters.p_mesh_storage->v1_x;
	double *v1_y = geometry->geometry_parameters.p_mesh_storage->v1_y;
	double *v1_z = geometry->geometry_parameters.p_mesh_storage->v1_z;
	double *v2_x = geometry->geometry_parameters.p_mesh_storage->v2_x;
	double *v2_y = geometry->geometry_parameters.p_mesh_storage->v2_y;
	double *v2_z = geometry->geometry_parameters.p_mesh_storage->v2_z;
	double *v3_x = geometry->geometry_parameters.p_mesh_storage->v3_x;
	double *v3_y = geometry->geometry_parameters.p_mesh_storage->v3_y;
	double *v3_z = geometry->geometry_parameters.p_mesh_storage->v3_z;
	int number_of_points_in_array = 0;
	mesh_shell_array.elements = malloc(3*n_facets * sizeof(Coords));
	int is_dublicate = 0;
	Coords this_vert;
	int i,j;
	
	printf("\n CREATE SHELL POINTS");
	printf("\n n_verts (likely dublicated) = %i",n_facets*3);
	for (i=0 ; i < n_facets ; i++){
		
		// v1
		is_dublicate = 0;
		this_vert = coords_set(*(v1_x+i),*(v1_y+i),*(v1_z+i));
		//printf("\n this point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
		
		// test if dublicate
		for (j = 0; j < number_of_points_in_array ; j++ ){
			if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
				is_dublicate = 1;
				//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
				j = number_of_points_in_array;
			}
		}
		if (is_dublicate == 0){
			mesh_shell_array.elements[number_of_points_in_array] = this_vert;
			number_of_points_in_array += 1;
			//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
		}
	
	
	
		// v2
		is_dublicate = 0;
		this_vert = coords_set(*(v2_x+i),*(v2_y+i),*(v2_z+i));
		
		// test if dublicate
		for (j = 0; j < number_of_points_in_array ; j++){
			if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
				is_dublicate = 1;
				//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
				j = number_of_points_in_array;
			}
		}
		if (is_dublicate == 0){
			mesh_shell_array.elements[number_of_points_in_array] = this_vert;
			number_of_points_in_array += 1;
			//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
		}
	
	
	
		// v3
		is_dublicate = 0;
		this_vert = coords_set(*(v3_x+i),*(v3_y+i),*(v3_z+i));
		
		// test if dublicate
		for (j = 0; j < number_of_points_in_array ; j++ ){
			if (this_vert.x == mesh_shell_array.elements[j].x && this_vert.y == mesh_shell_array.elements[j].y && this_vert.z == mesh_shell_array.elements[j].z){
				is_dublicate = 1;
				//printf("\n point [%f,%f,%f] is a dublicate of [%f,%f,%f]",this_vert.x,this_vert.y,this_vert.z,mesh_shell_array.elements[j].x,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
				j = number_of_points_in_array;
			}
		}
		if (is_dublicate == 0){
			mesh_shell_array.elements[number_of_points_in_array] = this_vert;
			number_of_points_in_array += 1;
			//printf("\n Added a point [%f,%f,%f] ",this_vert.x,this_vert.y,this_vert.z);
		}
	}
    
  printf("\n test is there to high j? j = %i, number_of_points_in_array = %i , lenght of array = %i ",j,number_of_points_in_array,3*n_facets * sizeof(Coords));
  j = number_of_points_in_array - 1; // Last legal index, currently j is out of bounds.
  printf("\n test= [%f,%f,%f]",mesh_shell_array.elements[j].x ,mesh_shell_array.elements[j].y,mesh_shell_array.elements[j].z);
  
  mesh_shell_array.num_elements = number_of_points_in_array;
  //free(mesh_shell_array.elements);
  printf("\n SHELL POINTS: DONE");
  printf("\n SHELL POINTS: created %i shell points in mesh",mesh_shell_array.num_elements);
    //printf("\n test last element = [%f,%f,%f]",mesh_shell_array.elements[mesh_shell_array.num_elements-1].x ,mesh_shell_array.elements[mesh_shell_array.num_elements-1].y,mesh_shell_array.elements[mesh_shell_array.num_elements-1].z);
  return mesh_shell_array;
}

#ifndef ANY_GEOMETRY_DETECTOR_DECLARE
    #define ANY_GEOMETRY_DETECTOR_DECLARE dummy
    //struct pointer_to_global_geometry_list global_geometry_list = {0,NULL};
#endif

%}

DECLARE
%{
// Needed for transport to the main component

//
struct global_geometry_element_struct global_geometry_element;

int loop_index;
int loop_2_index;
int material_index;


struct Volume_struct this_mesh_volume;
struct mesh_storage this_mesh_storage;
%}

INITIALIZE
%{
// Initializes the focusing system for this volume including input sanitation.
focus_initialize(&this_mesh_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP);



if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_mesh:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
struct pointer_to_global_material_list *global_material_list = COMP_GETPAR3(Union_init, init, global_material_list);
// Use sanitation
#ifdef MATERIAL_DETECTOR
if (global_material_list->num_elements == 0) {
  // Here if the user have defined a material, but only after this material
  printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
  printf("       %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP);
  exit(1);
}
#endif
#ifndef MATERIAL_DETECTOR
  printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
  exit(1);
#endif


this_mesh_volume.geometry.is_masked_volume = 0;
this_mesh_volume.geometry.is_exit_volume = 0;
this_mesh_volume.geometry.is_mask_volume = 0;

struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);

// Read the material input, or if it lacks, use automatic linking.
if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) {
    // A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string.
    // In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume.
    // When more than
    this_mesh_volume.geometry.mask_mode = 1; // Default mask mode is ALL
    if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) {
        if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_mesh_volume.geometry.mask_mode = 1;
        else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_mesh_volume.geometry.mask_mode = 2;
        else {
            printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting);
            exit(1);
        }
    }
    
    int found_geometries = 0;
    for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
        // Add mask list
        if (1 == manual_linking_function(global_geometry_list->elements[loop_index].name,mask_string)) {
            add_element_to_int_list(&this_mesh_volume.geometry.mask_list,global_geometry_list->elements[loop_index].component_index);
            add_element_to_int_list(&global_geometry_list->elements[loop_index].Volume->geometry.masked_by_list,INDEX_CURRENT_COMP);
            global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume = 1;
            if (this_mesh_volume.geometry.mask_mode == 2)
                global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 2;
            if (this_mesh_volume.geometry.mask_mode == 1) {
                if (global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list->elements[loop_index].Volume->geometry.mask_mode != 2)
                    // If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode.
                    global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 1;
            }
            
            found_geometries = 1;
        }
    }
    if (found_geometries == 0) {
        printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string);
        exit(1);
    }
    this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
    this_mesh_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum
    this_mesh_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
    this_mesh_volume.p_physics->my_a = 0; // Should not be used.
    sprintf(this_mesh_volume.p_physics->name,"Mask");
    this_mesh_volume.geometry.is_mask_volume = 1;
    
    
// Read the material input, or if it lacks, use automatic linking.
} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) {
    // A geometry string was given, use it to determine which material
    if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) {
        // One could have a global physics struct for vacuum instead of creating one for each
        this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_mesh_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_mesh_volume.p_physics->number_of_processes = (int) 0;
        this_mesh_volume.p_physics->my_a = 0; // Should not be used.
        sprintf(this_mesh_volume.p_physics->name,"Vacuum");
    } else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) {
        // One could have a global physics struct for exit instead of creating one for each
        this_mesh_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_mesh_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_mesh_volume.p_physics->number_of_processes = (int) 0;
        this_mesh_volume.p_physics->my_a = 0; // Should not be used.
        this_mesh_volume.geometry.is_exit_volume = 1;
        sprintf(this_mesh_volume.p_physics->name,"Exit");
    } else {
        for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++) {
          if (0 == strcmp(material_string,global_material_list->elements[loop_index].name)) {
            this_mesh_volume.p_physics = global_material_list->elements[loop_index].physics;
            break;
          }
          if (loop_index == global_material_list->num_elements-1) {
            printf("\n");
            printf("ERROR: The material string \"%s\" in Union geometry \"%s\" did not match a specified material. \n",material_string,NAME_CURRENT_COMP);
            printf("       The materials available at this point (need to be defined before the geometry): \n");
            for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++)
              printf("         %s\n",global_material_list->elements[loop_index].name);
            printf("\n");
            printf("       It is also possible to use one of the defualt materials avaiable: \n");
            printf("           Vacuum (for a Volume without scattering or absorption)\n");
            printf("           Exit (for a Volume where the ray exits the component if it enters)\n");
            printf("           Mask (for a Volume that masks existing volumes specified in the mask_string\n");
            exit(1);
          }
        }
    }
} else {
    // Automatic linking, simply using the last defined material.
    #ifndef MATERIAL_DETECTOR
        printf("Need to define a material before the geometry to use automatic linking %s.\n",NAME_CURRENT_COMP);
        exit(1);
    #endif
    this_mesh_volume.p_physics = global_material_list->elements[global_material_list->num_elements-1].physics;
}


// Read input file and put into storage 
// test 2
	printf("\n START read file: ");

	//char *filename = "text.stl";
	FILE *fp;
	fp = fopen(filename,"r");
	int n_lines;
	char  buffer[250];
	printf("\n test1");
	n_lines = 0;
	  while (fgets(buffer, sizeof buffer, fp)) {
		++n_lines;
	  }
	  fclose(fp);
	printf("\n n_lines: %i",n_lines);
	printf("\n n_facets: %i",(n_lines-2)/7);
	int n_facets = (n_lines-2)/7;
	
	printf("\n done");
	//printf("\n n_facets: %i",n_facets);
	
	
    char *line = NULL;
    size_t len = 0;
	char dest[9]; // 8 chars + terminator
	int iter = 0; int counter = 0;
    ssize_t read;
	
	Coords normal[n_facets+1];
	Coords v1[n_facets+1];
	Coords v2[n_facets+1];
	Coords v3[n_facets+1];
	
	//#include "MeshFunctions/get_coords_from_string.c"
	printf("\nTEST n_facets = %i\n",n_facets);
	Coords fromString;
    fp = fopen(filename, "r");
    if (fp == NULL)
        exit(EXIT_FAILURE);
    while ((read = getline(&line, &len, fp)) != -1) {
		//printf("______________________-----NEW------_____________________\n");
		//printf("%s\n", line);
		
			if (iter==1){
				if (line[0] == 101){
					//printf("\nDone reading file\n");
				}else{
					
					// Normal vector
					fromString = get_coords_from_string(line);
					normal[counter]=fromString;
				
					//printf("\n normal: [%i]: normal[%i] = [%f,%f,%f] \n",iter,counter,normal[counter].x,normal[counter].y,normal[counter].z);
				}
			}
			if (iter==3){
				fromString = get_coords_from_string(line);
				v1[counter]=fromString;
				//printf("\n v1 [%i]: v1[%i] = [%f,%f,%f] \n",iter,counter,v1[counter].x,v1[counter].y,v1[counter].z);
			}
			if (iter==4){
				fromString = get_coords_from_string(line);
				v2[counter]=fromString;
				//printf("\n v2 [%i]: v2[%i] = [%f,%f,%f] \n",iter,counter,v2[counter].x,v2[counter].y,v2[counter].z);
			}
			if (iter==5){
				fromString = get_coords_from_string(line);
				v3[counter]=fromString;
				//printf("\n v3 [%i]: v3[%i] = [%f,%f,%f] \n",iter,counter,v3[counter].x,v3[counter].y,v3[counter].z);
				
			}
			if (iter==7){
				iter = 0;
				counter ++;
			}
		//printf("\n TESTTESTTEST:  [%f,%f,%f] \n",this_mesh_storage.poligon_list[counter].normal.x,this_mesh_storage.poligon_list[counter].normal.y,this_mesh_storage.poligon_list[counter].normal.z);
		
		iter++; 
    }
	
    fclose(fp);
	
	int i;
	
	// Transform coordinate (translate then rotate)
	printf("\n\nPOS_A_CURRENT_COMP [%f,%f,%f]",POS_A_CURRENT_COMP.x,POS_A_CURRENT_COMP.y,POS_A_CURRENT_COMP.z);
	for (i = 0 ; i < counter ; i++ ){
		// run through existing arrays without creating new ones. This is a very bad habbit!  PLZ fix
		
        /*
		// v1
		v1[i].x = v1[i].x + POS_A_CURRENT_COMP.x;
		v1[i].y = v1[i].y + POS_A_CURRENT_COMP.y;
		v1[i].z = v1[i].z + POS_A_CURRENT_COMP.z;
		//v1[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v1[i]);

		// v2
		v2[i].x = v2[i].x + POS_A_CURRENT_COMP.x;
		v2[i].y = v2[i].y + POS_A_CURRENT_COMP.y;
		v2[i].z = v2[i].z + POS_A_CURRENT_COMP.z;
		//v2[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v2[i]);
		
		// v3
		v3[i].x = v3[i].x + POS_A_CURRENT_COMP.x;
		v3[i].y = v3[i].y + POS_A_CURRENT_COMP.y;
		v3[i].z = v3[i].z + POS_A_CURRENT_COMP.z;
		//v3[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v3[i]);
        */
        
        /*
        // v1
        v1[i].x = v1[i].x + POS_A_CURRENT_COMP.x;
        v1[i].y = v1[i].y + POS_A_CURRENT_COMP.y;
        v1[i].z = v1[i].z + POS_A_CURRENT_COMP.z;
        //v1[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v1[i]);

        // v2
        v2[i].x = v2[i].x + POS_A_CURRENT_COMP.x;
        v2[i].y = v2[i].y + POS_A_CURRENT_COMP.y;
        v2[i].z = v2[i].z + POS_A_CURRENT_COMP.z;
        //v2[i] = rot_apply(this_mesh_volume.geometry.transpose_rotation_matrix,v2[i]);
        
        // v3
        v3[i].x = v3[i].x + POS_A_CURRENT_COMP.x;
        v3[i].y = v3[i].y + POS_A_CURRENT_COMP.y;
        v3[i].z = v3[i].z + POS_A_CURRENT_COMP.z;
        */
		
	}
	printf("\n TEST inf v1 is long enough! i = %i , n_facets = %i, counter = %i \n",i,n_facets,counter);
	
	// Create bounding sphere using Ritter [https://en.wikipedia.org/wiki/Bounding_sphere#cite_note-Ritter1990-2]
	//  Ritter, Jack (1990), "An efficient bounding sphere", in Glassner, Andrew S., Graphics Gems, San Diego, CA, US: Academic Press Professional, Inc., pp. 301–303, ISBN 0-12-286166-3
	double max_dist=0;
	
	Coords B_sphere_x = v1[0];
	Coords B_sphere_y = B_sphere_x ;
	for (i = 1 ; i < counter ; i++ ){
		if (sqrt(v1[0].x-v1[i].x+v1[0].y-v1[i].y+v1[0].z-v1[i].z) > max_dist){
			max_dist = sqrt(v1[0].x-v1[i].x+v1[0].y-v1[i].y+v1[0].z-v1[i].z);
			B_sphere_y = v1[i];
		}
		if (sqrt(v1[0].x-v2[i].x+v1[0].y-v2[i].y+v1[0].z-v2[i].z) > max_dist){
			max_dist = sqrt(v1[0].x-v2[i].x+v1[0].y-v2[i].y+v1[0].z-v2[i].z);
			B_sphere_y = v2[i];
		}
		if (sqrt(v1[0].x-v3[i].x+v1[0].y-v3[i].y+v1[0].z-v3[i].z) > max_dist){
			max_dist = sqrt(v1[0].x-v3[i].x+v1[0].y-v3[i].y+v1[0].z-v3[i].z);
			B_sphere_y = v3[i];
		}
	}
	Coords B_sphere_z = B_sphere_y ;
	max_dist=0;
	for (i = 1 ; i < counter ; i++ ){
		if (sqrt(pow(B_sphere_y.x-v1[i].x,2) + pow(B_sphere_y.y-v1[i].y,2) + pow(B_sphere_y.z-v1[i].z,2)) > max_dist){
			max_dist = sqrt(pow(B_sphere_y.x-v1[i].x,2) + pow(B_sphere_y.y-v1[i].y,2) + pow(B_sphere_y.z-v1[i].z,2));
			B_sphere_z = v1[i];
		}
		if (sqrt(pow(B_sphere_y.x-v2[i].x,2) + pow(B_sphere_y.y-v2[i].y,2) + pow(B_sphere_y.z-v2[i].z,2)) > max_dist){
			max_dist = sqrt(pow(B_sphere_y.x-v2[i].x,2) + pow(B_sphere_y.y-v2[i].y,2) + pow(B_sphere_y.z-v2[i].z,2));
			B_sphere_z = v2[i];
		}
		if (sqrt(pow(B_sphere_y.x-v3[i].x,2) + pow(B_sphere_y.y-v3[i].y,2) + pow(B_sphere_y.z-v3[i].z,2)) > max_dist){
			max_dist = sqrt(pow(B_sphere_y.x-v3[i].x,2) + pow(B_sphere_y.y-v3[i].y,2) + pow(B_sphere_y.z-v3[i].z,2));
			B_sphere_z = v3[i];
		}
	}
	
	double tmp_Radius = sqrt(pow(B_sphere_y.x-B_sphere_z.x,2.0) + pow(B_sphere_y.y-B_sphere_z.y,2.0) + pow(B_sphere_y.z-B_sphere_z.z,2.0))/2;
	Coords bbcenter = coords_set((B_sphere_y.x+B_sphere_z.x)/2 , (B_sphere_y.y+B_sphere_z.y)/2 , (B_sphere_y.z+B_sphere_z.z)/2);
	this_mesh_storage.Bounding_Box_Center = bbcenter;
	for (i = 0 ; i < counter ; i++ ){
		if (sqrt(pow(bbcenter.x-v1[i].x,2.0) + pow(bbcenter.y-v1[i].y,2.0) + pow(bbcenter.z-v1[i].z,2.0)) > tmp_Radius){
			tmp_Radius = sqrt(pow(bbcenter.x-v1[i].x,2.0) + pow(bbcenter.y-v1[i].y,2.0) + pow(bbcenter.z-v1[i].z,2.0));
		}
		if (sqrt(pow(bbcenter.x-v2[i].x,2.0) + pow(bbcenter.y-v2[i].y,2.0) + pow(bbcenter.z-v2[i].z,2.0)) > tmp_Radius){
			tmp_Radius = sqrt(pow(bbcenter.x-v2[i].x,2.0) + pow(bbcenter.y-v2[i].y,2.0) + pow(bbcenter.z-v2[i].z,2.0));
		}
		if (sqrt(pow(bbcenter.x-v3[i].x,2.0) + pow(bbcenter.y-v3[i].y,2.0) + pow(bbcenter.z-v3[i].z,2.0)) > tmp_Radius){
			tmp_Radius = sqrt(pow(bbcenter.x-v3[i].x,2.0) + pow(bbcenter.y-v3[i].y,2.0) + pow(bbcenter.z-v3[i].z,2.0));
		}
	
	}
	this_mesh_storage.Bounding_Box_Radius = tmp_Radius;
	printf("\n__________________________________\n BOUNDING BOX: \n\t Center = [%f , %f , %f]\n\t Radius = %f\n__________________________________\n", this_mesh_storage.Bounding_Box_Center.x,this_mesh_storage.Bounding_Box_Center.y,this_mesh_storage.Bounding_Box_Center.z,this_mesh_storage.Bounding_Box_Radius);
	
	
	
	
	// Convert to double arrays for further parsing (Coord has problems here - might be possible to do much faster!!)
	// Seriously not optimal... plz fix
	double v1_x[counter];
	double v1_y[counter];
	double v1_z[counter];
	double v2_x[counter];
	double v2_y[counter];
	double v2_z[counter];
	double v3_x[counter];
	double v3_y[counter];
	double v3_z[counter];
	double normal_x[counter];
	double normal_y[counter];
	double normal_z[counter];
	


	for (i = 0 ; i < counter ; i++ ){
		/*
		v1_x[i] = v1[i].x;
		v1_y[i] = v1[i].y;
		v1_z[i] = v1[i].z;
		
		v2_x[i] = v2[i].x;
		v2_y[i] = v2[i].y;
		v2_z[i] = v2[i].z;
		
		v3_x[i] = v3[i].x;
		v3_y[i] = v3[i].y;
		v3_z[i] = v3[i].z;
		
		normal_x[i] = normal[i].x;
		normal_y[i] = normal[i].y;
		normal_z[i] = normal[i].z;
		*/
		this_mesh_storage.v1_x[i] = v1[i].x;
		this_mesh_storage.v1_y[i] = v1[i].y;
		this_mesh_storage.v1_z[i] = v1[i].z;
		
		this_mesh_storage.v2_x[i] = v2[i].x;
		this_mesh_storage.v2_y[i] = v2[i].y;
		this_mesh_storage.v2_z[i] = v2[i].z;
		
		this_mesh_storage.v3_x[i] = v3[i].x;
		this_mesh_storage.v3_y[i] = v3[i].y;
		this_mesh_storage.v3_z[i] = v3[i].z;
		
		this_mesh_storage.normal_x[i] = normal[i].x;
		this_mesh_storage.normal_y[i] = normal[i].y;
		this_mesh_storage.normal_z[i] = normal[i].z;
		
		//printf("\n v2 [%i]: v2[%i] = [%f,%f,%f] \n",iter,v2_x[i],v2_y[i],v2_z[i]);
	}

// check if this is a cylinder and add coordinates of tip if it is a mesh

this_mesh_storage.counter = counter;
this_mesh_storage.n_facets = n_facets;


sprintf(this_mesh_volume.name,"%s",NAME_CURRENT_COMP);
sprintf(this_mesh_volume.geometry.shape,"mesh");
this_mesh_volume.geometry.priority_value = priority;
// Currently the coordinates will be in absolute space.
this_mesh_volume.geometry.center = POS_A_CURRENT_COMP;

this_mesh_volume.geometry.geometry_p_interact = p_interact;



this_mesh_volume.geometry.visualization_on = visualize;
this_mesh_volume.geometry.geometry_parameters.p_mesh_storage = &this_mesh_storage;
this_mesh_volume.geometry.within_function = &r_within_mesh;
this_mesh_volume.geometry.intersect_function = &sample_mesh_intersect;
this_mesh_volume.geometry.mcdisplay_function = &mcdisplay_mesh_function;
this_mesh_volume.geometry.shell_points = &mesh_shell_points;
this_mesh_volume.geometry.initialize_from_main_function = &initialize_mesh_geometry_from_main_component;
this_mesh_volume.geometry.process_rot_allocated = 0;
this_mesh_volume.geometry.copy_geometry_parameters = &allocate_mesh_storage_copy;
rot_copy(this_mesh_volume.geometry.rotation_matrix,ROT_A_CURRENT_COMP);
rot_transpose(ROT_A_CURRENT_COMP,this_mesh_volume.geometry.transpose_rotation_matrix);


// Initialize loggers
this_mesh_volume.loggers.num_elements = 0;

// packing the information into the global_geometry_element, which is then included in the global_geometry_list.
sprintf(global_geometry_element.name,"%s",NAME_CURRENT_COMP);
global_geometry_element.activation_counter = number_of_activations;
global_geometry_element.component_index = INDEX_CURRENT_COMP;
global_geometry_element.Volume = &this_mesh_volume; // Would be nicer if this m was a pointer, now we have the (small) data two places
add_element_to_geometry_list(global_geometry_list,global_geometry_element);
%}

TRACE
%{
%}

END