1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Origin: University of Copenhagen
*
* Sphere geometry component for the Union components
*
* %D
* Part of the Union components, a set of components that work together and thus
* sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
* defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union components
*
* The position of this component is the center of the sphere
*
* It is allowed to overlap components, but it is not allowed to have two
* parallel planes that coincides. This will crash the code on run time.
*
*
* %P
* INPUT PARAMETERS:
* radius: [m] Radius of sphere
* material_string: [string] material name of this volume, defined using Union_make_material
* priority: [1] priotiry of the volume (can not be the same as another volume) A high priority is on top of low.
* p_interact: [1] probability to interact with this geometry [0-1]
* visualize: [1] set to 0 if you wish to hide this geometry in mcdisplay
* number_of_activations: [1] Number of subsequent Union_master components that will simulate this geometry
* mask_string: [string] Comma seperated list of geometry names which this geometry should mask
* mask_setting: [string] "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all.
* target_index: [1] Focuses on component a component this many steps further in the component sequence
* target_x: [m] X position of target to focus at
* target_y: [m] Y position of target to focus at
* target_z: [m] Z position of target to focus at
* focus_aw: [deg] horiz. angular dimension of a rectangular area
* focus_ah: [deg] vert. angular dimension of a rectangular area
* focus_xw: [m] horiz. dimension of a rectangular area
* focus_xh: [m] vert. dimension of a rectangular area
* focus_r: [m] focusing on circle with this radius
* init: [string] name of Union_init component (typically "init", default)
*
* CALCULATED PARAMETERS:
*
* %L
*
* %E
******************************************************************************/
DEFINE COMPONENT Union_sphere
SETTING PARAMETERS(string material_string=0, priority, radius, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact=0, string mask_string=0, string mask_setting=0,number_of_activations=1, string init="init")
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Union_sphere component"
#endif
void mcdisplay_sphere_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) {
// Function to call in mcdisplay section of the sample component for this volume
// One can assume that Geometries[index] refers to a geometry as described in this file
// The 4 lines describing the sphere are aligned to the local frame of the sphere,
// it would be nicer to have them alligned with the global frame so that they show up nicely in
// pgplotters on mcdisplay.
// One could get the current global rotation and use this to counteract this effect.
double radius = Geometries[index]->geometry_parameters.p_sphere_storage->sph_radius;
Coords center = Geometries[index]->center;
Coords direction1 = coords_set(0,0,1.0);
Coords direction2 = coords_set(0,1.0,0);
Coords direction3 = coords_set(1.0,0,0);
struct lines_to_draw lines_to_draw_temp;
lines_to_draw_temp.number_of_lines = 0;
lines_to_draw_temp = draw_circle_with_highest_priority(center,direction1,radius,index,Geometries,number_of_volumes,2);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
lines_to_draw_temp = draw_circle_with_highest_priority(center,direction2,radius,index,Geometries,number_of_volumes,2);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
lines_to_draw_temp = draw_circle_with_highest_priority(center,direction3,radius,index,Geometries,number_of_volumes,2);
merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
};
void initialize_sphere_geometry_from_main_component(struct geometry_struct *sphere) {
// Function to be called in initialize of the main component
// This is done as the rotation matrix needs to be relative to the main component instead of global
// Everything done in initialize in this component file has the rotation matrix relative to global
// Nothing needs to be done for the sphere
// If an empty function provides difficulties for some compilers, a dummy operation can be added
int dummy;
};
struct pointer_to_1d_coords_list sphere_shell_points(struct geometry_struct *geometry,int max_number_of_points) {
// Function that returns a number (less than max) of points on the geometry surface
// If used, remember to free the space allocated.
int points_per_circle = floor(sqrt(max_number_of_points));
int number_of_circles = points_per_circle;
struct pointer_to_1d_coords_list sphere_shell_array;
sphere_shell_array.elements = malloc(points_per_circle*number_of_circles*sizeof(Coords));
sphere_shell_array.num_elements = points_per_circle*number_of_circles;
Coords center = geometry->center;
double radius = geometry->geometry_parameters.p_sphere_storage->sph_radius;
Coords direction = coords_set(0,0,1.0);
Rotation rot_matrix;
rot_set_rotation(rot_matrix,(double) PI/number_of_circles,0,0);
//print_rotation(rot_matrix,"rot matrix");
// Do the first iteration before the loop to avoid one unecessary matrix operation
points_on_circle(sphere_shell_array.elements,center,direction,radius,points_per_circle);
int iterate;
for (iterate=1;iterate<number_of_circles;iterate++) {
direction = rot_apply(rot_matrix,direction);
points_on_circle(sphere_shell_array.elements+points_per_circle*iterate,center,direction,radius,points_per_circle);
}
// Other parts of the program change behavior when I use the above code, may be writing to unwanted parts of memory!
/*
// Debug
for (iterate=0;iterate<sphere_shell_array.num_elements;iterate++) {
//print_position(sphere_shell_array.elements[iterate],"Sphere shell points");
//printf("\n%f,%f,%f",sphere_shell_array.elements[iterate].x,sphere_shell_array.elements[iterate].y,sphere_shell_array.elements[iterate].z);
}
*/
return sphere_shell_array;
}
#ifndef ANY_GEOMETRY_DETECTOR_DECLARE
#define ANY_GEOMETRY_DETECTOR_DECLARE dummy
//struct pointer_to_global_geometry_list global_geometry_list = {0,NULL};
#endif
%}
DECLARE
%{
// Needed for transport to the main component
struct global_geometry_element_struct global_geometry_element;
int loop_index;
int loop_2_index;
int material_index;
struct Volume_struct this_sphere_volume;
struct sphere_storage this_sphere_storage;
%}
INITIALIZE
%{
// Initializes the focusing system for this volume including input sanitation.
focus_initialize(&this_sphere_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP);
// Input sanitation for this geometry
if (radius <= 0) {
printf("\nERROR in Union_sphere named %s, the radius is <= 0. \n",NAME_CURRENT_COMP);
exit(1);
}
if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_sphere:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
// Get global variable from init component
struct pointer_to_global_material_list *global_material_list = COMP_GETPAR3(Union_init, init, global_material_list);
// Use sanitation
#ifdef MATERIAL_DETECTOR
if (global_material_list->num_elements == 0) {
// Here if the user have defined a material, but only after this material
printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
printf(" %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP);
exit(1);
}
#endif
#ifndef MATERIAL_DETECTOR
printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
exit(1);
#endif
this_sphere_volume.geometry.is_masked_volume = 0;
this_sphere_volume.geometry.is_exit_volume = 0;
this_sphere_volume.geometry.is_mask_volume = 0;
struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);
// Read the material input, or if it lacks, use automatic linking.
if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) {
// A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string.
// In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume.
// When more than
this_sphere_volume.geometry.mask_mode = 1; // Default is mask mode is ALL
if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) {
if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_sphere_volume.geometry.mask_mode = 1;
else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_sphere_volume.geometry.mask_mode = 2;
else {
printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting);
exit(1);
}
}
int found_geometries = 0;
for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
// Add mask list
if (1 == manual_linking_function(global_geometry_list->elements[loop_index].name,mask_string)) {
add_element_to_int_list(&this_sphere_volume.geometry.mask_list,global_geometry_list->elements[loop_index].component_index);
add_element_to_int_list(&global_geometry_list->elements[loop_index].Volume->geometry.masked_by_list,INDEX_CURRENT_COMP);
global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume = 1;
if (this_sphere_volume.geometry.mask_mode == 2)
global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 2;
if (this_sphere_volume.geometry.mask_mode == 1) {
if (global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list->elements[loop_index].Volume->geometry.mask_mode != 2)
// If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode.
global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 1;
}
found_geometries = 1;
}
}
if (found_geometries == 0) {
printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string);
exit(1);
}
this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
this_sphere_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum
this_sphere_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
this_sphere_volume.p_physics->my_a = 0; // Should not be used.
sprintf(this_sphere_volume.p_physics->name,"Mask");
this_sphere_volume.geometry.is_mask_volume = 1;
// Read the material input, or if it lacks, use automatic linking.
} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) {
// A geometry string was given, use it to determine which material
if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) {
// One could have a global physics struct for vacuum instead of creating one for each
this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
this_sphere_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
this_sphere_volume.p_physics->number_of_processes = (int) 0;
this_sphere_volume.p_physics->my_a = 0; // Should not be used.
sprintf(this_sphere_volume.p_physics->name,"Vacuum");
} else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) {
// One could have a global physics struct for exit instead of creating one for each
this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
this_sphere_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
this_sphere_volume.p_physics->number_of_processes = (int) 0;
this_sphere_volume.p_physics->my_a = 0; // Should not be used.
this_sphere_volume.geometry.is_exit_volume = 1;
sprintf(this_sphere_volume.p_physics->name,"Exit");
} else {
for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++) {
if (0 == strcmp(material_string,global_material_list->elements[loop_index].name)) {
this_sphere_volume.p_physics = global_material_list->elements[loop_index].physics;
break;
}
if (loop_index == global_material_list->num_elements-1) {
printf("\n");
printf("ERROR: The material string \"%s\" in Union geometry \"%s\" did not match a specified material. \n",material_string,NAME_CURRENT_COMP);
printf(" The materials available at this point (need to be defined before the geometry): \n");
for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++)
printf(" %s\n",global_material_list->elements[loop_index].name);
printf("\n");
printf(" It is also possible to use one of the defualt materials avaiable: \n");
printf(" Vacuum (for a Volume without scattering or absorption)\n");
printf(" Exit (for a Volume where the ray exits the component if it enters)\n");
printf(" Mask (for a Volume that masks existing volumes specified in the mask_string\n");
exit(1);
}
}
}
} else {
// Automatic linking, simply using the last defined material.
#ifndef MATERIAL_DETECTOR
printf("Need to define a material before the geometry to use automatic linking %s.\n",NAME_CURRENT_COMP);
exit(1);
#endif
this_sphere_volume.p_physics = global_material_list->elements[global_material_list->num_elements-1].physics;
}
sprintf(this_sphere_volume.name,"%s",NAME_CURRENT_COMP);
sprintf(this_sphere_volume.geometry.shape,"sphere");
this_sphere_volume.geometry.eShape = sphere;
this_sphere_volume.geometry.priority_value = priority;
// Currently the coordinates will be in absolute space.
this_sphere_volume.geometry.center = POS_A_CURRENT_COMP;
this_sphere_volume.geometry.geometry_p_interact = p_interact;
this_sphere_storage.sph_radius = radius;
this_sphere_volume.geometry.visualization_on = visualize;
this_sphere_volume.geometry.geometry_parameters.p_sphere_storage = &this_sphere_storage;
this_sphere_volume.geometry.within_function = &r_within_sphere;
this_sphere_volume.geometry.intersect_function = &sample_sphere_intersect;
this_sphere_volume.geometry.mcdisplay_function = &mcdisplay_sphere_function;
this_sphere_volume.geometry.initialize_from_main_function = &initialize_sphere_geometry_from_main_component;
this_sphere_volume.geometry.shell_points = &sphere_shell_points;
this_sphere_volume.geometry.process_rot_allocated = 0;
this_sphere_volume.geometry.copy_geometry_parameters = &allocate_sphere_storage_copy;
rot_copy(this_sphere_volume.geometry.rotation_matrix,ROT_A_CURRENT_COMP);
rot_transpose(ROT_A_CURRENT_COMP,this_sphere_volume.geometry.transpose_rotation_matrix);
// Initialize loggers
this_sphere_volume.loggers.num_elements = 0;
this_sphere_volume.abs_loggers.num_elements = 0;
// packing the information into the global_geometry_element, which is then included in the global_geometry_list.
sprintf(global_geometry_element.name,"%s",NAME_CURRENT_COMP);
global_geometry_element.activation_counter = number_of_activations;
global_geometry_element.component_index = INDEX_CURRENT_COMP;
global_geometry_element.Volume = &this_sphere_volume; // Would be nicer if this m was a pointer, now we have the (small) data two places
add_element_to_geometry_list(global_geometry_list, global_geometry_element);
// TEST Union sphere has been initialized, test shell point function by writing to file.
/*
struct pointer_to_1d_coords_list shell_points;
shell_points = this_sphere_volume.geometry.shell_points(&this_sphere_volume.geometry,400); // using 500 rings with 500 points
FILE *fp;
char filename[124] = "";
strcat(filename,NAME_CURRENT_COMP);
strcat(filename,"_debug.dat");
fp = fopen(filename,"w");
for (loop_index=0;loop_index<shell_points.num_elements;loop_index++)
fprintf(fp,"%lf %lf %lf\n",shell_points.elements[loop_index].x,shell_points.elements[loop_index].y,shell_points.elements[loop_index].z);
free(shell_points.elements);
fclose(fp);
*/
%}
TRACE
%{
%}
END
|