File: Union_sphere.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (374 lines) | stat: -rw-r--r-- 18,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*******************************************************************************
*
*  McStas, neutron ray-tracing package
*  Copyright(C) 2007 Risoe National Laboratory.
*
* %I
* Written by: Mads Bertelsen
* Date: 20.08.15
* Origin: University of Copenhagen
*
* Sphere geometry component for the Union components
*
* %D
* Part of the Union components, a set of components that work together and thus
*  sperates geometry and physics within McStas.
* The use of this component requires other components to be used.
*
* 1) One specifies a number of processes using process components
* 2) These are gathered into material definitions using Union_make_material
* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material
* 4) A Union_master component placed after all of the above
*
* Only in step 4 will any simulation happen, and per default all geometries
*  defined before this master, but after the previous will be simulated here.
*
* There is a dedicated manual available for the Union components
*
* The position of this component is the center of the sphere
*
* It is allowed to overlap components, but it is not allowed to have two
*  parallel planes that coincides. This will crash the code on run time.
*
*
* %P
* INPUT PARAMETERS:
* radius:                [m]   Radius of sphere
* material_string:       [string]    material name of this volume, defined using Union_make_material
* priority:              [1]   priotiry of the volume (can not be the same as another volume) A high priority is on top of low.
* p_interact:            [1]   probability to interact with this geometry [0-1]
* visualize:             [1]   set to 0 if you wish to hide this geometry in mcdisplay
* number_of_activations: [1]   Number of subsequent Union_master components that will simulate this geometry
* mask_string:           [string]    Comma seperated list of geometry names which this geometry should mask
* mask_setting:          [string]    "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all.
* target_index:          [1]    Focuses on component a component this many steps further in the component sequence
* target_x:              [m]  X position of target to focus at
* target_y:              [m]  Y position of target to focus at
* target_z:              [m]  Z position of target to focus at
* focus_aw:              [deg] horiz. angular dimension of a rectangular area
* focus_ah:              [deg] vert. angular dimension of a rectangular area
* focus_xw:              [m]   horiz. dimension of a rectangular area
* focus_xh:              [m]   vert. dimension of a rectangular area
* focus_r:               [m]   focusing on circle with this radius
* init:                  [string]    name of Union_init component (typically "init", default)
*
* CALCULATED PARAMETERS:
*
* %L
*
* %E
******************************************************************************/

DEFINE COMPONENT Union_sphere

SETTING PARAMETERS(string material_string=0, priority, radius, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact=0, string mask_string=0, string mask_setting=0,number_of_activations=1, string init="init")


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
#ifndef Union
#error "The Union_init component must be included before this Union_sphere component"
#endif


void mcdisplay_sphere_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) {
    // Function to call in mcdisplay section of the sample component for this volume
    // One can assume that Geometries[index] refers to a geometry as described in this file
    // The 4 lines describing the sphere are aligned to the local frame of the sphere,
    //   it would be nicer to have them alligned with the global frame so that they show up nicely in
    //   pgplotters on mcdisplay.
    // One could get the current global rotation and use this to counteract this effect.
    
    double radius = Geometries[index]->geometry_parameters.p_sphere_storage->sph_radius;
    Coords center = Geometries[index]->center;
    
    Coords direction1 = coords_set(0,0,1.0);
    Coords direction2 = coords_set(0,1.0,0);
    Coords direction3 = coords_set(1.0,0,0);
    
    struct lines_to_draw lines_to_draw_temp;
    lines_to_draw_temp.number_of_lines = 0;
    
    
    lines_to_draw_temp = draw_circle_with_highest_priority(center,direction1,radius,index,Geometries,number_of_volumes,2);
    merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);

    lines_to_draw_temp = draw_circle_with_highest_priority(center,direction2,radius,index,Geometries,number_of_volumes,2);
    merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
    
    lines_to_draw_temp = draw_circle_with_highest_priority(center,direction3,radius,index,Geometries,number_of_volumes,2);
    merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp);
    
};

void initialize_sphere_geometry_from_main_component(struct geometry_struct *sphere) {
    // Function to be called in initialize of the main component
    // This is done as the rotation matrix needs to be relative to the main component instead of global
    // Everything done in initialize in this component file has the rotation matrix relative to global
    
    // Nothing needs to be done for the sphere
    // If an empty function provides difficulties for some compilers, a dummy operation can be added
    int dummy;
    
};
    
struct pointer_to_1d_coords_list sphere_shell_points(struct geometry_struct *geometry,int max_number_of_points) {
  // Function that returns a number (less than max) of points on the geometry surface
  // If used, remember to free the space allocated.
  
  int points_per_circle = floor(sqrt(max_number_of_points));
  int number_of_circles = points_per_circle;
  
  struct pointer_to_1d_coords_list sphere_shell_array;
  sphere_shell_array.elements = malloc(points_per_circle*number_of_circles*sizeof(Coords));
  sphere_shell_array.num_elements = points_per_circle*number_of_circles;
  
  Coords center = geometry->center;
  double radius = geometry->geometry_parameters.p_sphere_storage->sph_radius;
  
  Coords direction = coords_set(0,0,1.0);
  
  Rotation rot_matrix;
  rot_set_rotation(rot_matrix,(double) PI/number_of_circles,0,0);
  
  //print_rotation(rot_matrix,"rot matrix");
  
  // Do the first iteration before the loop to avoid one unecessary matrix operation
  points_on_circle(sphere_shell_array.elements,center,direction,radius,points_per_circle);
  
  int iterate;
  for (iterate=1;iterate<number_of_circles;iterate++) {
    direction = rot_apply(rot_matrix,direction);
    points_on_circle(sphere_shell_array.elements+points_per_circle*iterate,center,direction,radius,points_per_circle);
  }
  // Other parts of the program change behavior when I use the above code, may be writing to unwanted parts of memory!
  
  /*
  // Debug
  for (iterate=0;iterate<sphere_shell_array.num_elements;iterate++) {
    //print_position(sphere_shell_array.elements[iterate],"Sphere shell points");
    //printf("\n%f,%f,%f",sphere_shell_array.elements[iterate].x,sphere_shell_array.elements[iterate].y,sphere_shell_array.elements[iterate].z);
  }
  */
  
  return sphere_shell_array;
}

#ifndef ANY_GEOMETRY_DETECTOR_DECLARE
    #define ANY_GEOMETRY_DETECTOR_DECLARE dummy
    //struct pointer_to_global_geometry_list global_geometry_list = {0,NULL};
#endif
%}

DECLARE
%{
// Needed for transport to the main component
struct global_geometry_element_struct global_geometry_element;

int loop_index;
int loop_2_index;
int material_index;

struct Volume_struct this_sphere_volume;
struct sphere_storage this_sphere_storage;
%}

INITIALIZE
%{
// Initializes the focusing system for this volume including input sanitation.
focus_initialize(&this_sphere_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP);

// Input sanitation for this geometry
if (radius <= 0) {
  printf("\nERROR in Union_sphere named %s, the radius is <= 0. \n",NAME_CURRENT_COMP);
  exit(1);
}

if (_getcomp_index(init) < 0) {
fprintf(stderr,"Union_sphere:%s: Error identifying Union_init component, %s is not a known component name.\n",
NAME_CURRENT_COMP, init);
exit(-1);
}
// Get global variable from init component
struct pointer_to_global_material_list *global_material_list = COMP_GETPAR3(Union_init, init, global_material_list);
// Use sanitation
#ifdef MATERIAL_DETECTOR
if (global_material_list->num_elements == 0) {
  // Here if the user have defined a material, but only after this material
  printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
  printf("       %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP);
  exit(1);
}
#endif
#ifndef MATERIAL_DETECTOR
  printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n");
  exit(1);
#endif


this_sphere_volume.geometry.is_masked_volume = 0;
this_sphere_volume.geometry.is_exit_volume = 0;
this_sphere_volume.geometry.is_mask_volume = 0;

struct pointer_to_global_geometry_list *global_geometry_list = COMP_GETPAR3(Union_init, init, global_geometry_list);
// Read the material input, or if it lacks, use automatic linking.
if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) {
    // A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string.
    // In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume.
    // When more than
    this_sphere_volume.geometry.mask_mode = 1; // Default is mask mode is ALL
    if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) {
        if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_sphere_volume.geometry.mask_mode = 1;
        else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_sphere_volume.geometry.mask_mode = 2;
        else {
            printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting);
            exit(1);
        }
    }
    
    int found_geometries = 0;
    for (loop_index=0;loop_index<global_geometry_list->num_elements;loop_index++) {
        // Add mask list
        if (1 == manual_linking_function(global_geometry_list->elements[loop_index].name,mask_string)) {
            add_element_to_int_list(&this_sphere_volume.geometry.mask_list,global_geometry_list->elements[loop_index].component_index);
            add_element_to_int_list(&global_geometry_list->elements[loop_index].Volume->geometry.masked_by_list,INDEX_CURRENT_COMP);
            global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume = 1;
            if (this_sphere_volume.geometry.mask_mode == 2)
                global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 2;
            if (this_sphere_volume.geometry.mask_mode == 1) {
                if (global_geometry_list->elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list->elements[loop_index].Volume->geometry.mask_mode != 2)
                    // If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode.
                    global_geometry_list->elements[loop_index].Volume->geometry.mask_mode = 1;
            }
            
            found_geometries = 1;
        }
    }
    if (found_geometries == 0) {
        printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string);
        exit(1);
    }
    this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
    this_sphere_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum
    this_sphere_volume.p_physics->number_of_processes = (int) 0; // Should not be used.
    this_sphere_volume.p_physics->my_a = 0; // Should not be used.
    sprintf(this_sphere_volume.p_physics->name,"Mask");
    this_sphere_volume.geometry.is_mask_volume = 1;
    
    
// Read the material input, or if it lacks, use automatic linking.
} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) {
    // A geometry string was given, use it to determine which material
    if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) {
        // One could have a global physics struct for vacuum instead of creating one for each
        this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_sphere_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_sphere_volume.p_physics->number_of_processes = (int) 0;
        this_sphere_volume.p_physics->my_a = 0; // Should not be used.
        sprintf(this_sphere_volume.p_physics->name,"Vacuum");
    } else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) {
        // One could have a global physics struct for exit instead of creating one for each
        this_sphere_volume.p_physics = malloc(sizeof(struct physics_struct));
        this_sphere_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum
        this_sphere_volume.p_physics->number_of_processes = (int) 0;
        this_sphere_volume.p_physics->my_a = 0; // Should not be used.
        this_sphere_volume.geometry.is_exit_volume = 1;
        sprintf(this_sphere_volume.p_physics->name,"Exit");
    } else {
        for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++) {
          if (0 == strcmp(material_string,global_material_list->elements[loop_index].name)) {
            this_sphere_volume.p_physics = global_material_list->elements[loop_index].physics;
            break;
          }
          if (loop_index == global_material_list->num_elements-1) {
            printf("\n");
            printf("ERROR: The material string \"%s\" in Union geometry \"%s\" did not match a specified material. \n",material_string,NAME_CURRENT_COMP);
            printf("       The materials available at this point (need to be defined before the geometry): \n");
            for (loop_index=0;loop_index<global_material_list->num_elements;loop_index++)
              printf("         %s\n",global_material_list->elements[loop_index].name);
            printf("\n");
            printf("       It is also possible to use one of the defualt materials avaiable: \n");
            printf("           Vacuum (for a Volume without scattering or absorption)\n");
            printf("           Exit (for a Volume where the ray exits the component if it enters)\n");
            printf("           Mask (for a Volume that masks existing volumes specified in the mask_string\n");
            exit(1);
          }
        }
    }
} else {
    // Automatic linking, simply using the last defined material.
    #ifndef MATERIAL_DETECTOR
        printf("Need to define a material before the geometry to use automatic linking %s.\n",NAME_CURRENT_COMP);
        exit(1);
    #endif
    this_sphere_volume.p_physics = global_material_list->elements[global_material_list->num_elements-1].physics;
}

sprintf(this_sphere_volume.name,"%s",NAME_CURRENT_COMP);
sprintf(this_sphere_volume.geometry.shape,"sphere");
this_sphere_volume.geometry.eShape = sphere;
this_sphere_volume.geometry.priority_value = priority;
// Currently the coordinates will be in absolute space.
this_sphere_volume.geometry.center = POS_A_CURRENT_COMP;

this_sphere_volume.geometry.geometry_p_interact = p_interact;
this_sphere_storage.sph_radius = radius;
this_sphere_volume.geometry.visualization_on = visualize;
this_sphere_volume.geometry.geometry_parameters.p_sphere_storage = &this_sphere_storage;
this_sphere_volume.geometry.within_function = &r_within_sphere;
this_sphere_volume.geometry.intersect_function = &sample_sphere_intersect;
this_sphere_volume.geometry.mcdisplay_function = &mcdisplay_sphere_function;
this_sphere_volume.geometry.initialize_from_main_function = &initialize_sphere_geometry_from_main_component;
this_sphere_volume.geometry.shell_points = &sphere_shell_points;
this_sphere_volume.geometry.process_rot_allocated = 0;
this_sphere_volume.geometry.copy_geometry_parameters = &allocate_sphere_storage_copy;

rot_copy(this_sphere_volume.geometry.rotation_matrix,ROT_A_CURRENT_COMP);
rot_transpose(ROT_A_CURRENT_COMP,this_sphere_volume.geometry.transpose_rotation_matrix);

// Initialize loggers
this_sphere_volume.loggers.num_elements = 0;
this_sphere_volume.abs_loggers.num_elements = 0;

// packing the information into the global_geometry_element, which is then included in the global_geometry_list.
sprintf(global_geometry_element.name,"%s",NAME_CURRENT_COMP);
global_geometry_element.activation_counter = number_of_activations;
global_geometry_element.component_index = INDEX_CURRENT_COMP;
global_geometry_element.Volume = &this_sphere_volume; // Would be nicer if this m was a pointer, now we have the (small) data two places
add_element_to_geometry_list(global_geometry_list, global_geometry_element);



// TEST Union sphere has been initialized, test shell point function by writing to file.
/*
struct pointer_to_1d_coords_list shell_points;
shell_points = this_sphere_volume.geometry.shell_points(&this_sphere_volume.geometry,400); // using 500 rings with 500 points


FILE *fp;

char filename[124] = "";

strcat(filename,NAME_CURRENT_COMP);
strcat(filename,"_debug.dat");

fp = fopen(filename,"w");

for (loop_index=0;loop_index<shell_points.num_elements;loop_index++)
   fprintf(fp,"%lf %lf %lf\n",shell_points.elements[loop_index].x,shell_points.elements[loop_index].y,shell_points.elements[loop_index].z);

free(shell_points.elements);

fclose(fp);
*/

%}

TRACE
%{
%}

END