1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: MM_c
*
* %Identification
* Written by: Erik B Knudsen and Desiree D. M. Ferreira
* Date: Feb. 2016, Feb. 2017
* Modified by: Søren Jeppesen
* Version: 1.1
* Release: McXtrace 1.2
* Origin: DTU Physics, DTU Space
*
* Single Pore as part of the Silicon Pore Optics (SPO) as envisioned for the ATHENA+ space telescope.
*
* %Description
* A single pore is simulated, which may have thick walls. The top and bottom are curved cylindrically
* azimuthally, and according to the Wolter I optic lengthwise (sagitally). A parameter specifies
* whether this is hyperbolic or parabolic.
* The azimuthal curvature is defined by the parameter radius. This refers to the center of the pore. I.e the top
* and bottom plates have radius of curvature <radius+yheight/2> and <radius-yheight/2> respectively.
*
* To intersect the Wolter I plates we take advatage of the azimuthal symmetry and only consider the radial component
* of the photon's wavevector.
*
* %Parameters
* Input parameters:
* radius_m: [m] Ring radius of the upper (reflecting) plate of the pore at the optic centre.
* yheight: [m] Height of the pore.
* xwidth: [m] Width of the pore.
* chamferwidth: [m] Width of side walls.
* gap: [m] Gap between the plate and the intersection plane with the hyperbolic section. (currently ignored)
* Z0: [m] Distance between optics centre plane and focal spot (essentially focal length).
* mirror_reflec: [ ] Data file containing reflectivities of the reflector surface (TOP).
* side_reflec: [ ] Data file containing reflectivities of the side walls (LEFT and RIGHT).
* bottom_reflec: [ ] Data file containing reflectivities of the bottom surface (BOTTOM).
* R_d: [ ] Default reflectivity value to use if no reflectivity file is given. Useful f.i. is one surface is reflecting and the others absorbing.
* primary: [ ] If non-zero, the pore is considered a primary reflector, and extends towards negative z. I.e. the entry plane is behind the z=0-plane. If zero, the pore is considered secondary and extends from the z=0-plane and towards positive z.
* dalpha: [deg] Offset to the alpha angle computed from the focal length. Useful for targeting the modified conical geometry (currently ignored).
* waviness: [rad] Waviness of the reflecting surface. The slope error is assumed to be uniformly distributed in the interval [-waviness:waviness].
* longw: [ ] If non-zero, waviness is 1D and along the pore axis.
* %End
*******************************************************************************/
DEFINE COMPONENT MM_c
SETTING PARAMETERS (pore_th, pore_width, int ring_nr,radius_m, Z0, xwidth, pore_height, gap=0, chamfer_width=0, length=0, string mirror_reflec="", string bottom_reflec="", string side_reflec="", string size_file="", string non_specular_file="", R_d=1, primary=1, dalpha=0, waviness=0, longw=0)
SHARE
%{
#ifndef MCSPO_INTERSECT_CONE
#define MCSPO_INTERSECT_CONE 1
int intersect_cone(double *l0, double x, double y, double z, double kx, double ky, double kz, double alpha, double radius, double *nx, double *ny, double *nz){
double kxn=kx,kyn=ky,kzn=kz;
NORM(kxn,kyn,kzn);
double c=tan(alpha);
double z0=radius/c;
double c2=c*c;
double A,B,C;
A=kxn*kxn + kyn*kyn - c2*kzn*kzn;
B=2*(kxn*x + kyn*y - c2*kzn*(z-z0));
C=x*x + y*y - c2*(z-z0)*(z-z0);
int status;
double l1;
if ( (status=solve_2nd_order(l0,&l1,A,B,C))==0 ){
/*note that if l1->NULL only the smallest positive solution is returned*/
//fprintf(stderr,"Error(%s): No solution to second order eq.\n","MM_c");
return status;
}
/*compute normal vector here*/
x+=kxn* (*l0);
y+=kyn* (*l0);
z+=kzn* (*l0);
double vn=sqrt(x*x+y*y);
*nx=x/vn;
*ny=y/vn;
*nz=1;
*nx *= cos(alpha);
*ny *= cos(alpha);
*nz *= sin(alpha);
return status;
}
#endif
#ifndef PROP_Z
#define PROP_Z(zz)\
mcPROP_Z(zz)
#endif
#ifndef mcPROP_Z
#define mcPROP_Z(zz) \
do { \
MCNUM mc_dl,mc_k; \
if(kz == 0) { ABSORB; }; \
mc_k=sqrt(scalar_prod(kx,ky,kz,kx,ky,kz)); \
mc_dl= ((zz)-z) * mc_k / kz; \
if(mc_dl<0 && mcallowbackprop==0) { ABSORB; };\
PROP_DL(mc_dl); \
} while(0)
#endif
#ifndef DISTRIBUTIONS
#define DISTRIBUTIONS
double laplaceDistribution(double mean, double width, _class_particle* _particle){
double sample = rand01();
if(sample <= 0.5){
return mean + width*log(2*sample);
} else {
return mean - width*log(2-2*sample);
}
}
double lorentzDistribution(double mean, double width, _class_particle* _particle){
double sample = rand01();
return mean + width*tan(M_PI*(sample-0.5));
}
#endif
%}
DECLARE
%{
double nExit[3];
double wExit[3];
double nEntry[3];
double wEntry[3];
double nTop[3];
double nBottom[3];
double nRight[3];
double wRight[3];
double nLeft[3];
double wLeft[3];
double e_min[3];
double e_step[3];
double e_max[3];
double theta_min[3];
double theta_step[3];
double theta_max[3];
double e_min_nonspec;
double e_max_nonspec;
double e_step_nonspec;
double theta_min_nonspec;
double theta_max_nonspec;
double theta_step_nonspec;
double zentry;
double zexit;
double *zentry_vec;
double *zexit_vec;
double *radius_1_vec;
double *radius_2_vec;
t_Table reflec_top_table;
t_Table reflec_bottom_table;
t_Table reflec_side_table;
t_Table size_table;
// array which stores the pore walls that the ray reflects onto
unsigned char reflections[16];
// index of the latest reflection to occur
char ref_index;
t_Table non_specular_table;
%}
INITIALIZE
%{
#define MAX_TRACKED_REFLECTIONS 16
char *filenames[]={mirror_reflec,bottom_reflec,side_reflec};
t_Table *ref_tables[]={&reflec_top_table,&reflec_bottom_table,&reflec_side_table};
int i;
/*read data from files into tables using read_table-lib*/
for (i=0;i<3;i++){
char *reflec=filenames[i];
t_Table *tp=ref_tables[i];
if (reflec && strlen(reflec)) {
char **header_parsed;
/* read 1st block data from file into tp */
if (Table_Read(tp, reflec, 1) <= 0)
{
exit(fprintf(stderr,"Error(%s): cannot read file %s\n",NAME_CURRENT_COMP, reflec));
}
header_parsed = Table_ParseHeader(tp->header,
"e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
header_parsed[3] && header_parsed[4] && header_parsed[5])
{
e_min[i]=strtod(header_parsed[0],NULL);
e_max[i]=strtod(header_parsed[1],NULL);
e_step[i]=strtod(header_parsed[2],NULL);
theta_min[i]=strtod(header_parsed[3],NULL);
theta_max[i]=strtod(header_parsed[4],NULL);
theta_step[i]=strtod(header_parsed[5],NULL);
} else {
exit(fprintf(stderr,"Error (%s): wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, reflec));
}
if (!((int)(e_max[i]-e_min[i]) == (int)((tp->rows-1)*e_step[i])))
{
exit(fprintf(stderr,"Error (%s): e_step does not match e_min and e_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
if (!((int)(theta_max[i]-theta_min[i]) == (int)((tp->columns-1)*theta_step[i])))
{
exit(fprintf(stderr,"Error (%s): theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
}else{
/*mark the table as unread by setting "rows" to -1
This will trigger the default reflectivity.*/
tp->rows=-1;
}
}
/* Read table with mirror module parameters*/
if(size_file){
if (Table_Read(&(size_table), size_file, ring_nr) <=0)
exit(fprintf(stderr, "Error (%s): Could not read %s. Aborting.\n",NAME_CURRENT_COMP, size_file));
}
zentry_vec=calloc(size_table.rows,sizeof(double));
zexit_vec=calloc(size_table.rows,sizeof(double));
radius_1_vec=calloc(size_table.rows,sizeof(double));
radius_2_vec=calloc(size_table.rows,sizeof(double));
/*all the plates in 1 ring are identical - i.e. we can set the plate xwidth once and for all.*/
xwidth=Table_Index(size_table,0,6);
double alpha,thetap,thetah,P,d,e,C0,Z;
double radius_m, radius_1, radius_2;
/*There are in general 68 reflecting planes*/
for (i=0;i<size_table.rows;i++){
radius_m = Table_Index(size_table,i,4);
/* compute some pore parameters*/
alpha=0.25*atan(radius_m/Z0);
double D,Z0p;
if (primary){
Z0p=radius_m/tan(alpha);
length=Table_Index(size_table,i,1);
D=sqrt(radius_m*radius_m + Z0p*Z0p);
zentry=Z0p*(1-(D+length)/D);
zexit=0;
radius_1=(D+length)/D*radius_m;
radius_2=radius_m;
}else{
alpha*=3.0;
Z0p=radius_m/tan(alpha);
length=Table_Index(size_table,i,2);
D=sqrt(radius_m*radius_m + Z0p*Z0p);
zentry=0;
zexit=Z0p*(1-(D-length)/D);
radius_1=radius_m;
radius_2=(D-length)/D*radius_m;
}
zentry_vec[i] = zentry;
zexit_vec[i] = zexit;
radius_1_vec[i] = radius_1;
radius_2_vec[i] = radius_2;
}
/*find minimum zentry - i.e. the "first" entry plane.*/
zentry = zentry_vec[0];
for(i=0;i<size_table.rows-1;i++){
if(zentry_vec[i] < zentry){
zentry = zentry_vec[i];
}
}
zexit = zexit_vec[0];
for(i=0;i<size_table.rows-1;i++){
if(zexit_vec[i] > zexit){
zexit = zexit_vec[i];
}
}
nEntry[0]=0;
nEntry[1]=0;
nEntry[2]=-1;
wEntry[0]=wEntry[1]=0;wEntry[2]=zentry;
nExit[0]=0;
nExit[1]=0;
nExit[2]=1;
wExit[0]=wExit[1]=0;wExit[2]=zexit;
if(non_specular_file && strlen(non_specular_file)){
if (Table_Read(&(non_specular_table), non_specular_file, 0) <= 0)
exit(fprintf(stderr, "Error (%s): Could not read %s. Aborting.\n",NAME_CURRENT_COMP, non_specular_file));
char** header_parsed = Table_ParseHeader(non_specular_table.header,
"e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
header_parsed[3] && header_parsed[4] && header_parsed[5])
{
e_min_nonspec=strtod(header_parsed[0],NULL);
e_max_nonspec=strtod(header_parsed[1],NULL);
e_step_nonspec=strtod(header_parsed[2],NULL);
theta_min_nonspec=strtod(header_parsed[3],NULL);
theta_max_nonspec=strtod(header_parsed[4],NULL);
theta_step_nonspec=strtod(header_parsed[5],NULL);
} else {
exit(fprintf(stderr,"Error (%s): wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, non_specular_file));
}
if (!((int)(e_max_nonspec-e_min_nonspec) == (int)((non_specular_table.rows-1)*e_step_nonspec)))
{
exit(fprintf(stderr,"Error (%s): e_step does not match e_min and e_max in file %s\n",NAME_CURRENT_COMP, non_specular_file));
}
if (!((int)(theta_max_nonspec-theta_min_nonspec) == (int)((non_specular_table.columns-1)*theta_step_nonspec)))
{
exit(fprintf(stderr,"Error (%s): theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, non_specular_file));
}
}
%}
TRACE
%{
ref_index = -1;
double r_entry_min,r_entry_max,r2;
int hit=0;
int hit_chamfer=0;
double psi_max,psi_min,psi;
double radius_m;
/*assuming the table to be sorted*/
ALLOW_BACKPROP;
PROP_Z(zentry);
r_entry_min = radius_1_vec[0];
r_entry_max = radius_1_vec[size_table.rows-1];
r2 = (x*x + y*y);
//bounds of the module as a whole
psi_min=-xwidth*0.5/(r_entry_min-pore_height);
psi_max= xwidth*0.5/(r_entry_min-pore_height);
psi=atan2(x,y);
hit = ( ( r2 > ( r_entry_min-pore_height )*( r_entry_min-pore_height ) ) && ( r2 < ( r_entry_max + pore_th )*( r_entry_max + pore_th ) )
&& (psi>psi_min && psi<psi_max) );
if (hit){
/*we are within range for entering the the mirror module - we might still miss due to beam divergence though*/
hit=0;
int ii=0;
int hit_chamfer=0;
int upside_down_plate;
double local_pore_height;
double radius_entry;
while( !hit && ii<size_table.rows){
ALLOW_BACKPROP;
PROP_Z(zentry_vec[ii]);
radius_m = Table_Index(size_table,ii,4);
radius_entry = radius_1_vec[ii];
upside_down_plate = Table_Index(size_table, ii, 8);
if(upside_down_plate){
local_pore_height = 2*pore_height;
} else {
local_pore_height = pore_height;
}
hit= ( ( x*x + y*y < radius_entry*radius_entry ) && ( x*x + y*y >(radius_entry-local_pore_height)*(radius_entry-local_pore_height) ) ) ;
ii++;
}
/*if we have missed all plates, terminate the ray*/
if (!hit){
ABSORB;
}
double alpha=0.25*atan(radius_m/Z0);
if(!primary){
alpha *= 3;
}
/*figure out which pore we hit*/
int jj=0;
// Width of the plate in pores
double width_pores = (xwidth-chamfer_width)/(pore_width+chamfer_width);
// photon psi in pores
double psi_pores = (psi - (-xwidth*0.5)/(radius_entry-local_pore_height)) *(radius_entry-local_pore_height)/ ( radius_entry+chamfer_width);
char hit_final_pore = 0;
if(psi_pores >= 0 && psi_pores < width_pores){
hit = 1 & hit;
jj = (int) floor(psi_pores);
//If the pore that is hit is the last pore on the plate, modify the
//pore width and chamfer width so it corresponds to the final, larger
//pore.
if(jj >= floor(width_pores) - 1){
jj = floor(width_pores) - 1;
hit_final_pore = 1;
}
} else {
hit = 0;
}
/*check for side_wall (chamfer) hit (obscuration)*/
hit_chamfer=0;
if(hit_final_pore && psi > xwidth/2/(radius_entry-local_pore_height) - chamfer_width){
hit_chamfer=1;
hit=0;
ABSORB;
} else if ( (psi - (-xwidth/2.0 + jj*(pore_width+chamfer_width))/(radius_entry-local_pore_height)) <chamfer_width/(radius_entry-local_pore_height) ){
hit_chamfer=1;
hit=0;
ABSORB;
}
int coatedPlate = Table_Index(size_table, ii, 7);
enum {LEFT, RIGHT, TOP, BOTTOM, EXIT, NONE} wall;
t_Table *reflec_table=NULL;
double R;
if(hit){
SCATTER;
int exit=0;
int intersections[5];
int i_small;
double l[5];
double l_small;
double nx,ny,nz;
psi_min=( -xwidth/2.0 + jj*(pore_width+chamfer_width) + chamfer_width)/(radius_entry-local_pore_height);
if (hit_final_pore){
psi_max = (xwidth/2.0-chamfer_width)/(radius_entry-local_pore_height);
} else {
psi_max=( -xwidth/2.0 + (jj+1)*(pore_width+chamfer_width))/(radius_entry-local_pore_height);
}
/*TODO side wall planes*/
nLeft[0]=cos(psi_min); nLeft[1]=-sin(psi_min); nLeft[2]=0;
wLeft[0]=radius_entry*sin(psi_min); wLeft[1]=radius_entry*cos(psi_min); wLeft[2]=0;
nRight[0]=cos(psi_max); nRight[1]=-sin(psi_max); nRight[2]=0;
wRight[0]=radius_entry*sin(psi_max); wRight[1]=radius_entry*cos(psi_max); wRight[2]=0;
while (!exit){
l_small=DBL_MAX;
wall=NONE;
double nx,ny,nz;
double wx,wy,wz;
int prm_idx;/*index indicating which table parameter set to choose*/
/*left wall*/
intersections[LEFT]=plane_intersect(l+LEFT,x,y,z,kx,ky,kz,nLeft[0],nLeft[1],nLeft[2],wLeft[0],wLeft[1],wLeft[2]);
if (intersections[LEFT] && l[LEFT]>DBL_EPSILON && l[LEFT]<l_small) {l_small=l[LEFT];i_small=intersections[LEFT];wall=LEFT;}
/*right wall*/
intersections[RIGHT]=plane_intersect(l+RIGHT,x,y,z,kx,ky,kz,nRight[0],nRight[1],nRight[2],wRight[0],wRight[1],wRight[2]);
if (intersections[RIGHT] && l[RIGHT]>DBL_EPSILON && l[RIGHT]<l_small) {l_small=l[RIGHT];i_small=intersections[RIGHT];wall=RIGHT;}
/*exit plane*/
intersections[EXIT]=plane_intersect(l+EXIT,x,y,z,kx,ky,kz,nExit[0],nExit[1],nExit[2],wExit[0],wExit[1],wExit[2]);
if (intersections[EXIT] && l[EXIT]>DBL_EPSILON && l[EXIT]<l_small) {l_small=l[EXIT];i_small=intersections[EXIT];wall=EXIT;}
/*top surface - the real reflecting surface*/
intersections[TOP]=intersect_cone((l+TOP),x,y,z,kx,ky,kz,alpha,radius_m,&(nTop[0]),&(nTop[1]),&(nTop[2]));
if (intersections[TOP] && l[TOP]>DBL_EPSILON && l[TOP]<l_small) {l_small=l[TOP];i_small=intersections[TOP];wall=TOP;}
/*bottom surface*/
intersections[BOTTOM]=intersect_cone((l+BOTTOM),x,y,z,kx,ky,kz,alpha,radius_m-local_pore_height,&(nBottom[0]),&(nBottom[1]),&(nBottom[2]));
if (intersections[BOTTOM] && l[BOTTOM]>DBL_EPSILON && l[BOTTOM]<l_small) {l_small=l[BOTTOM];i_small=intersections[BOTTOM];wall=BOTTOM;}
/*sort intersections to find the smallest positive one*/
switch (wall){
case LEFT:
/*handle left wall "reflection"*/
reflec_table=&reflec_side_table;
nx=nLeft[0];ny=nLeft[1];nz=nLeft[2];
prm_idx=2;
break;
case RIGHT:
/*handle right wall "reflection"*/
reflec_table=&reflec_side_table;
nx=nRight[0];ny=nRight[1];nz=nRight[2];
prm_idx=2;
break;
case TOP:
/*handle top wall reflection*/
if(coatedPlate){
reflec_table=&reflec_top_table;
prm_idx=0;
} else {
reflec_table=&reflec_bottom_table;
prm_idx=1;
}
nx=nTop[0];ny=nTop[1];nz=nTop[2];
break;
case BOTTOM:
/*handle bottom wall "reflection"*/
reflec_table=&reflec_bottom_table;
nx=nBottom[0];ny=nBottom[1];nz=nBottom[2];
prm_idx=1;
break;
case EXIT:
/*photon will exit pore*/
exit=1;
break;
}
ref_index++;
if(exit){
break;
} else if(ref_index < MAX_TRACKED_REFLECTIONS){
reflections[ref_index] = wall;
}
PROP_DL(l_small);
double kix=kx,kiy=ky,kiz=kz;
double k=sqrt(kx*kx+ ky*ky + kz*kz);
double e=K2E*k;
double s=scalar_prod(kx,ky,kz,nx,ny,nz);
double theta=RAD2DEG*(M_PI_2-acos(s/k)); /*pi_2 since theta is supposed to be the grazing angle*/
/*if we have waviness alter the normal vector slightly*/
if(waviness!=0){
/*assuming theta to be small we might disregard atan*/
if(longw){
double dtheta;
if(&non_specular_table!=NULL){
double lw;
lw = Table_Value2d(non_specular_table, (e-e_min[2])/e_step[2], (theta-theta_min[2])/theta_step[2]);
dtheta=lorentzDistribution(0, lw, _particle);
printf("lorentz dtheta %e\n");
} else if(theta<waviness){
dtheta=rand01()*(theta+waviness)-theta;
} else {
dtheta=randpm1()*waviness;
}
double tx,ty,tz;
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
}else{
/*waviness is also transversal but isotropic*/
double radius;
if(theta<waviness){
radius=atan(waviness);
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx,radius);
}else{
radius=(atan(theta)+atan(waviness))/2.0;
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx+radius-atan(theta),radius);
}
NORM(nx,ny,nz);
}/*reflect the photon through the surface normal*/
/*recompute theta*/
theta=RAD2DEG*0.5*acos(scalar_prod(kx,ky,kz,kix,kiy,kiz)/k/k);
}
/*reflect the photon through the surface normal*/
if(s!=0){
kx-=2*s*nx;
ky-=2*s*ny;
kz-=2*s*nz;
}
if(&non_specular_table!=NULL){
double lw = Table_Value2d(non_specular_table, (e-e_min_nonspec)/e_step_nonspec, (theta-theta_min_nonspec)/theta_step_nonspec);
double dtheta=lorentzDistribution(0, lw, _particle)*M_PI/180;
double tx,ty,tz;
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(kx, ky, kz, kx, ky, kz, dtheta, tx,ty,tz);
}
SCATTER;
if(reflec_table==NULL || reflec_table->rows==-1){
R=R_d;
}else{
R=Table_Value2d(*reflec_table,(e-e_min[prm_idx])/e_step[prm_idx], (theta-theta_min[prm_idx])/theta_step[prm_idx]);
}
p*=R;
}
}else if (hit_chamfer){
ABSORB;
}else{
/*no hit*/
ABSORB;
}
}else{
ABSORB;
}
%}
FINALLY
%{
free(zentry_vec);
%}
MCDISPLAY
%{
magnify("");
int k,j;
double dth,theta,t0,t1,inner_m,inner_p;
double r_p[3],r_m[3],w[3],yh[2];
const int N=20;
r_p[0] = Table_Index(size_table,size_table.rows,5);
r_p[1] = Table_Index(size_table,size_table.rows/2,5);
r_p[2] = Table_Index(size_table,0,5);
yh[0]=r_p[0]-r_p[2];
yh[1]=pore_height;
r_m[0] = Table_Index(size_table,size_table.rows,4);
r_m[1] = Table_Index(size_table,size_table.rows/2,4);
r_m[2] = Table_Index(size_table,0,4);
w[0]=w[2]=xwidth;w[1]=pore_width;
for (j=0;j<2;j++){
theta=w[j]/2.0/r_m[j];
inner_m=r_m[j]-yh[j];
inner_p=r_p[j]-yh[j];
line(0,0+r_m[j],0, 0,r_p[j]-r_m[j]+r_m[j],zentry); /*this extra line indicates the reflecting surface*/
line( sin(theta)*r_m[j], (cos(theta)-1)*r_m[j]+r_m[j], 0, sin(theta)*r_p[j], cos(theta)*r_p[j]-r_m[j]+r_m[j], zentry);
line(-sin(theta)*r_m[j], (cos(theta)-1)*r_m[j]+r_m[j], 0, -sin(theta)*r_p[j], cos(theta)*r_p[j]-r_m[j]+r_m[j], zentry);
line( sin(theta)*inner_m, cos(theta)*inner_m-r_m[j]+r_m[j], 0, sin(theta)*inner_p, cos(theta)*inner_p-r_m[j]+r_m[j], zentry);
line(-sin(theta)*inner_m, cos(theta)*inner_m-r_m[j]+r_m[j], 0, -sin(theta)*inner_p, cos(theta)*inner_p-r_m[j]+r_m[j], zentry);
line( sin(theta)*r_m[j], (cos(theta)-1)*r_m[j]+r_m[j], 0, sin(theta)*inner_m, cos(theta)*inner_m-r_m[j]+r_m[j], 0);
line(-sin(theta)*r_m[j], (cos(theta)-1)*r_m[j]+r_m[j], 0, -sin(theta)*inner_m, cos(theta)*inner_m-r_m[j]+r_m[j], 0);
line( sin(theta)*r_p[j], cos(theta)*r_p[j]-r_m[j]+r_m[j], zentry, sin(theta)*inner_p, cos(theta)*inner_p-r_m[j]+r_m[j], zentry);
line(-sin(theta)*r_p[j], cos(theta)*r_p[j]-r_m[j]+r_m[j], zentry, -sin(theta)*inner_p, cos(theta)*inner_p-r_m[j]+r_m[j], zentry);
dth=2*theta/N;
for (k=1;k<N+1;k++){
t0=-theta+(k-1)*dth;
t1=-theta+k*dth;
line( sin(t0)*r_m[j], cos(t0)*r_m[j]-r_m[j]+r_m[j], 0, sin(t1)*r_m[j], cos(t1)*r_m[j]-r_m[j]+r_m[j], 0);
line( sin(t0)*inner_m, cos(t0)*inner_m-r_m[j]+r_m[j], 0, sin(t1)*inner_m, cos(t1)*inner_m-r_m[j]+r_m[j], 0);
line( sin(t0)*r_p[j], cos(t0)*r_p[j]-r_m[j]+r_m[j], zentry, sin(t1)*r_p[j], cos(t1)*r_p[j]-r_m[j]+r_m[j], zentry);
line( sin(t0)*inner_p, cos(t0)*inner_p-r_m[j]+r_m[j], zentry, sin(t1)*inner_p, cos(t1)*inner_p-r_m[j]+r_m[j], zentry);
}
}
%}
END
|