File: Pore_p.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (405 lines) | stat: -rw-r--r-- 16,354 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*****************************************************************************
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Pore_p
*
* %Identification
*
* Written by: Erik B Knudsen and Desiree D. M. Ferreira 
* Date: Feb. 2016
* Version: 1.0
* Release: McXtrace 1.2
* Origin: DTU Physics, DTU Space
*
* Single Pore as part of the Silicon Pore Optics (SPO) as envisioned for the ATHENA+ space telescope.
*
* %Description
* A single pore is simulated, which may have thick walls. The top and bottom are curved cylindrically
* azimuthally, and according to the Wolter I optic lengthwise (sagitally). This is the parabolic part.
* The azimuthal curvature is defined by the radius parameters. This refers to the center of the pore. I.e the top
* and bottom plates have radius of curvature <radius+yheight/2> and <radius-yheight/2> respectively.
* 
* To intersect the Wolter I plates we take advatage of the azimuthal symmetry and only consider the radial component
* of the photon's wavevector.
*
* %Parameters
* Input parameters:
* radius_m: [m] Ring radius of the upper (reflecting) plate of the pore at the intersection with the hyperbolic section.
* radius_p: [m] Ring radius of the upper (reflecting) plate of the pore at the edge furthest away from the focal point.
* yheight:  [m] Height of the pore. (Thus the inner radius is radius_{m,h}-yehight.
* xwidth: [m]  Width of the pore.
* chamferwidth: [m] Width of side walls.
* gap: [m] gap between intersection with parabolic section and actual plate.
* Z0: [m] distance between intersection plane and the focal spot( essentially the focal length).
* mirror_reflec: [ ] Data file containing reflectivities of the reflector surface (TOP).
* side_reflec:  [ ]   Data file containing reflectivities of the side walls (LEFT and RIGHT).
* bottom_reflec: [ ]  Data file containing reflectivities of the bottom surface (BOTTOM).
* R_d: [ ] Default reflectivity value to use if no reflectivity file is given. Useful f.i. is one surface is reflecting and the others absorbing.
* 
* %End
*******************************************************************************/

DEFINE COMPONENT Pore_p
SETTING PARAMETERS (radius_p, radius_m, Z0, xwidth, yheight, gap=0, chamferwidth=0, zdepth=0, string mirror_reflec="", string bottom_reflec="", string side_reflec="", R_d=1, waviness=0, longw=0)

SHARE
%{
%include "read_table-lib"
#ifndef MCSPO_INTERSECT_PARABOLOID
#define MCSPO_INTERSECT_PARABOLOID 1
    int intersect_paraboloid(double *l0, double x, double y, double z, double kx, double ky, double kz, double Z0, double radius, double *nx, double *ny, double *nz){
        /* Intersection routine for a paraboloid as given by the paper by vanspeybroeck and Chase (appl. optics. 1972)*/
        double alpha,thetap,thetah,P,d,e,C0;
        alpha=0.25*atan(radius/Z0);
        thetap=alpha;
        thetah=alpha*3;
        P=Z0*tan(4*alpha)*tan(thetap);
        d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
        e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
        C0=4*e*e*P*d/(e*e-1);

        double kxn=kx,kyn=ky,kzn=kz;
        NORM(kxn,kyn,kzn);

        double A,B,C;
        A=kxn*kxn + kyn*kyn;
        B=2*(kxn*x + kyn*y+ P*kzn);
        C=x*x + y*y -P*P - 2*P*(Z0-z) - C0;
        int status;
        double l1;
        if ( (status=solve_2nd_order(l0,&l1,A,B,C))==0 ){
            /*note that if l1->NULL only the smallest positive solution is returned*/
            /*fprintf(stderr,"Error(%s): No solution to second order eq.\n","Pore_p");*/
            return status;
        }
        /*compute normal vector*/
        x+=kxn* (*l0);
        y+=kyn* (*l0);
        z+=kzn* (*l0);

        double delta_y=-P*pow(P*P+2*P*(Z0-z)+C0,-0.5);
        double rp=sqrt(P*P + 2*P*(Z0-z) + C0);

        /* The tilt of the normal vector perpendicular to the optical axis
         * depends only on the displacement in x*/
        *nx=x/rp;
        *ny=y/rp;
        *nz = 0 - delta_y + 0;
        /* the minus sign since a negative slope in rp results in the normal tilting "forward" which
           corresponds to a positive sign in z*/
        NORM(*nx,*ny,*nz);
        return status;
    }
#endif
%}

DECLARE
%{
    double nExit[3];
    double wExit[3];
    double nEntry[3];
    double wEntry[3];
    double nTop[3];
    double nBottom[3];
    double nRight[3];
    double wRight[3];
    double nLeft[3];
    double wLeft[3];
    double radius_1;
    double radius_2;
    double e_min[3];
    double e_step[3];
    double e_max[3];
    double theta_min[3];
    double theta_step[3];
    double theta_max[3];

    double zentry;

    t_Table reflec_top_table;
    t_Table reflec_bottom_table;
    t_Table reflec_side_table;
    t_Table wave_table[1024];
%}

INITIALIZE
%{
    char *filenames[]={mirror_reflec,bottom_reflec,side_reflec};
    t_Table *ref_tables[]={&reflec_top_table,&reflec_bottom_table,&reflec_side_table};
    int i;

    /*read data from files into tables using read_table-lib*/
    for (i=0;i<3;i++){
        char *reflec=filenames[i];
        t_Table *tp=ref_tables[i];
        if (reflec && strlen(reflec)) {
            char **header_parsed;
            /* read 1st block data from file into tp */
            if (Table_Read(tp, reflec, 1) <= 0)
            {
                exit(fprintf(stderr,"Error(%s): can not read file %s\n",NAME_CURRENT_COMP, reflec));
            }
            header_parsed = Table_ParseHeader(tp->header,
                    "e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
            if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
                    header_parsed[3] && header_parsed[4] && header_parsed[5])
            {
                e_min[i]=strtod(header_parsed[0],NULL);
                e_max[i]=strtod(header_parsed[1],NULL);
                e_step[i]=strtod(header_parsed[2],NULL);
                theta_min[i]=strtod(header_parsed[3],NULL);
                theta_max[i]=strtod(header_parsed[4],NULL);
                theta_step[i]=strtod(header_parsed[5],NULL);
            } else {
                exit(fprintf(stderr,"Error (%s): wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, reflec));
            }
            if (!((int)(e_max[i]-e_min[i]) == (int)((tp->rows-1)*e_step[i])))
            {
                exit(fprintf(stderr,"Error (%s): e_step does not match e_min and e_max in file %s\n",NAME_CURRENT_COMP, reflec));
            }
            if (!((int)(theta_max[i]-theta_min[i]) == (int)((tp->columns-1)*theta_step[i])))
            {
                exit(fprintf(stderr,"Error (%s): theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, reflec));
            }
        }else{
            /*mark the table as unread by setting "rows" to -1
              This will trigger the default reflectivity.*/
            tp->rows=-1;
        }
    }

    /* compute some pore parameters for the parabolic or hyperbolic equations*/
    /* the z coordinate of the entry plane*/
    /*assuming the parameter xi==1*/
    double alpha,thetap,thetah,P,d,e,C0,Z;
    alpha=0.25*atan(radius_m/Z0);
    thetap=alpha;
    thetah=alpha*3;
    P=Z0*tan(4*alpha)*tan(thetap);
    d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
    e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
    C0=4*e*e*P*d/(e*e-1);

    /*solve to get the z-coordinate of the entry plane, assuming radius_1 to be bigger*/
    Z=(pow(radius_p,2.0) - pow(P,2.0)- C0 ) /(2*P);
    zentry=Z0-Z;
    double cosa=cos(xwidth/2.0/radius_m);
    double sina=sin(xwidth/2.0/radius_m);
    /*side wall, entry, and exit planes*/
    nLeft[0]= cosa;
    nLeft[1]=-sina;
    nLeft[2]=0;
    wLeft[0]=radius_m*(sina);
    wLeft[1]=radius_m*(1-cosa);
    wLeft[2]=0;

    nRight[0]=-cosa;
    nRight[1]=-sina;
    nRight[2]=0;
    wRight[0]=-radius_m*(sina);
    wRight[1]=-radius_m*(1-cosa);
    wRight[2]=0;

    nEntry[0]=0;
    nEntry[1]=0;
    nEntry[2]=-1;
    wExit[0]=wExit[1]=0;wExit[2]=zentry;

    nExit[0]=0;
    nExit[1]=0;
    nExit[2]=1;
    wExit[0]=wExit[1]=wExit[2]=0;

%}

TRACE
%{
    enum {LEFT, RIGHT, TOP, BOTTOM, EXIT, NONE} wall;
    t_Table *reflec_table=NULL;
    int hit_pore, hit_chamfer;
    double R;

    /*first do a test prop to see if the photon will enter the pore*/
    double tmpt,tmpx,tmpy, dl;
    tmpt=(zentry-z)/kz;
    tmpx=x+kx*tmpt;
    tmpy=y+ky*tmpt;

    double psi_max,psi_min,psi;
    psi_min=-xwidth*0.5/radius_m;
    psi_max= xwidth*0.5/radius_m;
    psi=atan2(tmpx,tmpy+radius_m);

    hit_pore= ( ( tmpx*tmpx + (tmpy+radius_m)*(tmpy+radius_m) < radius_p*radius_p ) && ( tmpx*tmpx + (tmpy+radius_m)*(tmpy+radius_m) >(radius_p-yheight)*(radius_p-yheight) ) && (psi>psi_min && psi<psi_max)) ;
    hit_chamfer=0;

    if(hit_pore){
        /*Moving photon to z=zentry. This odd way of writing this, is to handle phase and time automatically.*/
        z-=zentry;
        ALLOW_BACKPROP;
	PROP_Z0;
        z+=zentry;

        SCATTER;
        int exit=0;
        int intersections[5]={0,0,0,0,0};
        int i_small;
        double l[5]={100000.0, 100000.0, 100000.0, 100000.0, 100000.0};
        double l_small;

        double nx,ny,nz;

        while (!exit){
            l_small=DBL_MAX;
            wall=NONE;
            double nx,ny,nz;
            double wx,wy,wz;
            int prm_idx;/*index indicating which table parameter set to choose*/
            /*left wall*/            
            intersections[LEFT]=plane_intersect(l+LEFT,x,y,z,kx,ky,kz,nLeft[0],nLeft[1],nLeft[2],wLeft[0],wLeft[1],wLeft[2]);
            if (intersections[LEFT] && l[LEFT]>DBL_EPSILON && l[LEFT]<l_small) {l_small=l[LEFT];i_small=intersections[LEFT];wall=LEFT;}
            /*right wall*/            
            intersections[RIGHT]=plane_intersect(l+RIGHT,x,y,z,kx,ky,kz,nRight[0],nRight[1],nRight[2],wRight[0],wRight[1],wRight[2]);
            if (intersections[RIGHT] && l[RIGHT]>DBL_EPSILON && l[RIGHT]<l_small) {l_small=l[RIGHT];i_small=intersections[RIGHT];wall=RIGHT;}
            /*exit plane*/
            intersections[EXIT]=plane_intersect(l+EXIT,x,y,z,kx,ky,kz,nExit[0],nExit[1],nExit[2],wExit[0],wExit[1],wExit[2]);
            if (intersections[EXIT] && l[EXIT]>DBL_EPSILON && l[EXIT]<l_small) {l_small=l[EXIT];i_small=intersections[EXIT];wall=EXIT;}
            /*top surface - the real reflecting surface*/
            intersections[TOP]=intersect_paraboloid((l+TOP),x,y+radius_m,z,kx,ky,kz,Z0,radius_m,&(nTop[0]),&(nTop[1]),&(nTop[2]));
            if (intersections[TOP] && l[TOP]>DBL_EPSILON && l[TOP]<l_small) {l_small=l[TOP];i_small=intersections[TOP];wall=TOP;}
            /*bottom surface*/
            intersections[BOTTOM]=intersect_paraboloid((l+BOTTOM),x,y+radius_m,z,kx,ky,kz,Z0,radius_m-yheight,&(nBottom[0]),&(nBottom[1]),&(nBottom[2]));
            if (intersections[BOTTOM] && l[BOTTOM]>DBL_EPSILON && l[BOTTOM]<l_small) {l_small=l[BOTTOM];i_small=intersections[BOTTOM];wall=BOTTOM;}

            /*sort intersections ot find the smallest positive one*/
            switch (wall){
                case LEFT:
                    /*handle left wall "reflection"*/
                    reflec_table=&reflec_side_table;
                    nx=nLeft[0];ny=nLeft[1];nz=nLeft[2];
                    prm_idx=2;
                    break;
                case RIGHT:
                    /*handle right wall "reflection"*/
                    reflec_table=&reflec_side_table;
                    nx=nRight[0];ny=nRight[1];nz=nRight[2];
                    prm_idx=2;
                    break;
                case TOP:
                    /*handle top wall reflection*/
                    reflec_table=&reflec_top_table;
                    nx=nTop[0];ny=nTop[1];nz=nTop[2];
                    prm_idx=0;
                    break;
                case BOTTOM:
                    /*handle bottom wall "reflection"*/
                    reflec_table=&reflec_bottom_table;
                    nx=nBottom[0];ny=nBottom[1];nz=nBottom[2];
                    prm_idx=1;
                    break;
                case EXIT:
                    /*photon will exit pore*/
                    exit=1;
                    break;
            }
            if(exit){
                continue;
            }
            PROP_DL(l_small);

            double kix=kx,kiy=ky,kiz=kz;
            double k=sqrt(kx*kx+ ky*ky + kz*kz);
            double e=K2E*k;
            double s=scalar_prod(kx,ky,kz,nx,ny,nz);
            double theta=RAD2DEG*(M_PI_2-acos(s/k)); /*pi_2 since theta is supposed to be the grazing angle*/

            /*if we have waviness alter the normal vector slightly*/
            if(waviness!=0){
                /*assuming theta to be small we might disregard atan*/
                if(longw){
                    double dtheta;
                    if(theta<waviness){
                        dtheta=rand01()*(theta+waviness)-theta;
                    }else{
                        dtheta=randpm1()*waviness;
                    }
                    double tx,ty,tz;
                    vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
                    rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
                }else{
                    /*waviness is also transversal but isotropic*/
                    double radius;
                    if(theta<waviness){
                        radius=atan(waviness);
                        randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx,radius);
                    }else{
                        radius=(atan(theta)+atan(waviness))/2.0;
                        randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx+radius-atan(theta),radius);
                    }
                    NORM(nx,ny,nz);
                }
                /*recompute theta*/
                theta=RAD2DEG*0.5*acos(scalar_prod(kx,ky,kz,kix,kiy,kiz)/k/k);
            }
            /*reflect the photon through the surface normal*/
            if(s!=0){
                kx-=2*s*nx;
                ky-=2*s*ny;
                kz-=2*s*nz;
            }
            SCATTER;
            if(reflec_table==NULL || reflec_table->rows==-1){
                R=R_d;
            }else{
                R=Table_Value2d(*reflec_table,(e-e_min[prm_idx])/e_step[prm_idx], (theta-theta_min[prm_idx])/theta_step[prm_idx]);
            }
            p*=R;
        }
    }else if (hit_chamfer){
        ABSORB;
    }else{
        /*no hit*/
        ABSORB;
    }
%}

MCDISPLAY
%{
    int k;
    double dth,theta,t0,t1,inner_m,inner_p;
    const int N=20;

    theta=xwidth/2.0/radius_m;
    inner_m=radius_m-yheight;
    inner_p=radius_p-yheight;

    magnify("");
    line(0,0,0, 0,radius_p-radius_m,zentry); /*this extra line indicates the reflecting surface*/
    line( sin(theta)*radius_m, (cos(theta)-1)*radius_m, 0,  sin(theta)*radius_p, cos(theta)*radius_p-radius_m, zentry);
    line(-sin(theta)*radius_m, (cos(theta)-1)*radius_m, 0, -sin(theta)*radius_p, cos(theta)*radius_p-radius_m, zentry);   
 
    line( sin(theta)*inner_m, cos(theta)*inner_m-radius_m, 0,  sin(theta)*inner_p, cos(theta)*inner_p-radius_m, zentry);
    line(-sin(theta)*inner_m, cos(theta)*inner_m-radius_m, 0, -sin(theta)*inner_p, cos(theta)*inner_p-radius_m, zentry);

    line( sin(theta)*radius_m, (cos(theta)-1)*radius_m, 0,  sin(theta)*inner_m, cos(theta)*inner_m-radius_m, 0);
    line(-sin(theta)*radius_m, (cos(theta)-1)*radius_m, 0, -sin(theta)*inner_m, cos(theta)*inner_m-radius_m, 0);
    line( sin(theta)*radius_p, cos(theta)*radius_p-radius_m, zentry,  sin(theta)*inner_p, cos(theta)*inner_p-radius_m, zentry);
    line(-sin(theta)*radius_p, cos(theta)*radius_p-radius_m, zentry, -sin(theta)*inner_p, cos(theta)*inner_p-radius_m, zentry);

    dth=2*theta/N;
    for (k=1;k<N+1;k++){
        t0=-theta+(k-1)*dth;
        t1=-theta+k*dth;
        line( sin(t0)*radius_m, cos(t0)*radius_m-radius_m, 0, sin(t1)*radius_m, cos(t1)*radius_m-radius_m, 0);
        line( sin(t0)*inner_m, cos(t0)*inner_m-radius_m, 0, sin(t1)*inner_m, cos(t1)*inner_m-radius_m, 0);
    
        line( sin(t0)*radius_p, cos(t0)*radius_p-radius_m, zentry, sin(t1)*radius_p, cos(t1)*radius_p-radius_m, zentry);
        line( sin(t0)*inner_p, cos(t0)*inner_p-radius_m, zentry, sin(t1)*inner_p, cos(t1)*inner_p-radius_m, zentry);
    }

%}

END