1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Shell_p
*
* %Identification
*
* Written by: Erik B Knudsen and Desiree D. M. Ferreira
* Date: Feb. 2016
* Version: 1.0
* Release: McXtrace 1.2
* Origin: DTU Physics, DTU Space
*
* Single parabolic shell as part of a Wolter optic.
*
* %Description
* A single shell is simulated. The top and bottom are curved cylindrically
* azimuthally. The sagital profile is defined by a parabola, which passes through the radii raidus_m
* at z=0, and radius_p at zentry (<0).
*
* To intersect the Wolter I plates we take advatage of the azimuthal symmetry and only consider the radial component
* of the photon's wavevector.
*
* Imperfect mirrors may be modelled using one of 4 models. In all cases the surface normal of the mirror
* at the ideal mirror intersection point is perturbed before the exit vector is computed.
* 1. Longitudinal 1D. A perturbation angle is chosen from a uniform distribution with width waviness.
* 2. Isotropic 2D. The surface normal is perturbed by choosing an angle on a disc with radius waviness
* 3. Externally measured/computed data. We interpolate in a data-file consisting of blocks of dtheta/theta
* with 1 block per energy. dtheta is a sampled angle offset from the nominal Fresnel grazing angle
* theta.
* 4. Double gaussian. dtheta is chosen from one of two gaussian distributions. Either specular or off-specular, where the
* widths (sigmas) are given by the tables in the file "wave_file". If the off-specular case the behaviour is similar
* to 2D uniform case.
*
* In the case of 3, the format of the data file should be:
* #e_min=0.1
* #e_max=15
* #e_step=0.01
* #theta_min=0.01
* #theta_max=1.5
* #theta_step=0.01
* #dtheta_min=-0.02
* #dtheta_max=0.02
* #dtheta_step=0.001
* 1.0 0.9 0.8 0.75 ...
* 0.99 0.89 0.79 0.749 ...
* ...
*#block 2 (energy data point 2)
* 1.0 0.9 0.8 0.75 ...
* 0.99 0.89 0.79 0.749 ...
* ...
*
* I.e. one 2D data block per energy data point where rows represent the steps in nominal incident angle, and columns
* represent the sampled granularity of the off-specular scattering.
*
* Example: Shell_p( radius_p=0.535532, radius_m=0.533113, zdepth=0.5, Z0=12, yheight=1e-2, R_d=1)
*
* %Parameters
* Input parameters:
* radius_m: [m] Ring radius of the upper (reflecting) plate of the shell at the intersection with the hyperbolic section.
* radius_p: [m] Ring radius of the upper (reflecting) plate of the shell at the edge furthest away from the focal point.
* yheight: [m] Height of the shell.
* chamferwidth: [m] Width of side walls.
* gap: [m] Gap between the plate and the intersection plane with the hyperbolic section.
* Z0: [m] Distance between optics centre plane and focal spot (essentially focal length).
* mirror_reflec: [ ] Data file containing reflectivities of the reflector surface (TOP).
* bottom_reflec: [ ] Data file containing reflectivities of the bottom surface (BOTTOM).
* R_d: [ ] Default reflectivity value to use if no reflectivity file is given. Useful f.i. is one surface is reflecting and the others absorbing.
* longw: [ ] If non-zero, waviness is 1D and along the pore axis.
* wave_model: [ ] Flag to choose waviness model. 1. longitudinal uniform, 2. 2D-uniform, 3. lorentzian sagittal, 4. double gaussian sagittal. See above for details.
* waviness: [rad] Waviness of the pore reflecting surface. The slope error is assumed to be uniformly distributed in the interval "[-waviness:waviness]".
* verbose: [ ] If !=0 output extra info during simulation.
* %End
*******************************************************************************/
DEFINE COMPONENT Shell_p
SETTING PARAMETERS (radius_p, radius_m, Z0, yheight, chamferwidth=0, gap=0, zdepth=0, string mirror_reflec="", string bottom_reflec="", string wave_file="", R_d=1, int wave_model=0, waviness=0, int verbose=0)
SHARE
%{
%include "read_table-lib"
#ifndef MCSPO_INTERSECT_PARABOLOID
#define MCSPO_INTERSECT_PARABOLOID 1
int intersect_paraboloid(double *l0, double x, double y, double z, double kx, double ky, double kz, double Z0, double radius, double *nx, double *ny, double *nz){
/* Intersection routine for a paraboloid as given by the paper by Vanspeybroeck and Chase (appl. optics. 1972)*/
double alpha,thetap,thetah,P,d,e,C0;
alpha=0.25*atan(radius/Z0);
thetap=alpha;
thetah=alpha*3;
P=Z0*tan(4*alpha)*tan(thetap);
d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
C0=4*e*e*P*d/(e*e-1);
double kxn=kx,kyn=ky,kzn=kz;
NORM(kxn,kyn,kzn);
double A,B,C;
A=kxn*kxn + kyn*kyn;
B=2*(kxn*x + kyn*y+ P*kzn);
C=x*x + y*y -P*P - 2*P*(Z0-z) - C0;
int status;
double l1;
if ( (status=solve_2nd_order(l0,&l1,A,B,C))==0 ){
/*note that if l1->NULL only the smallest positive solution is returned*/
/*fprintf(stderr,"Shell_p: No solution %g %g %g %g %g %g\n",x,y,z, kx,ky,kz);*/
return status;
}
/*compute normal vector unless if asked for. I.e. unless null pointers.*/
if (nx==NULL || ny==NULL || nz==NULL){
return status;
}
x+=kxn* (*l0);
y+=kyn* (*l0);
z+=kzn* (*l0);
double delta_y=-P*pow(P*P+2*P*(Z0-z)+C0,-0.5);
double rp=sqrt(P*P + 2*P*(Z0-z) + C0);
/* The tilt of the normal vector perpendicular to the optical axis
* depends only on the displacement in x*/
*nx=x/rp;
*ny=y/rp;
*nz = 0 - delta_y + 0;
/* the minus sign since a negative slope in rp results in the normal tilting "forward" which
corresponds to a positive sign in z*/
NORM(*nx,*ny,*nz);
return status;
}
#endif
#ifndef MX_ASTROX_RANDLORENTZ
#define MX_ASTROX_RANDLORENTZ 1
double randlorentz(double beta){
double r=rand01();
return beta*tan(M_PI*(r-0.5));
}
#endif
struct w_prms_p_struct
{
double e_min;
double e_step;
double e_max;
double theta_min;
double theta_step;
double theta_max;
double dtheta_min;
double dtheta_step;
double dtheta_max;
};
%}
DECLARE
%{
struct w_prms_p_struct w_prms;
double nExit[3];
double wExit[3];
double nEntry[3];
double wEntry[3];
double nTop[3];
double nBottom[3];
double E_min[2];
double E_step[2];
double E_max[2];
double Theta_min[2];
double Theta_step[2];
double Theta_max[2];
double zentry;
t_Table reflec_top_table;
t_Table reflec_bottom_table;
t_Table wave_table[1024];
%}
INITIALIZE
%{
/*read data from files into tables using read_table-lib*/
char *filenames[2]={mirror_reflec,bottom_reflec};
t_Table *ref_tables[2]={&reflec_top_table,&reflec_bottom_table};
int i;
/*read data from files into tables using read_table-lib*/
for (i=0;i<2;i++){
char *reflec=filenames[i];
t_Table *tp=ref_tables[i];
if (reflec && strlen(reflec)) {
char **header_parsed;
/* read 1st block data from file into tp */
if (Table_Read(tp, reflec, 1) <= 0)
{
exit(fprintf(stderr,"Error(%s): can not read file %s\n",NAME_CURRENT_COMP, reflec));
}
header_parsed = Table_ParseHeader(tp->header,
"e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
header_parsed[3] && header_parsed[4] && header_parsed[5])
{
E_min[i]=strtod(header_parsed[0],NULL);
E_max[i]=strtod(header_parsed[1],NULL);
E_step[i]=strtod(header_parsed[2],NULL);
Theta_min[i]=strtod(header_parsed[3],NULL);
Theta_max[i]=strtod(header_parsed[4],NULL);
Theta_step[i]=strtod(header_parsed[5],NULL);
} else {
exit(fprintf(stderr,"Error (%s): wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, reflec));
}
if (!((int)(E_max[i]-E_min[i]) == (int)((tp->rows-1)*E_step[i])))
{
exit(fprintf(stderr,"Error (%s): e_step does not match e_min and e_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
if (!((int)(Theta_max[i]-Theta_min[i]) == (int)((tp->columns-1)*Theta_step[i])))
{
exit(fprintf(stderr,"Error (%s): theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, reflec));
}
}else{
/*mark the table as unread by setting "rows" to -1
This will trigger the default reflectivity.*/
tp->rows=-1;
}
}
/*read waviness table data if needed*/
if (wave_model && wave_file && strlen(wave_file)){
char **header_parsed;
if(wave_model==3){
int status=0;
int block=1;
status=Table_Read(&(wave_table[0]),wave_file,block);
if (status<=0){
exit(fprintf(stderr,"Error: %s: cannot read file %s\n",NAME_CURRENT_COMP,wave_file));
}
if (verbose){
printf("INFO(%s): Read %d items from block %d in %s\n",NAME_CURRENT_COMP,status,block,wave_file);
}
block++;
header_parsed = Table_ParseHeader(wave_table[0].header,
"e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=","dtheta_min=","dtheta_max=","dtheta_step=",NULL);
if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
header_parsed[3] && header_parsed[4] && header_parsed[5])
{
w_prms.e_min=strtod(header_parsed[0],NULL);
w_prms.e_max=strtod(header_parsed[1],NULL);
w_prms.e_step=strtod(header_parsed[2],NULL);
w_prms.theta_min=strtod(header_parsed[3],NULL);
w_prms.theta_max=strtod(header_parsed[4],NULL);
w_prms.theta_step=strtod(header_parsed[5],NULL);
w_prms.dtheta_min=strtod(header_parsed[6],NULL);
w_prms.dtheta_max=strtod(header_parsed[7],NULL);
w_prms.dtheta_step=strtod(header_parsed[8],NULL);
} else {
exit(fprintf(stderr,"Error: %s: wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, wave_file));
}
int ec= (int)rint((w_prms.e_max-w_prms.e_min)/w_prms.e_step);
if (!((int)(w_prms.theta_max-w_prms.theta_min) == (int)((wave_table[0].rows-1)*w_prms.theta_step)))
{
exit(fprintf(stderr,"Error: %s: theta_step does not match theta_min and theta_max in file %s\n",NAME_CURRENT_COMP, wave_file));
}
if (!((int)(w_prms.dtheta_max-w_prms.dtheta_min) == (int)((wave_table[0].columns-1)*w_prms.dtheta_step)))
{
exit(fprintf(stderr,"Error: %s: dtheta_step does not match dtheta_min and dtheta_max in file %s\n",NAME_CURRENT_COMP, wave_file));
}
/*read the remaining data blocks*/
while (block<=(ec+1)){
if( (status=Table_Read(&(wave_table[block-1]),wave_file,block))<=0){
exit(fprintf(stderr,"Error: %s: cannot read %d data blocks - please check the energy steps in the header of %s\n",NAME_CURRENT_COMP, ec, wave_file));
}
if (verbose){
printf("INFO(%s): Read %d items from block %d\n",NAME_CURRENT_COMP,status,block);
}
block++;
}
if (verbose){
printf("INFO(%s): Read %d blocks in %s corresponding to %d energies.\n",NAME_CURRENT_COMP,block-1,wave_file,ec);
}
}
}
/* compute some parameters for the parabolic or hyperbolic equations*/
/* the z coordinate of the entry plane*/
/*assuming the parameter xi==1*/
double alpha,thetap,thetah,P,d,e,C0,Z;
alpha=0.25*atan(radius_m/Z0);
thetap=alpha;
thetah=alpha*3;
P=Z0*tan(4*alpha)*tan(thetap);
d=Z0*tan(4*alpha)*tan(4*alpha-thetah);
e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
C0=4*e*e*P*d/(e*e-1);
/*solve to get the z-coordinate of the entry plane, assuming radius_p to be bigger*/
Z=(pow(radius_p,2.0) - pow(P,2.0)- C0 ) /(2*P);
zentry=Z0-Z;
nEntry[0]=0;
nEntry[1]=0;
nEntry[2]=-1;
wEntry[0]=wEntry[1]=0;wEntry[2]=zentry;
nExit[0]=0;
nExit[1]=0;
nExit[2]=1;
wExit[0]=wExit[1]=wExit[2]=0;
%}
TRACE
%{
enum {LEFT, RIGHT, TOP, BOTTOM, EXIT, NONE} wall;
t_Table *reflec_table=NULL;
int hit_shell, hit_chamfer;
double R;
/*Moving photon to z=-zentry. This odd way of writing this is to handle phase and time automatically.
Note that zentry is z<0, hence the sign convention.*/
z-=zentry;
ALLOW_BACKPROP;
PROP_Z0;
z+=zentry;
hit_shell= ( ( x*x + y*y < radius_p*radius_p ) && ( x*x + y*y >(radius_p-yheight)*(radius_p-yheight) ) ) ;
hit_chamfer=0;
if(hit_shell){
SCATTER;
int exit=0;
int intersections[5]={0,0,0,0,0};
int i_small;
double l[5]={100000.0, 100000.0, 100000.0, 100000.0, 100000.0};
double l_small;
double nx,ny,nz;
while (!exit){
l_small=DBL_MAX;
wall=NONE;
double nx,ny,nz;
double wx,wy,wz;
int prm_idx;/*index indicating which table parameter set to choose*/
intersections[EXIT]=plane_intersect(l+EXIT,x,y,z,kx,ky,kz,nExit[0],nExit[1],nExit[2],wExit[0],wExit[1],wExit[2]);
if (intersections[EXIT] && l[EXIT]>DBL_EPSILON && l[EXIT]<l_small) {l_small=l[EXIT];i_small=intersections[EXIT];wall=EXIT;}
/*top surface - the real reflecting surface*/
intersections[TOP]=intersect_paraboloid((l+TOP),x,y,z,kx,ky,kz,Z0,radius_m,&(nTop[0]),&(nTop[1]),&(nTop[2]));
if (intersections[TOP] && l[TOP]>DBL_EPSILON && l[TOP]<l_small) {l_small=l[TOP];i_small=intersections[TOP];wall=TOP;}
/*bottom surface*/
intersections[BOTTOM]=intersect_paraboloid((l+BOTTOM),x,y,z,kx,ky,kz,Z0,radius_m-yheight,&(nBottom[0]),&(nBottom[1]),&(nBottom[2]));
if (intersections[BOTTOM] && l[BOTTOM]>DBL_EPSILON && l[BOTTOM]<l_small) {l_small=l[BOTTOM];i_small=intersections[BOTTOM];wall=BOTTOM;}
/*find smallest positive intersection*/
switch (wall){
case TOP:
/*handle top wall reflection*/
reflec_table=&reflec_top_table;
nx=nTop[0];ny=nTop[1];nz=nTop[2];
prm_idx=0;
break;
case BOTTOM:
/*handle bottom wall "reflection"*/
reflec_table=&reflec_bottom_table;
nx=nBottom[0];ny=nBottom[1];nz=nBottom[2];
prm_idx=1;
break;
case EXIT:
/*photon will exit pore*/
exit=1;
break;
}
if(exit){
continue;
}
PROP_DL(l_small);
double kix=kx,kiy=ky,kiz=kz;
double k=sqrt(kx*kx+ ky*ky + kz*kz);
double e=K2E*k;
double s=scalar_prod(kx,ky,kz,nx,ny,nz);
double theta=RAD2DEG*(M_PI_2-acos(s/k)); /*pi_2 since theta is supposed to be the grazing angle*/
/*if we have waviness alter the normal vector slightly*/
if(wave_model!=0){
enum {none=0, longw, iso, waviness_file, dblgauss,};
double dtheta,tx,ty,tz;
switch (wave_model){
/*assuming theta to be small we might disregard atan*/
case longw:
{
double dtheta;
if(theta<waviness){
dtheta=rand01()*(theta+waviness)-theta;
}else{
dtheta=randpm1()*waviness;
}
double tx,ty,tz;
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
break;
}
case iso:
{
/*waviness is also transversal but isotropic*/
double radius;
if(theta<waviness){
radius=atan(waviness);
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx,radius);
}else{
radius=(atan(theta)+atan(waviness))/2.0;
randvec_target_circle(&nx,&ny,&nz,NULL,nx,ny,nx+radius-atan(theta),radius);
}
NORM(nx,ny,nz);
break;
}
case waviness_file:
{
/*waviness is defined by a distribution read from a 2D file energy/angle (similar to reflectivity)*/
/*sample an angle in the supported interval of the file - assuming it to be normalized properly, and then
weight according to the distribution found in the file - interpolating in 2D*/
double dthetac,ec,thetac,dtheta;
double pp,p1,p2,alpha,beta;
int iter;
ec=(e-w_prms.e_min)/w_prms.e_step;
thetac=(theta-w_prms.theta_min)/w_prms.theta_step;
/*do some clever rejection sampling here - otherwise we get no intensity at all*/
pp=0;iter=0;
while (!pp){
double Y,U,Z;
Y=-log(rand01());
if(rand01()<0.5){
Z=-Y*w_prms.dtheta_max/1.0;//wave_table[0].max_x;
}else{
Z=Y*w_prms.dtheta_max/1.0;//wave_table[0].max_x;
}
dthetac=(Z-w_prms.dtheta_min)/w_prms.dtheta_step;
p1=Table_Value2d( wave_table[(int) floor(ec)], thetac, dthetac);
p2=Table_Value2d( wave_table[(int) ceil(ec)], thetac, dthetac);
alpha=modf(ec,&beta);
pp=alpha*p2 + (1-alpha)*p1;
U=rand01();
if (U>pp/(exp(-Y))){
/*reject value*/
pp=0;
}
iter++;
dtheta=Z;
}
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
break;
}
case dblgauss:
{
/*need 2 sigmas and a relative strength \in[0,1] - read those prms from a tabled file*/
double sigma;
const double strength=0.5;
void *tptr;
if(rand01()<strength){/*use dist 1*/
tptr=wave_table;
}else{
tptr=wave_table+1;
}
sigma=Table_Value2d( *((t_Table *)tptr), (e-w_prms.e_min)/w_prms.e_step,(theta-w_prms.theta_min)/w_prms.theta_step);
dtheta=randnorm()*sigma;
vec_prod(tx,ty,tz,0,0,1,nx,ny,nz);
rotate(nx,ny,nz, nx,ny,nz, dtheta, tx,ty,tz);
break;
}
}
/*recompute theta*/
theta=RAD2DEG*0.5*acos(scalar_prod(kx,ky,kz,kix,kiy,kiz)/k/k);
}
/*reflect the photon through the surface normal*/
if(s!=0){
kx-=2*s*nx;
ky-=2*s*ny;
kz-=2*s*nz;
}
SCATTER;
if(reflec_table==NULL || reflec_table->rows==-1){
R=R_d;
}else{
R=Table_Value2d(*reflec_table,(e-E_min[prm_idx])/E_step[prm_idx], (theta-Theta_min[prm_idx])/Theta_step[prm_idx]);
}
p*=R;
}
}else if (hit_chamfer){
ABSORB;
}else{
/*no hit*/
ABSORB;
}
%}
MCDISPLAY
%{
double z0,z1,dz,l0,l1;
const int N=16;
int i,j,k;
circle("xy",0,0,zentry,radius_p);
circle("xy",0,0,zentry,radius_p-yheight);
circle("xy",0,0,0,radius_m);
circle("xy",0,0,0,radius_m-yheight);
/*draw parabola*/
dz=fabs(zentry)/(N-1);
z0=zentry;
z1=z0+dz;
for (i=0;i<N-1;i++){
j=intersect_paraboloid(&l0,0,0,z0,1,0,0,Z0,radius_m,NULL,NULL,NULL);
k=intersect_paraboloid(&l1,0,0,z1,1,0,0,Z0,radius_m,NULL,NULL,NULL);
if(k && j){
line(l0,0,z0,l1,0,z1);
line(0,l0,z0,0,l1,z1);
line(-l0,0,z0,-l1,0,z1);
line(0,-l0,z0,0,-l1,z1);
}
j=intersect_paraboloid(&l0,0,0,z0,1,0,0,Z0,radius_m-yheight,NULL,NULL,NULL);
k=intersect_paraboloid(&l1,0,0,z1,1,0,0,Z0,radius_m-yheight,NULL,NULL,NULL);
if(k && j){
line(l0,0,z0,l1,0,z1);
line(0,l0,z0,0,l1,z1);
line(-l0,0,z0,-l1,0,z1);
line(0,-l0,z0,0,-l1,z1);
}
z0+=dz;
z1+=dz;
}
%}
END
|