1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Bragg_crystal_BC
*
* %Identification
* Written by: Marcus H Mendenhall, NIST <marcus.mendenhall@nist.gov>
* Date: May, 2017
* Version: 1.0
* Release: McXtrace 1.2
* Origin: NIST
*
* Perfect, reflecting crystal with common cubic structures (diamond, fcc, or bcc, and others if symmetry form factor multipliers provided explicitly)
*
* %Description
* Bragg_crystal_BC.comp is intended to supercede Bragg_Crystal.comp.
*
* For details see:
* The optics of focusing bent-crystal monochromators on X-ray powder diffractometers with application to lattice parameter determination and microstructure analysis,
* Marcus H. Mendenhall, David Black and James P. Cline, J. Appl. Cryst. (2019). 52, https://doi.org/10.1107/S1600576719010951
*
* Reads atomic formfactors from a data input file.
* The Bragg_Crystal code reflects ray in an ideal geometry, does not include surface imperfections or mosaicity
*
* The crystal code reflects ray in an ideal geometry, i.e. does not include surface imperfections or mosaicity.
* The crystal planes from which the reflection is made lies in the X-Z plane on the unbent crystal rotated
* by an angle alpha about the Y axis with respect to the crystal surface.
*
* The crystal itself is set in the X-Z plane positioned such that the long axis of the crystal surface coincides with
* the Z-axis, withs normal pointing in the poisitivce Y-direction.
*
* N.B. The component does not work for rays hitting the back of the monochromator.
*
* Bragg_crystal_BC.comp is written by Marcus H. Mendenhall, NIST, Gaithersburg, MD, USA
* It is based on the full vector math and exact solution of the dispersion relation in
* Batterman and Cole, Reviews of Modern Physics 36 number 3, page 681, July 1964
*
* This code has been validated against both experimental data
* (2 channel-cut 3-bounce Si 440 crystals together in non-dispersive mode, at Cu kalpha)
* and against theoretical rocking rocking curves from XOP for Si220 at Sc kalpha and Si440 at Cu kalpha.
*
* Non-copyright notice:
* Contributed by the National Institute of Standards and Technology; not subject to copyright in the United States.
* This is not an official contribution, in that the results are in no way certified by NIST.
*
* Example: Bragg_crystal_BC( length=0.05, width=0.02, V=160.1826, h=1, k=1, l=1, alphay=1)
*
* %Parameters
* INPUT PARAMETERS
* width: [m] x width of the crystal.
* length: [m] z depth (length) of the crystal.
* material: [ ] Si, Ge (maybe also GaAs?)
* V: [AA^3] unit cell volume
* h: [ ] Miller index of reflection
* k: [ ] Miller index of reflection
* l: [ ] Miller index of reflection
* alpha: [unit vector] Normal to crystal planes. The crystal surface itself has normal [0,1,0].
* R0: [ ] Reflectivity. Overrides the computed Darwin reflectivity. Probably only useful for debugging.
* debye_waller_B: [AA^2] Debye-Waller temperature factor, M=B*(sin(theta)/lambda)^2*(2/3), default=silicon at room temp.
* crystal_type: [ ] 1 => Mx_crystal_explicit: provide explicit real and imaginary form factor multipliers structure_factor_scale_r, structure_factor_scale_i; 2 => Mx_crystal_diamond: diamond; 3 => Mx_crystal_fcc: fcc; 4 => Mx_crystal_fcc: bcc
* verbose: [ ] if non-zero: Output more information (warnings and messages) to the console.
*
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %End
*******************************************************************************/
DEFINE COMPONENT Bragg_crystal_BC
SETTING PARAMETERS (length=0.05, width=0.02, V=160.1826, string form_factors="FormFactors.txt", string material="Si.txt",
alphax=0.0, alphay = 1.0, alphaz = 0.0,
R0=0, debye_waller_B=0.4632, int crystal_type=1, int h=1, int k=1, int l=1 ,
structure_factor_scale_r=0.0, structure_factor_scale_i=0.0, int verbose=0)
DEPENDENCY "-std=c99"
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "perfect_crystals-lib"
%}
DECLARE
%{
int Z;
double rho;
double At;
double f_rel;
double f_nt;
t_Table m_t;
t_Table f0_t;
%}
INITIALIZE
%{
int status;
if (material){
if ((status=Table_Read(&(m_t),material,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(m_t.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
}else{
fprintf(stderr,"Error(%s): No material file specified\n",NAME_CURRENT_COMP);
}
if(form_factors){
if ((status=Table_Read(&(f0_t),form_factors,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
exit(-1);
}
}
if(verbose)
printf("INFO (%s): initialized\n",NAME_CURRENT_COMP);
%}
TRACE
%{
double E; // (keV) x-ray energy
double K; // length of k-vector
double tin; // 'time' of intersection of ray with y=0 plane (which include the crystal surface)
double x_int,y_int,z_int; // intersection with the y=0 plane
double dist; // distance from position at t=0 to the y=0 plane
double f00, f0h, fp, fpp; // atomic form factors for Q=0 is (f00 + fp + i*fpp) and for Q= ha*+kb*+lc* it is (f0h + fp + i*fpp).
double R; // Reflectivity values calculated by Mx_DarwinReflectivityBC() function for each incoming photon
/* get the photon's kvector and energy */
K=sqrt(kx*kx+ky*ky+kz*kz);
E = K2E*K; /* use built-in constants for consistency */
/* make unit vector in the direction of k :*/
double k0hat[3] = {kx/K, ky/K, kz/K}; // unit vector in the direction of k-vector.
double kk0[3]={kx,ky,kz};
/*intersection calculation*/
tin = -y/k0hat[1];
if (tin > 1e-8){
/* check whether our intersection lies within the boundaries of the crystal*/
x_int=x+k0hat[0]*tin;
y_int=y+k0hat[1]*tin;
z_int=z+k0hat[2]*tin;
if (fabs(x_int)<=width/2 && fabs(z_int)<=length/2){
dist=sqrt(SQR(x-x_int)+SQR(y-y_int)+SQR(z-z_int));
PROP_DL(dist); /* now the photon is on the crystal surface, ready to be reflected... */
SCATTER;
double d=cbrt(V)/(sqrt(h*h+k*k+l*l));/*this is valid only for cubic structures*/
f00 = Z;
f0h = Table_Value(f0_t,1/(2*d),Z);
fp = Table_Value(m_t,E,1)-Z;
fpp = Table_Value(m_t,E,2);
double nhat[3]={0,1,0}; // crystal surface normal is yhat, and is set up by mcxtrace to be into the crystal
double alpha[3]={alphax, alphay, alphaz};
double Rsig, Rpi;
double kh[3], sig_axis[3], pi_axis[3];
int fail;
double complex chi0, chih;
double k0mag, hscale, thetaB;
Mx_CubicCrystalChi(&chi0, &chih, &k0mag, &hscale, &thetaB,
f00, f0h, fp, fpp, V, h, k, l,
debye_waller_B, E,
crystal_type,structure_factor_scale_r,structure_factor_scale_i);
if(thetaB==0){
if(verbose)
fprintf(stderr,"WARNING (%s): reflection [%d %d %d] is inaccessible for E= %g keV. Terminating photon,\n",NAME_CURRENT_COMP,h,k,l,E);
ABSORB;
}
fail=Mx_DarwinReflectivityBC(&Rsig, &Rpi, kh, // these are the return values
k0hat, nhat, alpha,
chi0, chih, chih, k0mag, hscale, thetaB
);
cross(sig_axis, k0hat, kh, 1); /* kin x kout is sigma direction */
/* sig_axis is the sigma direction, as returned by Bragg_Geometry inside DarwinReflectivity_BC */
/* pi is a vector perpendicular to k_in and sig i.e. the direction of pi polarization incoming */
cross(pi_axis, k0hat, sig_axis, 1);
/* update outgoing direction vector kx, ky, kz = kh, fully scaled outgoing k vector */
kx=kh[0]; ky=kh[1]; kz=kh[2];
/* resolve incoming polarization into sig and pi bits, and scale by sqrt(reflectivity) which is amplitude scale */
double Esig=(Ex*sig_axis[0]+Ey*sig_axis[1]+Ez*sig_axis[2]);
double Epi= (Ex* pi_axis[0]+Ey* pi_axis[1]+Ez* pi_axis[2]);
if(Esig==0 && Epi==0) { /* someone didn't set the polarization direction; set it now to a random value and it will propagate */
double psi=rand01()*PI/2;
Esig=cos(psi); Epi=sin(psi);
}
Esig=Esig*sqrt(Rsig);
Epi=Epi*sqrt(Rpi);
R=Esig*Esig+Epi*Epi; /* projected reflectivity, squared back to intensity */
double pi1_axis[3];
/* pi1 is now a vector perpendicular to k_out and sig i.e. the direction of pi polarization outgoing */
cross(pi1_axis, kh, sig_axis,1);
/* a linear combination of these is still perpendicular to k, but has the correct polarization weighting */
Ex=Epi*pi1_axis[0]+Esig*sig_axis[0];
Ey=Epi*pi1_axis[1]+Esig*sig_axis[1];
Ez=Epi*pi1_axis[2]+Esig*sig_axis[2];
NORM(Ex, Ey, Ez);
#ifdef MCDEBUG
fprintf(stderr,"Crystal: %s: Rsig=%.4g Rpi=%.4g "
" k0=(%.8f, %.8f, %.8f), nhat=(%.8f, %.8f, %.8f) alpha=(%.8f, %.8f, %.8f), "
" kout=(%.8f, %.8f, %.8f) "
" axis=(%.8f, %.8f, %.8f) E=(%.4f, %.4f, %.4f) \n",
NAME_CURRENT_COMP, Rsig, Rpi,
kk0[0], kk0[1], kk0[2], nhat[0], nhat[1], nhat[2],
alpha[0], alpha[1], alpha[2],
kh[0], kh[1], kh[2],
sig_axis[0], sig_axis[1], sig_axis[2], Ex, Ey, Ez);
#endif
/* apply Darwin reflectivity if not is supplied from outside*/
if (!R0){
p*=R;
}else{
p*=R0;
}
/*catch dead rays*/
if (p==0) ABSORB;
} else {
RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
}
}
#ifdef MCDEBUG
fflush(stderr);
fflush(stdout); // make sure all error messages are in order!
#endif
%}
MCDISPLAY
%{
magnify("");
rectangle("xz",0,0,0,width,length); // display crystal outline
line(0,0,0,alphax*(width+length)/2.0, alphay*(width+length)/2.0, alphaz*(width+length)/2.0); // display alpha vector
%}
END
|