1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Bragg_crystal_bent_BC
*
* %Identification
* Written by: Marcus H Mendenhall, NIST <marcus.mendenhall@nist.gov>
* Date: Dec 2016
* Version: 2.0a
* Release: McXtrace 1.2
* Origin: NIST
*
* Bent, perfect crystal with common cubic structures (diamond, fcc, or bcc, and others if symmetry form factor multipliers provided explicitly)
*
* %Description
* Bragg_crystal_bent_BC.com is intended to supercede Bragg_Crystal_bent.comp
* For details see:
* The optics of focusing bent-crystal monochromators on X-ray powder diffractometers with application to lattice parameter determination and microstructure analysis,
* Marcus H. Mendenhall,* David Black and James P. Cline, J. Appl. Cryst. (2019). 52, https://doi.org/10.1107/S1600576719010951
*
* Reads atomic formfactors from a data input file.
* The Bragg_Crystal code reflects ray in an ideal geometry, does not include surface imperfections or mosaicity
*
* The crystal code reflects ray in an ideal geometry, i.e. does not include surface imperfections or mosaicity.
* The crystal planes from which the reflection is made lies in the X-Z plane on the unbent crystal rotated
* by an angle alpha about the Y axis with respect to the crystal surface.
*
* The crystal itself is set in the X-Z plane positioned such that the long axis of the crystal surface coincides with
* the Z-axis, withs normal pointing in the poisitivce Y-direction.
*
* The asummetry angle alpha is defined so that positive alpha reduces the Bragg angle to the plane i.e. alpha=Thetain grazes the planes.
* if alpha!=0, one should restrict to rays which have small kx values, since otherwise the alpha rotation is not
* around the diffraction axis.
*
* The mirror is positioned such that the a-axis of the mirror ellipsoid is on the
* z-axis, the b-axis is along the y-axis and the c is along the x-axis.
* The reference point of the mirror is the ellipsoid centre, offset by one half-axis along the y-axis.
* (See the component manual for a drawing).
*
* Notation follows Tadashi Matsushita and Hiro-O Hashizume, X-RAY MONOCHROMATORS. Handbook on Synchrotron Radiation,North-Holland Publishing Company, 1:263–274, 1983.
*
* NOTE: elliptical coordinate code and documentation taken from Mirror_elliptic.comp distributed in McXtrace v1.2
* written by: Erik Knudsen. However, the coordinates are rotated to be consistent with Perfect_Crystal.comp and NIST_Perfect_Crystal.comp
* Idealized elliptic mirror with surface ellipse and lattice ellipses independent, to allow construction of
* Johansson optics, for example.
*
* Non-copyright notice:
* Contributed by the National Institute of Standards and Technology; not subject to copyright in the United States.
* This is not an official contribution, in that the results are in no way certified by NIST.
*
* Example: Bragg_crystal_bent_BC( length=0.05, width=0.02, V=160.1826, h=1, k=1, l=1, alpha=0)
*
* %Parameters
* INPUT PARAMETERS
* width: [m] x width of the crystal.
* length: [m] z depth (length) of the crystal.
* material: [ ] Si, Ge (maybe also GaAs?)
* V: [AA^3] unit cell volume
* h: [ ] Miller index of reflection
* k: [ ] Miller index of reflection
* l: [ ] Miller index of reflection
* alpha: [rad] Asymmetry angle (alpha=0 for symmetric reflection, i.e. the Bragg planes are parallel to the crystal surface)
* x_a: [m] 1st short half axis (along x). Commonly set to zero, which really implies infinite value, so crystal is an elliptic cylinder.
* y_b: [m] 2nd short half axis (along y), which is also the presumed near-normal direction, reflection near the y-z plane.
* z_c: [m] Long half axis (along z). Commonly a=0. b=c, which creates a circular cylindrical surface.
* lattice_x_a: [m] Curvature matrix component around a for underlying lattice, for bent/ground/rebent crystals
* lattice_y_b: [m] Curvature matrix component around b for underlying lattice, for bent/ground/rebent crystals
* lattice_z_c: [m] curvature matrix component around c for underlying lattice, for bent/ground/rebent crystals THERE HAS BEEN NO TESTING for the case in which lattice_x_a != x_a.
* R0: [ ] Reflectivity. Overrides the computed Darwin reflectivity. Probably only useful for debugging.
*debye_waller_B: [AA^2] Debye-Waller temperature factor, M=B*(sin(theta)/lambda)^2*(2/3), default=silicon at room temp.
* crystal_type: [ ] 1 => Mx_crystal_explicit: provide explicit real and imaginary form factor multipliers structure_factor_scale_r, structure_factor_scale_i; 2 => Mx_crystal_diamond: diamond; 3 => Mx_crystal_fcc: fcc; 4 => Mx_crystal_fcc: bcc
* verbose: [ ] if non-zero: Output more information (warnings and messages) to the console.
*
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %End
*******************************************************************************/
DEFINE COMPONENT Bragg_crystal_bent_BC
SETTING PARAMETERS (x_a=0, y_b=1.0, z_c=1.0, lattice_x_a=0, lattice_y_b=1.0, lattice_z_c=1.0,
length=0.05, width=0.02, V=160.1826, string form_factors="FormFactors.txt", string material="Si.txt", alpha=0.0,
R0=0, debye_waller_B=0.4632, int crystal_type=1, int h=1, int k=1, int l=1,
structure_factor_scale_r=0.0, structure_factor_scale_i=0.0, int verbose=0)
DEPENDENCY "-std=c99"
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "perfect_crystals-lib"
%}
DECLARE
%{
int Z;
double rho;
double At;
double f_rel;
double f_nt;
t_Table m_t;
t_Table f0_t;
double a2inv;
double b2inv;
double c2inv; /* 1/r^2 for physical ellipse */
double l_a2inv;
double l_b2inv;
double l_c2inv; /* 1/r^2 for lattice ellipse */
double cos_alpha0;
double sin_alpha0;
%}
INITIALIZE
%{
int status;
if (material){
if ((status=Table_Read(&(m_t),material,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(m_t.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
}else{
fprintf(stderr,"Error(%s): No material file specified\n",NAME_CURRENT_COMP);
}
if(form_factors){
if ((status=Table_Read(&(f0_t),form_factors,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
exit(-1);
}
}
a2inv=(x_a)?1/(x_a*x_a):0; /* 0 really means infinity for x direction */
b2inv=(y_b)?1/(y_b*y_b):0;
c2inv=(z_c)?1/(z_c*z_c):0;
l_a2inv=(lattice_x_a)?1/(lattice_x_a*lattice_x_a):0; /* 0 really means infinity for x direction */
l_b2inv=(lattice_y_b)?1/(lattice_y_b*lattice_y_b):0;
l_c2inv=(lattice_z_c)?1/(lattice_z_c*lattice_z_c):0;
cos_alpha0=cos(alpha);
sin_alpha0=sin(alpha);
if (verbose){
printf("INFO (%s): curve=(%.5f %.5f %.5f) lcurve=(%.3f %.5f %.5f)\n\n",NAME_CURRENT_COMP,
a2inv, b2inv, c2inv, l_a2inv, l_b2inv, l_c2inv);
printf("INFO (%s): initialized\n",NAME_CURRENT_COMP);
}
%}
TRACE
%{
double E; // (keV) x-ray energy
double K; // length of k-vector
double kxu,kyu,kzu; // unit vector in the direction of k-vector.
double x_int,y_int,z_int; // intersection with the y=0 plane
double f00, f0h, fp, fpp; // atomic form factors for Q=0 is (f00 + fp + i*fpp) and for Q= ha*+kb*+lc* it is (f0h + fp + i*fpp).
//double Thetain; // (rad) angle between the crystal surface and the incident ray
//double Theta0; // (rad) angle between the Bragg planes and the incident ray
//double Thetah; // (rad) angle between the Bragg planes and the reflected ray
//double DeltaTheta0; // (rad) the center of the reflectivity curve is at asin(n*lambda/(2*d)) + DeltaTheta0
//double Rpi, Rsig;
double R; // Reflectivity value calculated by Mx_DarwinReflectivity() function for each incoming photon
/* get the photon's kvector and energy */
K=sqrt(kx*kx+ky*ky+kz*kz);
E = K2E*K; /* use built-in constants for consistency */
/* make unit vector in the direction of k :*/
kxu = kx; kyu = ky; kzu = kz;
NORM(kxu,kyu,kzu);
double k0hat[3]={kxu,kyu,kzu};
/* printf("incoming kx,ky,kz, Ex, Ey, Ez, k.E: %f %f %f %g %g %g %g\n", kx,ky,kz,Ex,Ey,Ez, kxu*Ex+kyu*Ey+kzu*Ez); */
#ifdef MCDEBUG
printf("%s: starting trace, k0hat=(%.5f %.5f %.5f)\n", NAME_CURRENT_COMP,
k0hat[0], k0hat[1], k0hat[2]);
#endif
/* this intersection code copied from Mirror_elliptic.comp, with coordinates modified */
double A,B,C, xt, yt, zt;
double t0,t1;
/*an offset to the mirror parameters perhaps*/
xt=x;
zt=z;
/*the reference point is on the ellipsoid surface such that the ellipsoid mass lies on the positive y-side of the zy-plane*/
yt=y-y_b;
C=xt*xt*a2inv + yt*yt*b2inv + zt*zt*c2inv -1;
B=2*(kxu*xt*a2inv + kyu*yt*b2inv + kzu*zt*c2inv);
A=kxu*kxu*a2inv + kyu*kyu*b2inv + kzu*kzu*c2inv;
if(solve_2nd_order(&t0,&t1,A,B,C)){
double xx0, xx1, yy0, yy1, zz0, zz1; /* we will have to tentatively propagate twice to see which surface we hit */
xx0=x+kxu*t0; yy0=y+kyu*t0; zz0=z+kzu*t0;
xx1=x+kxu*t1; yy1=y+kyu*t1; zz1=z+kzu*t1;
/*Check if we hit the mirror and whether the hit it is in front of the ray.
* This does not account for mirror curvature */
int hit0=(fabs(xx0)<width/2.0) && (fabs(zz0)<length/2.0) && t0>0;
int hit1=(fabs(xx1)<width/2.0) && (fabs(zz1)<length/2.0) && t1>0;
int doit=hit0 || hit1;
if(hit0 && !hit1) PROP_DL(t0); /* only one intersection actually on mirror */
else if (hit1 && !hit0) PROP_DL(t1); /* other intersection */
else if (hit0 && hit1) { /* both, take first strike (which may be back of mirror) */
PROP_DL(t0<t1?t0:t1);
} else {
RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
}
#ifdef MCDEBUG
printf("%s: solving for crystal hit, l0=%f, l1=%f, x=(%f %f %f) doit=%d, hit0=%d, hit1=%d\n", NAME_CURRENT_COMP,
t0, t1, x, y, z, doit, hit0, hit1);
#endif
if ( doit ){
SCATTER;
xt=x; yt=y-y_b; zt=z; /* update shifted coordinates to intersection point */
double grad_x, grad_y, grad_z;
/* grad is the outer normal to the surface at this point on surface presumed to be concave */
double nhat[3]={-xt*a2inv, -yt*b2inv, -zt*c2inv}; NORM(nhat[0], nhat[1], nhat[2]);
/* compute angle of crystal planes based on lattice ellipse, need to include rotation still! */
double l_grad_x, l_grad_y, l_grad_z;
/* l_grad is the outer normal to the lattice ellipse at this point, assuming that at the center of the
mirror, the two ellipses coincide */
double alpha_v[3]={ -xt*l_a2inv, -(y-lattice_y_b)*l_b2inv, -zt*l_c2inv}; NORM(alpha_v[0], alpha_v[1], alpha_v[2]);
/* rotate the curvature-induced asymmetry by the global asymmetry alpha around the x-axis */
double ay=alpha_v[1]*cos_alpha0-alpha_v[2]*sin_alpha0;
double az=alpha_v[2]*cos_alpha0+alpha_v[1]*sin_alpha0;
alpha_v[1]=ay; alpha_v[2]=az;
double d=cbrt(V)/(sqrt(h*h+k*k+l*l));/*this is valid only for cubic structures*/
f00 = Z;
f0h = Table_Value(f0_t,1/(2*d),Z);
fp = Table_Value(m_t,E,1)-Z;
fpp = Table_Value(m_t,E,2);
double Rsig, Rpi;
double kh[3], sig_axis[3], pi_axis[3];
int fail;
double complex chi0, chih;
double k0mag, hscale, thetaB;
Mx_CubicCrystalChi(&chi0, &chih, &k0mag, &hscale, &thetaB,
f00, f0h, fp, fpp, V, h, k, l,
debye_waller_B, E,
crystal_type,structure_factor_scale_r,structure_factor_scale_i);
if(thetaB==0){
if(verbose){
fprintf(stderr,"WARNING (%s): reflection [%d %d %d] is inaccessible for E= %g keV. Terminating photon,\n",NAME_CURRENT_COMP,h,k,l,E);
ABSORB;
}
}
fail=Mx_DarwinReflectivityBC(&Rsig, &Rpi, kh, // these are the return values
k0hat, nhat, alpha_v,
chi0, chih, chih, k0mag, hscale, thetaB
);
cross(sig_axis, k0hat, kh, 1); /* kin x kout is sigma direction */
/* sig_axis is the sigma direction, as returned by Bragg_Geometry inside DarwinReflectivityBT */
/* pi is a vector perpendicular to k_in and sig i.e. the direction of pi polarization incoming */
cross(pi_axis, k0hat, sig_axis, 1);
/* update outgoing direction vector kx, ky, kz = kh, fully scaled outgoing k vector */
kx=kh[0]; ky=kh[1]; kz=kh[2];
/* resolve incoming polarization into sig and pi bits, and scale by sqrt(reflectivity) which is amplitude scale */
double Esig=(Ex*sig_axis[0]+Ey*sig_axis[1]+Ez*sig_axis[2]);
double Epi= (Ex* pi_axis[0]+Ey* pi_axis[1]+Ez* pi_axis[2]);
if(Esig==0 && Epi==0) { /* someone didn't set the polarization direction; set it now to a random value and it will propagate */
double psi=rand01()*PI/2;
Esig=cos(psi); Epi=sin(psi);
}
Esig=Esig*sqrt(Rsig);
Epi=Epi*sqrt(Rpi);
R=Esig*Esig+Epi*Epi; /* projected reflectivity, squared back to intensity */
double pi1_axis[3];
/* pi1 is now a vector perpendicular to k_out and sig i.e. the direction of pi polarization outgoing */
cross(pi1_axis, kh, sig_axis,1);
/* a linear combination of these is still perpendicular to k, but has the correct polarization weighting */
Ex=Epi*pi1_axis[0]+Esig*sig_axis[0];
Ey=Epi*pi1_axis[1]+Esig*sig_axis[1];
Ez=Epi*pi1_axis[2]+Esig*sig_axis[2];
NORM(Ex, Ey, Ez);
#ifdef MCDEBUG
fprintf(stderr,"Bent Crystal: %s: Rsig=%.4g Rpi=%.4g "
" k0=(%.8f, %.8f, %.8f), nhat=(%.8f, %.8f, %.8f) alpha=(%.8f, %.8f, %.8f), "
" kout=(%.8f, %.8f, %.8f) "
" axis=(%.8f, %.8f, %.8f) E=(%.4f, %.4f, %.4f) \n",
NAME_CURRENT_COMP, Rsig, Rpi,
k0hat[0], k0hat[1], k0hat[2], nhat[0], nhat[1], nhat[2],
alpha_v[0], alpha_v[1], alpha_v[2],
kh[0], kh[1], kh[2],
sig_axis[0], sig_axis[1], sig_axis[2], Ex, Ey, Ez);
#endif
/* apply Darwin reflectivity if not is supplied from outside*/
if (!R0){
p*=R;
}else{
p*=R0;
}
/*catch dead rays*/
if (p==0) ABSORB;
} else {
RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
}
}
#ifdef MCDEBUG
fflush(NULL); // make sure all error messages are in order!
#endif
%}
MCDISPLAY
%{
int i,j,N=12, M=12;
double aa,bb,cc;
double vmax,vmin,umax,umin;
magnify("");
#ifdef MCDEBUG
printf("Bent Crystal(%s): plot params (%f %f %f) (%f %f %f) %f %f\n", NAME_CURRENT_COMP,
x_a, y_b, z_c, a2inv, b2inv, c2inv, width, length);
fflush(NULL);
#endif
/*use the circumference of the ellipse/4 = the the ratio between that and the crystal length/2 should be reasonably close to umax/pi_2*/
/*according to Ramanujan 1914*/
double Pv=M_PI*(3*(z_c+y_b)- sqrt( (3*z_c+y_b)*(z_c+3*y_b)));
double Pu=M_PI*(3*(x_a+y_b)- sqrt( (3*x_a+y_b)*(x_a+3*y_b)));
vmax = length/2.0 /(Pv/4.0) * M_PI_2;
vmin=-vmax;
umax = width/2.0 /(Pu/4.0) * M_PI_2;
umin=-umax;
for (j=0;j<N;j++){
double v0,v1;
v0=j*(vmax-vmin)/N + vmin;
v1=(j+1)*(vmax-vmin)/N + vmin;
for (i=0;i<M;i++){
double u0,u1;
u0=i*(umax-umin)/M + umin;
u1=(i+1)*(umax-umin)/M + umin;
double nx,ny,nz,l0,l1;
double x[4],y[4],z[4];
/*assuming 0,0,0 is inside are inside the ellisoid*/
nx=cos(v0)*sin(u0);ny=cos(v0)*cos(u0);nz=sin(v0);
ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
x[0]=nx*l1; y[0]=ny*l1; z[0]=nz*l1;
nx=cos(v0)*sin(u1);ny=cos(v0)*cos(u1);nz=sin(v0);
ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
x[1]=nx*l1; y[1]=ny*l1; z[1]=nz*l1;
nx=cos(v1)*sin(u1);ny=cos(v1)*cos(u1);nz=sin(v1);
ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
x[2]=nx*l1; y[2]=ny*l1; z[2]=nz*l1;
nx=cos(v1)*sin(u0);ny=cos(v1)*cos(u0);nz=sin(v1);
ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
x[3]=nx*l1; y[3]=ny*l1; z[3]=nz*l1;
multiline(5, x[0],y_b-y[0],z[0], x[1],y_b-y[1],z[1], x[2],y_b-y[2],z[2], x[3],y_b-y[3],z[3], x[0],y_b-y[0],z[0]);
}
}
line(0.,y_b,0., 0., y_b-cos_alpha0*(width+length)/2.0, sin_alpha0*(width+length)/2.0); // display alpha vector
%}
END
|