File: Bragg_crystal_bent_BC.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (383 lines) | stat: -rw-r--r-- 17,733 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Bragg_crystal_bent_BC
*
* %Identification
* Written by: Marcus H Mendenhall, NIST <marcus.mendenhall@nist.gov>
* Date: Dec 2016
* Version: 2.0a
* Release: McXtrace 1.2
* Origin: NIST
*
* Bent, perfect crystal with common cubic structures (diamond, fcc, or bcc, and others if symmetry form factor multipliers provided explicitly)
*
* %Description
* Bragg_crystal_bent_BC.com is intended to supercede Bragg_Crystal_bent.comp
* For details see:
* The optics of focusing bent-crystal monochromators on X-ray powder diffractometers with application to lattice parameter determination and microstructure analysis, 
* Marcus H. Mendenhall,* David Black and James P. Cline, J. Appl. Cryst. (2019). 52, https://doi.org/10.1107/S1600576719010951
*
* Reads atomic formfactors from a data input file.
* The Bragg_Crystal code reflects ray in an ideal geometry, does not include surface imperfections or mosaicity
*
* The crystal code reflects ray in an ideal geometry, i.e. does not include surface imperfections or mosaicity.
* The crystal planes from which the reflection is made lies in the X-Z plane on the unbent crystal rotated
* by an angle alpha about the Y axis with respect to the crystal surface.
*
* The crystal itself is set in the X-Z plane positioned such that the long axis of the crystal surface coincides with
* the Z-axis, withs normal pointing in the poisitivce Y-direction.
*
* The asummetry angle alpha is defined so that positive alpha reduces the Bragg angle to the plane i.e. alpha=Thetain grazes the planes.
*    if alpha!=0,  one should restrict to rays which have small kx values, since otherwise the alpha rotation is not
*    around the diffraction axis.
*
* The mirror is positioned such that the a-axis of the mirror ellipsoid is on the
* z-axis, the b-axis is along the y-axis and the c is along the x-axis.
* The reference point of the mirror is the ellipsoid centre, offset by one half-axis along the y-axis.
* (See the component manual for a drawing).
*
* Notation follows Tadashi Matsushita and Hiro-O Hashizume, X-RAY MONOCHROMATORS. Handbook on Synchrotron Radiation,North-Holland Publishing Company, 1:263–274, 1983.
*
* NOTE: elliptical coordinate code and documentation taken from Mirror_elliptic.comp distributed in McXtrace v1.2
* written by: Erik Knudsen. However, the coordinates are rotated to be consistent with Perfect_Crystal.comp and NIST_Perfect_Crystal.comp
* Idealized elliptic mirror with surface ellipse and lattice ellipses independent, to allow construction of
* Johansson optics, for example.
* 
* Non-copyright notice:
* Contributed by the National Institute of Standards and Technology; not subject to copyright in the United States. 
* This is not an official contribution, in that the results are in no way certified by NIST.
*
* Example: Bragg_crystal_bent_BC( length=0.05, width=0.02, V=160.1826, h=1, k=1, l=1, alpha=0)
*
* %Parameters
* INPUT PARAMETERS
* width:   [m]    x width of the crystal.
* length:  [m]    z depth (length) of the crystal.
* material: [ ]   Si, Ge (maybe also GaAs?)
* V:       [AA^3] unit cell volume
* h:       [ ]    Miller index of reflection
* k:       [ ]    Miller index of reflection
* l:       [ ]    Miller index of reflection
* alpha: [rad]    Asymmetry angle (alpha=0 for symmetric reflection, i.e. the Bragg planes are parallel to the crystal surface)
* x_a: [m]        1st short half axis (along x). Commonly set to zero, which really implies infinite value, so crystal is an elliptic cylinder.
* y_b: [m]        2nd short half axis (along y), which is also the presumed near-normal direction, reflection near the y-z plane.
* z_c: [m]        Long half axis (along z). Commonly a=0. b=c, which creates a circular cylindrical surface.
* lattice_x_a: [m]   Curvature matrix component around a for underlying lattice, for bent/ground/rebent crystals
* lattice_y_b: [m]   Curvature matrix component around b for underlying lattice, for bent/ground/rebent crystals
* lattice_z_c: [m]   curvature matrix component around c for underlying lattice, for bent/ground/rebent crystals THERE HAS BEEN NO TESTING for the case in which lattice_x_a != x_a.
* R0: [ ]        Reflectivity. Overrides the computed Darwin reflectivity. Probably only useful for debugging.
*debye_waller_B: [AA^2] Debye-Waller temperature factor, M=B*(sin(theta)/lambda)^2*(2/3), default=silicon at room temp.
* crystal_type: [ ] 1 => Mx_crystal_explicit: provide explicit real and imaginary form factor multipliers structure_factor_scale_r, structure_factor_scale_i; 2 => Mx_crystal_diamond: diamond; 3 => Mx_crystal_fcc: fcc; 4 => Mx_crystal_fcc: bcc
* verbose: [ ]     if non-zero: Output more information (warnings and messages) to the console.
*
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %End
*******************************************************************************/

DEFINE COMPONENT Bragg_crystal_bent_BC

SETTING PARAMETERS (x_a=0, y_b=1.0, z_c=1.0, lattice_x_a=0, lattice_y_b=1.0, lattice_z_c=1.0,
        length=0.05, width=0.02, V=160.1826, string form_factors="FormFactors.txt", string material="Si.txt", alpha=0.0,
        R0=0, debye_waller_B=0.4632, int crystal_type=1, int h=1, int k=1, int l=1,
        structure_factor_scale_r=0.0, structure_factor_scale_i=0.0, int verbose=0)

DEPENDENCY "-std=c99"
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */

SHARE
%{
    %include "perfect_crystals-lib"
%}

DECLARE
%{
  int Z;
  double rho;
  double At;
  double f_rel;
  double f_nt;
  t_Table m_t;
  t_Table f0_t;
  double a2inv;
  double b2inv;
  double c2inv; /* 1/r^2 for physical ellipse */
  double l_a2inv;
  double l_b2inv;
  double l_c2inv; /* 1/r^2 for lattice ellipse */
  double cos_alpha0;
  double sin_alpha0;
%}

INITIALIZE
%{
    int status;
    if (material){
        if ((status=Table_Read(&(m_t),material,0))==-1){
            fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material);
            exit(-1);
        }
        char **header_parsed;
        header_parsed=Table_ParseHeader(m_t.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
        if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
        if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
        if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
    }else{
        fprintf(stderr,"Error(%s): No material file specified\n",NAME_CURRENT_COMP);
    }
    if(form_factors){
        if ((status=Table_Read(&(f0_t),form_factors,0))==-1){
            fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
            exit(-1);
        }
    }

    a2inv=(x_a)?1/(x_a*x_a):0; /* 0 really means infinity for x direction */
    b2inv=(y_b)?1/(y_b*y_b):0;
    c2inv=(z_c)?1/(z_c*z_c):0;

    l_a2inv=(lattice_x_a)?1/(lattice_x_a*lattice_x_a):0; /* 0 really means infinity for x direction */
    l_b2inv=(lattice_y_b)?1/(lattice_y_b*lattice_y_b):0;
    l_c2inv=(lattice_z_c)?1/(lattice_z_c*lattice_z_c):0;

    cos_alpha0=cos(alpha);
    sin_alpha0=sin(alpha);

    if (verbose){
      printf("INFO (%s): curve=(%.5f %.5f %.5f) lcurve=(%.3f %.5f %.5f)\n\n",NAME_CURRENT_COMP,
          a2inv, b2inv, c2inv, l_a2inv, l_b2inv, l_c2inv);
      printf("INFO (%s): initialized\n",NAME_CURRENT_COMP);
    }
%}

TRACE
%{
    double E;				// (keV) x-ray energy
    double K; 				// length of k-vector
    double kxu,kyu,kzu;			// unit vector in the direction of k-vector.
    double x_int,y_int,z_int;		// intersection with the y=0 plane
    double f00, f0h, fp, fpp;		// atomic form factors for Q=0 is (f00 + fp + i*fpp) and for Q= ha*+kb*+lc* it is (f0h + fp + i*fpp).
    //double Thetain;			// (rad) angle between the crystal surface and the incident ray
    //double Theta0;			// (rad) angle between the Bragg planes and the incident ray
    //double Thetah;			// (rad) angle between the Bragg planes and the reflected ray
    //double DeltaTheta0;			// (rad) the center of the reflectivity curve is at asin(n*lambda/(2*d)) + DeltaTheta0
    //double Rpi, Rsig;
    double R;          // Reflectivity value calculated by Mx_DarwinReflectivity() function for each incoming photon
    
    /* get the photon's kvector and energy */
    K=sqrt(kx*kx+ky*ky+kz*kz);
    E = K2E*K; /* use built-in constants for consistency */
    /* make unit vector in the direction of k :*/
    kxu = kx; kyu = ky; kzu = kz;
    NORM(kxu,kyu,kzu);
    double k0hat[3]={kxu,kyu,kzu};
    /* printf("incoming kx,ky,kz, Ex, Ey, Ez, k.E: %f %f %f %g %g %g %g\n", kx,ky,kz,Ex,Ey,Ez, kxu*Ex+kyu*Ey+kzu*Ez); */

    #ifdef MCDEBUG
    printf("%s: starting trace, k0hat=(%.5f %.5f %.5f)\n", NAME_CURRENT_COMP,
        k0hat[0], k0hat[1], k0hat[2]);
    #endif

    /* this intersection code copied from Mirror_elliptic.comp, with coordinates modified */
    double A,B,C, xt, yt, zt;
    double t0,t1;
    /*an offset to the mirror parameters perhaps*/

    xt=x;
    zt=z;
    /*the reference point is on the ellipsoid surface such that the ellipsoid mass lies on the positive y-side of the zy-plane*/
    yt=y-y_b;

    C=xt*xt*a2inv + yt*yt*b2inv + zt*zt*c2inv -1;
    B=2*(kxu*xt*a2inv + kyu*yt*b2inv + kzu*zt*c2inv);
    A=kxu*kxu*a2inv + kyu*kyu*b2inv + kzu*kzu*c2inv;

    if(solve_2nd_order(&t0,&t1,A,B,C)){
        double xx0, xx1, yy0, yy1, zz0, zz1; /* we will have to tentatively propagate twice to see which surface we hit */
        xx0=x+kxu*t0; yy0=y+kyu*t0; zz0=z+kzu*t0;
        xx1=x+kxu*t1; yy1=y+kyu*t1; zz1=z+kzu*t1;

        /*Check if we hit the mirror and whether the hit it is in front of the ray.
         * This does not account for mirror curvature */
        int hit0=(fabs(xx0)<width/2.0) && (fabs(zz0)<length/2.0) && t0>0;
        int hit1=(fabs(xx1)<width/2.0) && (fabs(zz1)<length/2.0) && t1>0;
        int doit=hit0 || hit1;
        if(hit0 && !hit1) PROP_DL(t0); /* only one intersection actually on mirror */
        else if (hit1 && !hit0) PROP_DL(t1); /* other intersection */
        else if (hit0 && hit1) { /* both, take first strike (which may be back of mirror) */
            PROP_DL(t0<t1?t0:t1);	
        } else {
            RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
        }
        #ifdef MCDEBUG
        printf("%s: solving for crystal hit, l0=%f, l1=%f, x=(%f %f %f) doit=%d, hit0=%d, hit1=%d\n", NAME_CURRENT_COMP,
            t0, t1, x, y, z, doit, hit0, hit1);
        #endif
        if ( doit ){
            SCATTER;
            xt=x; yt=y-y_b; zt=z; /* update shifted coordinates to intersection point */
            double grad_x, grad_y, grad_z;
            /* grad is the outer normal to the surface at this point on surface presumed to be concave */
            double nhat[3]={-xt*a2inv, -yt*b2inv, -zt*c2inv}; NORM(nhat[0], nhat[1], nhat[2]);

            /* compute angle of crystal planes based on lattice ellipse, need to include rotation still! */
            double l_grad_x, l_grad_y, l_grad_z;
            /* l_grad is the outer normal to the lattice ellipse at this point, assuming that at the center of the
              mirror, the two ellipses coincide */
            double alpha_v[3]={ -xt*l_a2inv, -(y-lattice_y_b)*l_b2inv, -zt*l_c2inv}; NORM(alpha_v[0], alpha_v[1], alpha_v[2]);
            /* rotate the curvature-induced asymmetry by the global asymmetry alpha around the x-axis */
            double ay=alpha_v[1]*cos_alpha0-alpha_v[2]*sin_alpha0;
            double az=alpha_v[2]*cos_alpha0+alpha_v[1]*sin_alpha0;
            alpha_v[1]=ay; alpha_v[2]=az;

            double d=cbrt(V)/(sqrt(h*h+k*k+l*l));/*this is valid only for cubic structures*/
            f00 = Z;
            f0h = Table_Value(f0_t,1/(2*d),Z);
            fp  = Table_Value(m_t,E,1)-Z;
            fpp = Table_Value(m_t,E,2);

            double Rsig, Rpi;
            double kh[3], sig_axis[3], pi_axis[3];
            int fail;
            
            double complex chi0, chih;
            double k0mag, hscale, thetaB;

            Mx_CubicCrystalChi(&chi0, &chih, &k0mag, &hscale, &thetaB,
                         f00, f0h, fp, fpp, V, h, k, l,
                         debye_waller_B, E,
                         crystal_type,structure_factor_scale_r,structure_factor_scale_i);
            if(thetaB==0){
              if(verbose){
                fprintf(stderr,"WARNING (%s): reflection [%d %d %d] is inaccessible for E= %g keV. Terminating photon,\n",NAME_CURRENT_COMP,h,k,l,E);
                ABSORB;
              }
            }
            fail=Mx_DarwinReflectivityBC(&Rsig, &Rpi, kh, // these are the return values
                  k0hat, nhat, alpha_v,
                  chi0, chih, chih, k0mag, hscale, thetaB
              );

            cross(sig_axis, k0hat, kh, 1); /* kin x kout is sigma direction */
            /* sig_axis is the sigma direction, as returned by Bragg_Geometry inside DarwinReflectivityBT */
            /* pi is a vector perpendicular to k_in and sig i.e. the direction of pi polarization incoming */
            cross(pi_axis, k0hat, sig_axis, 1);

            /* update outgoing direction vector kx, ky, kz = kh, fully scaled outgoing k vector */
            kx=kh[0]; ky=kh[1]; kz=kh[2];

            /* resolve incoming polarization into sig and pi bits, and scale by sqrt(reflectivity) which is amplitude scale */
            double Esig=(Ex*sig_axis[0]+Ey*sig_axis[1]+Ez*sig_axis[2]);
            double Epi= (Ex* pi_axis[0]+Ey* pi_axis[1]+Ez* pi_axis[2]);
            if(Esig==0 && Epi==0) { /* someone didn't set the polarization direction; set it now to a random value and it will propagate */
                double psi=rand01()*PI/2;
                Esig=cos(psi); Epi=sin(psi);
            }
            Esig=Esig*sqrt(Rsig);
            Epi=Epi*sqrt(Rpi);
            R=Esig*Esig+Epi*Epi; /* projected reflectivity, squared back to intensity */

            double pi1_axis[3];
            /* pi1 is now a vector perpendicular to k_out and sig i.e. the direction of pi polarization outgoing */
            cross(pi1_axis, kh, sig_axis,1);

            /* a linear combination of these is still perpendicular to k, but has the correct polarization weighting */
            Ex=Epi*pi1_axis[0]+Esig*sig_axis[0];
            Ey=Epi*pi1_axis[1]+Esig*sig_axis[1];
            Ez=Epi*pi1_axis[2]+Esig*sig_axis[2];
            NORM(Ex, Ey, Ez);

#ifdef MCDEBUG
            fprintf(stderr,"Bent Crystal: %s: Rsig=%.4g Rpi=%.4g "
                    " k0=(%.8f, %.8f, %.8f), nhat=(%.8f, %.8f, %.8f) alpha=(%.8f, %.8f, %.8f), "
                    " kout=(%.8f, %.8f, %.8f) "
                    " axis=(%.8f, %.8f, %.8f) E=(%.4f, %.4f, %.4f) \n",
                    NAME_CURRENT_COMP, Rsig, Rpi, 
                    k0hat[0], k0hat[1], k0hat[2], nhat[0], nhat[1], nhat[2],
                    alpha_v[0], alpha_v[1], alpha_v[2],
                    kh[0], kh[1], kh[2], 
                    sig_axis[0], sig_axis[1], sig_axis[2], Ex, Ey, Ez);
#endif      
            /* apply Darwin reflectivity if not is supplied from outside*/
            if (!R0){
                p*=R;
            }else{
                p*=R0;
            }
            /*catch dead rays*/
            if (p==0) ABSORB;
        } else {
            RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
        }
    }
#ifdef MCDEBUG
    fflush(NULL); // make sure all error messages are in order!
#endif

%}


MCDISPLAY
%{
  int i,j,N=12, M=12;
  double aa,bb,cc;
  double vmax,vmin,umax,umin;
  magnify("");
#ifdef MCDEBUG
  printf("Bent Crystal(%s): plot params (%f %f %f) (%f %f %f) %f %f\n", NAME_CURRENT_COMP,
    x_a, y_b, z_c, a2inv, b2inv, c2inv, width, length);
  fflush(NULL);
#endif

  /*use the circumference of the ellipse/4 = the the ratio between that and the crystal length/2 should be reasonably close to umax/pi_2*/
  /*according to Ramanujan 1914*/
  double Pv=M_PI*(3*(z_c+y_b)- sqrt( (3*z_c+y_b)*(z_c+3*y_b)));
  double Pu=M_PI*(3*(x_a+y_b)- sqrt( (3*x_a+y_b)*(x_a+3*y_b)));

  vmax = length/2.0 /(Pv/4.0) * M_PI_2;
  vmin=-vmax;

  umax = width/2.0 /(Pu/4.0) * M_PI_2;
  umin=-umax;

  for (j=0;j<N;j++){
      double v0,v1;
      v0=j*(vmax-vmin)/N + vmin;
      v1=(j+1)*(vmax-vmin)/N + vmin;

      for (i=0;i<M;i++){
          double u0,u1;
          u0=i*(umax-umin)/M + umin;
          u1=(i+1)*(umax-umin)/M + umin;
          double nx,ny,nz,l0,l1;
          double x[4],y[4],z[4];
          /*assuming 0,0,0 is inside are inside the ellisoid*/
          nx=cos(v0)*sin(u0);ny=cos(v0)*cos(u0);nz=sin(v0);
          ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
          x[0]=nx*l1; y[0]=ny*l1; z[0]=nz*l1;

          nx=cos(v0)*sin(u1);ny=cos(v0)*cos(u1);nz=sin(v0);
          ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
          x[1]=nx*l1; y[1]=ny*l1; z[1]=nz*l1;

          nx=cos(v1)*sin(u1);ny=cos(v1)*cos(u1);nz=sin(v1);
          ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
          x[2]=nx*l1; y[2]=ny*l1; z[2]=nz*l1;

          nx=cos(v1)*sin(u0);ny=cos(v1)*cos(u0);nz=sin(v1);
          ellipsoid_intersect(&l0,&l1, 0,0,0, nx,ny,nz, x_a,y_b,z_c, NULL);
          x[3]=nx*l1; y[3]=ny*l1; z[3]=nz*l1;

          multiline(5, x[0],y_b-y[0],z[0], x[1],y_b-y[1],z[1], x[2],y_b-y[2],z[2], x[3],y_b-y[3],z[3], x[0],y_b-y[0],z[0]);
      }
  }

  line(0.,y_b,0., 0., y_b-cos_alpha0*(width+length)/2.0, sin_alpha0*(width+length)/2.0); // display alpha vector
%}

END