File: Mirror_toroid_pothole.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (247 lines) | stat: -rw-r--r-- 9,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Mirror_toroid_pothole
*
* %Identification
*
* Written by: Erik B Knudsen 
* Date: Jul 2016
* Version: 1.0
* Origin: DTU Physics
* Modified by: Padovani Antoine, 5th August 2022.
*
* Toroidal shape mirror (in XZ)
*
* %Description
* This is an implementation of a toroidal mirror which may be curved in two dimensions.
* To avoid solving quartic equations, the intersection is computed as a combination of 
* two intersections. First, the ray is intersected with a cylinder to catch (almost) the small
* radius curvature. Secondly, the ray is the intersected with an ellipsoid, with the curvatures
* matching that of the torus. 
*
* The first incarnation (Mirror_toroid.comp) the mirror curves outwards (a bump), but this incarnation (Mirror_toroid_pothole) curves inwards (a pothole).
*
* Example: Mirror_toroid_pothole( radius=0.1, radius_o=1000, xwidth=5e-2, zdepth=2e-1,R0=1, coating="")
*
* %Parameters
* R0:      [1]  Reflectivity of mirror.
* xwidth:  [m]  Width of mirror.
* zdepth:  [m]  Length of mirror.
* coating: [str] Datafile containing either mirror material constants or reflectivity  numbers.
* radius:  [m] Curvature radius
* radius_o:[m] Curvature radius, outwards
*
* %End
*******************************************************************************/

DEFINE COMPONENT Mirror_toroid_pothole
SETTING PARAMETERS (zdepth=0.1, xwidth=0.01, radius, radius_o,R0=0,string coating="")

SHARE
%{
  #include <complex.h>
  %include "read_table-lib" 
  %include "reflectivity-lib"
  struct potholestruct {
        double e_min,e_max,e_step,theta_min,theta_max,theta_step;
        int use_reflec_table;
  };
%}

DECLARE
%{  
    struct potholestruct prms;
    t_Table reflec_table;
    t_Reflec re;
%}

INITIALIZE
%{
    if (coating && strlen(coating)){
        char **header_parsed;
        t_Table *tp=&reflec_table;
        /* read 1st block data from file into tp */
        if (Table_Read(tp, coating, 1) <= 0)
        {
            exit(fprintf(stderr,"Error: %s: cannot read file %s\n",NAME_CURRENT_COMP, coating));
        }
        header_parsed = Table_ParseHeader(tp->header,
                "e_min=","e_max=","e_step=","theta_min=","theta_max=","theta_step=",NULL);
        if (header_parsed[0] && header_parsed[1] && header_parsed[2] &&
                header_parsed[3] && header_parsed[4] && header_parsed[5])
        {
            prms.e_min=strtod(header_parsed[0],NULL);
            prms.e_max=strtod(header_parsed[1],NULL);
            prms.e_step=strtod(header_parsed[2],NULL);
            prms.theta_min=strtod(header_parsed[3],NULL);
            prms.theta_max=strtod(header_parsed[4],NULL);
            prms.theta_step=strtod(header_parsed[5],NULL);
        } else {
            exit(fprintf(stderr,"Error: %s: wrong/missing header line(s) in file %s\n", NAME_CURRENT_COMP, coating));
        }	
        if (((tp->rows-2)*prms.e_step) > (prms.e_max-prms.e_min))
        {   
            exit(fprintf(stderr,"Error: %s: e_step does not match e_min and e_max in file %s (<)\n",NAME_CURRENT_COMP, coating));    
        }
        if ((prms.e_max-prms.e_min) > ((tp->rows)*prms.e_step))
        {
            exit(fprintf(stderr,"Error: %s: e_step does not match e_min and e_max in file %s (>)\n",NAME_CURRENT_COMP, coating));
        }        
        if (((tp->columns-2)*prms.theta_step) > (prms.theta_max-prms.theta_min))  
        {
            exit(fprintf(stderr,"Error: %s: theta_step does not match theta_min and theta_max in file %s (<)\n",NAME_CURRENT_COMP,coating));
        }
        if ((prms.theta_max-prms.theta_min) > ((tp->columns)*prms.theta_step))
        {
            exit(fprintf(stderr,"Error: %s: theta_step does not match theta_min and theta_max in file %s (>)\n",NAME_CURRENT_COMP,coating));
        }
        prms.use_reflec_table=1;
    }else{
        prms.use_reflec_table=0;
    }
%}

TRACE
%{
    int status;
    double l0,l1,l2,l3,tx,ty,tz;
    
    do {
        /*TODO check the permutation of coordinates and the actual position of the cylinder.*/
        status= cylinder_intersect(&l0,&l1,x,z,y-radius,kx,kz,ky, radius, zdepth);
        if (!status) break; /* no interaction with the cylinder*/
        //if(status & (02|04)) break; /*we exit the top/bottom of the cylinder*/        
        if(status & (24)) break;
        //if(status & (8|16)) break; /*we exit the top/bottom of the cylinder*/ 
        /*if the first intersection is behind the particle - this means the ray is on the wrong side of the mirror*/
        if(l1<0) break; 
        do {
            /*this to do a test propagation*/
            double op[12];
	    op[0]=x; op[1]=y; op[2]=z; op[3]=kx; op[4]=ky; op[5]=kz; op[6]=phi; op[7]=t; op[8]=Ex; op[9]=Ey; op[10]=Ez; op[12]=p;
            mcPROP_DL(l1);
            (tx)=x;(ty)=y; (tz)=z;
	    x=op[0]; y=op[1]; z=op[2]; kx=op[3]; ky=op[4]; kz=op[5]; phi=op[6]; t=op[7]; Ex=op[8]; Ey=op[9]; Ez=op[10]; p=op[12];
        }while(0);
        /*check mirror limits of intersectio point.*/
        if(tz<-zdepth/2.0 || tz>zdepth/2.0) break;
        /*check if the width is OK*/
        double xmax=acos(xwidth/(2.0*radius))*radius;
        if(tx<-xmax || tx>xmax) break;
        
        status=ellipsoid_intersect(&l2,&l3,x,y-radius,z,kx,ky,kz,radius,radius,radius_o+radius,NULL);
        if (!status) break;
        if(l3<0) break; /*This shouldn't be possible*/        
        /*the mirror is indeed hit*/
        PROP_DL(l3);
        SCATTER;
        
        double nx,ny,nz;
        nx=2*x/(radius*radius);
        ny=2*(y-radius)/(radius*radius);/*ellipsoid is displaced to put Origin on the surface*/
        nz=2*z/((radius+radius_o)*(radius+radius_o));
        NORM(nx,ny,nz);

        /*By definition the normal vector points out from the ellipsoid*/
        double s=scalar_prod(kx,ky,kz,nx,ny,nz);
        double k=sqrt(scalar_prod(kx,ky,kz,kx,ky,kz)); 
         
        kx=kx-2*s*nx;
        ky=ky-2*s*ny;
        kz=kz-2*s*nz;

        /*find energy, and glancing angle*/ 
        if (prms.use_reflec_table){
            /*the get ref. by call to Table_value2d*/
            double R;
            double theta=RAD2DEG*(acos(s/k)-M_PI_2);
            double e=K2E*k;
            R=Table_Value2d(reflec_table,fabs((e-prms.e_min)/prms.e_step), fabs(((theta-prms.theta_min)/prms.theta_step)));
            p*=R;
            /*update phase - as an approximation turn by 180 deg.*/
	    phi+=M_PI;
        }else{
            p*=R0;
        }
    }while(0);
%}




MCDISPLAY
%{
  //See parametric equation used for the 3D view here: https://en.wikipedia.org/wiki/Torus#Geometry or here:https://web.maths.unsw.edu.au/~rsw/Torus/index.php
  //Because the code above doesn't actually reproduce a torus exactly but uses a cylinder and an ellipsoid to construct the toroidal mirror (to avoid solving quartic equations),
  //there's a slight mismatch between the 3D view (exact torus) and the actual toroidal mirror coded above.
  
  double x0,y0,z0,x1,y1,z1,theta,phi,phi_total,theta_total,theta_beginning,phi_beginning,theta_end,phi_end;
  //int N=50; too many points, makes the 3D matlab viewer bug
  int N=10;     
  
  phi_total = RAD2DEG*(zdepth/(radius+radius_o));//degrees
  theta_total = RAD2DEG*(xwidth/radius);
  
  //fix theta=0 and phi=180 degrees respectively
  theta=0;
  phi=180;
  
  //then start at the beginning of the theta or phi range in order to map the flat surface (xwidth, zdepth) on the torus.
  theta_beginning=theta-(theta_total/2);
  phi_beginning=phi-(phi_total/2);
   
  theta_end = theta+(theta_total/2);
  phi_end = phi+(phi_total/2);
  
  theta = theta_beginning;
  phi = phi_beginning;  
  
  while (theta<=theta_end){
      phi=180-(phi_total/2);
      x0=radius*sin(DEG2RAD*theta);
      y0=(radius_o+radius*cos(DEG2RAD*theta))*cos(DEG2RAD*phi)+(radius_o+radius);
      z0=(radius_o+radius*cos(DEG2RAD*theta))*sin(DEG2RAD*phi);
      while (phi<=phi_end){
          x1=radius*sin(DEG2RAD*theta);
          y1=(radius_o+radius*cos(DEG2RAD*theta))*cos(DEG2RAD*phi)+(radius_o+radius);
          z1=(radius_o+radius*cos(DEG2RAD*theta))*sin(DEG2RAD*phi);      
          line(x0,y0,z0,x1,y1,z1);   
          x0=x1;
          y0=y1; 
          z0=z1; 
          phi+=phi_total/N;
          
      }
      theta+=theta_total/N;
  }  
   
  theta = theta_beginning;
  phi = phi_beginning;  
  
  while (phi<=phi_end){
      theta=-(theta_total/2);
      x0=radius*sin(DEG2RAD*theta);
      y0=(radius_o+radius*cos(DEG2RAD*theta))*cos(DEG2RAD*phi)+(radius_o+radius);
      z0=(radius_o+radius*cos(DEG2RAD*theta))*sin(DEG2RAD*phi);
      while (theta<=theta_end){
          x1=radius*sin(DEG2RAD*theta);
          y1=(radius_o+radius*cos(DEG2RAD*theta))*cos(DEG2RAD*phi)+(radius_o+radius);
          z1=(radius_o+radius*cos(DEG2RAD*theta))*sin(DEG2RAD*phi);      
          line(x0,y0,z0,x1,y1,z1);   
          x0=x1;
          y0=y1; 
          z0=z1; 
          theta+=theta_total/N;
      }
      phi+=phi_total/N;
  }
   
%}


END