1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*******************************************************************************
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SAXSEllipticCylinders
*
* %Identification
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: May 2, 2012
* Origin: KU-Science
*
* A sample of monodisperse cylindrical particles with elliptic cross section in
* solution.
*
* %Description
* A component simulating the scattering from a box-shaped, thin solution
* of monodisperse, cylindrical particles with elliptic cross section.
*
* Example: SAXSEllipticCylinders( xwidth = 0.01, yheight = 0.01, zdepth = 0.01, SampleToDetectorDistance = 0.48, DetectorRadius = 0.1 )
*
* %Parameters
* R1: [AA] First semiaxis of the cross section of the elliptic cylinder.
* R2: [AA] Second semiaxis of the cross section of the elliptic cylinder.
* Height: [AA] Height of the cylinder.
* Concentration: [mM] Concentration of sample.
* DeltaRho: [cm/AA^3] Excess scattering length density of the particles.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for focusing the scattered x-rays).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered x-rays).
*
* %End
*******************************************************************************/
DEFINE COMPONENT SAXSEllipticCylinders
SETTING PARAMETERS (R1 = 20.0, R2 = 40.0, Height = 100.0, Concentration = 0.01, DeltaRho = 1.0e-14, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth, SampleToDetectorDistance, DetectorRadius)
DEPENDENCY " @GSLFLAGS@ "
NOACC
/*X-ray Parameters (x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p)*/
SHARE
%{
#include <gsl/gsl_sf_bessel.h>
%}
DECLARE
%{
double Prefactor;
double Absorption;
double NumberDensity;
%}
INITIALIZE
%{
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Computations
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
}
Prefactor = NumberDensity * pow(PI * Height * R1 * R2, 2) * pow(DeltaRho, 2);
Absorption = AbsorptionCrosssection;
%}
TRACE
%{
double l0;
double l1;
double l_full;
double l;
double l_1;
double Formfactor1;
double Formfactor2;
double Intensity;
double SolidAngle;
double qx;
double qy;
double qz;
double q;
double k;
double dl;
double kx_i;
double ky_i;
double kz_i;
double ProjectedRadius;
char Intersect = 0;
/* variables needed for integration over alpha */
int i;
const int NumberOfStepsInAlpha = 30;
double Alpha;
const double AlphaMin = 0.0;
const double AlphaMax = PI / 2.0;
const double AlphaStep = (AlphaMax - AlphaMin) / (1.0 * NumberOfStepsInAlpha);
/* Variables needed in integration over beta */
int j;
const int NumberOfStepsInBeta = 30;
double Beta;
const double BetaMin = 0.0;
const double BetaMax = PI / 2.0;
const double BetaStep = (BetaMax - BetaMin) / (1.0 * NumberOfStepsInBeta);
Intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
if (Intersect) {
if (l0 < 0.0) {
fprintf(stderr, "Photon already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of photon
k = sqrt(pow(kx, 2) + pow(ky, 2) + pow(kz, 2));
l_full = l1 - l0;
dl = rand01() * (l1 - l0) + l0;
PROP_DL(dl);
l = dl - l0;
// Store properties of incoming photon
kx_i = kx;
ky_i = ky;
kz_i = kz;
/* Generate new direction of photon */
randvec_target_circle(&kx, &ky, &kz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
/* Compute q */
qx = kx_i - kx;
qy = ky_i - ky;
qz = kz_i - kz;
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
/* Compute scattering */
Intensity = 0.0;
for (i = 0; i < NumberOfStepsInAlpha; ++i) {
Alpha = (i + 0.5) * AlphaStep;
for (j = 0; j < NumberOfStepsInBeta; ++j) {
Beta = (j + 0.5) * BetaStep;
ProjectedRadius = sqrt(pow(R1 * sin(Beta), 2) + pow(R2 * cos(Beta), 2));
Formfactor1 = gsl_sf_bessel_J1(q * ProjectedRadius * sin(Alpha)) / (q * ProjectedRadius * sin(Alpha));
Formfactor2 = sin(q * Height * cos(Alpha) / 2.0) / (q * Height * cos(Alpha) / 2.0);
Intensity += 2 / PI * sin(Alpha) * Prefactor * pow(2 * Formfactor1 * Formfactor2, 2) * AlphaStep * BetaStep;
}
}
p *= l_full * SolidAngle / (4.0 * PI) * Intensity * exp(- Absorption * (l + l1));
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|