1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: ATHENA_cfgA_1mm
*
* %Identification
* Written by: Erik B Knudsen <erkn@fysik.dtu.dk> & Desiree D. M. Ferreira <desiree@space.dtu.dk> (email)
* Date: 12/12/2016
* Origin: DTU Physics/DTU Space
* Release: McXtrace 1.2
* Version: 1.0
* %INSTRUMENT_SITE: AstroX_ESA
*
* Single pore version of the ATHENA SPO-optic in use as telescope.
*
* %Description
* A model of the ATHENA-telescope using just a single mirror module as optical element. That means to make use of this instrument
* it is necessary to run a series of simulation while varying the input parameter porenumber.
* At present, the porenumber really means mirror module number.
*
* The model needs as input a set of files: A Mirror Module definition file and a ring definition file.
* The former contains overall definitions of mirror modules and their positions - the latter contains details about each plate.
* There is some redundancy between the two files. The latter will be rendered unnecessary in a later version.
* An example of mmdef_file is "MM_Definitions-cfgA.csv" which is distributed by ESA.
* An example of ringfile is "ref_design.dat" which is taken from the ATHENA_reference design white-paper.
*
* Reflectivity may be modelled using a datafile. In this telscope model only the top (intentionally reflecting) surface
* is given a data-file. However, the MM-components can cope with non-zero reflectivity for side-walls and bottom surfaces.
* The reflectivity datafile follows a simple ascii-format with 6 header lines the define the ranges in energy E and grazing
* angle theta, followed by a 2D-data block with reflectivity numbers. This is expected to be substituted for a 1D-parametrization '
* in q, to avoid overly lagre data-files.
*
* Example: ATHENA_cfgA_1mm.instr porenumber=3
*
* %Parameters
* FL: [m] The focal length of the optical system
* optics_dist: [m] The distance between souce and optic. In space this would be quite large :-).
* offaxis_angle: [arcmin] Angle of collimated light from source
* reflectivity: [ ] Data file containing reflectivities (such as from IMD)
* E0: [keV] Central energy of X-rays
* dE: [keV] Half spread of energy spectrum to be emitted from source
* mmdef_file: [ ] File containing the positions and overall geometry of Mirror Modules.
* ringfile: [ ] File which contains deatiled plate descriptions.
* porenumber: [ ] Actually the mirror module number.
* dPx: [m] Offset/displacement of parabolic pore along x from its theoretical position.
* dPy: [m] Offset/displacement of parabolic pore along y from its theoretical position.
* dPz: [m] Offset/displacement of parabolic pore along z from its theoretical position.
* dPrx: [arcsec] Rotational misalignment of parabolic pore around x.
* dPry: [arcsec] Rotational misalignment of parabolic pore around y.
* dPrz: [arcsec] Rotational misalignment of parabolic pore around z.
* dHx: [m] Offset/displacement of hyperbolic pore along x from its theoretical position.
* dHy: [m] Offset/displacement of hyperbolic pore along y from its theoretical position.
* dHz: [m] Offset/displacement of hyperbolic pore along z from its theoretical position.
* dHrx: [arcsec] Rotational misalignment of hyperbolic pore around x.
* dHry: [arcsec] Rotational misalignment of hyperbolic pore around y.
* dHrz: [arcsec] Rotational misalignment of hyperbolic pore around z.
* XWidth: [m] The width of the user detector default is that of the ATHENA WFI large area detector
* YHeight: [m] The height of the user detector default is that of the ATHENA WFI large area detector
* NX: [ ] Number of pixels along X in the user detector
* NY: [ ] Number of pixels along Y in the user detector.
* Hyper: [ ] If non-zero the secondary mirror (hyperbolic) is active. Useful for debugging.
* Para: [ ] If non-zero the primary mirror is acive (parabolic) is active. Useful for debugging.
* lists: [ ] If non-zero drop event mode monitr are active. Turn-off to save disk-space.
* default_reflec: [] Default reflectivity value to use if no reflectivity file is given.
*
* %Link
* <a href="http://www.cosmos.esa.int/web/athena">The ATHENA web pages @ ESA</a>
*
* %End
*******************************************************************************/
/* Change name of instrument and input parameters with default values */
DEFINE INSTRUMENT ATHENA_1mm(FL=12, optics_dist=10,
XWidth=0.13312, YHeight=0.13312, NX=1024, NY=1024,
offaxis_angle=0,
dPx=0,dPy=0,dPz=0, dPrx=0, dPry=0, dPrz=0,
dHx=0,dHy=0,dHz=0, dHrx=0, dHry=0, dHrz=0,
string reflectivity="mirror_coating_unity.txt",default_reflec=0,
E0=5, dE=0.001, int porenumber=1,
string mmdef_file="MM_Definitions-cfgA.csv", string ringfile="ref_design_breaks.txt",
int Hyper=1, int Para=1, int lists=0)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double src_pos_x;
double src_pos_y;
#pragma acc declare create(alphax)
double alphax,alphay;
double pore_width=0.83e-3;
double pore_height=0.605e-3;
double pore_wall=0.17e-3;
t_Table MM_def;
int row,idx;
double PR, PA, PL, PRH, PW, PZ;
%}
USERVARS %{
double hyperref;
double pararef;
int parascatter;
double hyperscatter;
double pstore;
long long nid;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
if (offaxis_angle){
alphax=offaxis_angle * MIN2RAD;
}
int status;
status=Table_Read(&MM_def, mmdef_file, 0);
if(status<=0){
fprintf(stderr,"Error reading file %s\n",mmdef_file);
exit(-1);
}
row=(int)Table_Index(MM_def,porenumber,1);
idx=(int)Table_Index(MM_def,porenumber,0);
PR=Table_Index(MM_def,porenumber,6);
PA=Table_Index(MM_def,porenumber,7);
PL=Table_Index(MM_def,porenumber,9);
PW=Table_Index(MM_def,porenumber,10);
PZ=Table_Index(MM_def,porenumber,8);
#pragma acc update device(alphax)
%}
/* instrument is defined as a sequence of components. */
TRACE
/* The Arm() class component defines reference points and orientations */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used */
/* for further RELATIVE reference, Other useful keywords are : ROTATED */
/* EXTEND GROUP PREVIOUS. Also think about adding an xray source ! */
/* Progress_bar is an Arm displaying simulation progress. */
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
EXTEND
%{
parascatter=0;
hyperscatter=0;
nid++;
hyperref=1;
pararef=1;
%}
COMPONENT srca = Arm()
AT(0,0,0) RELATIVE Origin
ROTATED(0,0,-90+PA) RELATIVE Origin
COMPONENT src = Source_div(
xwidth=200.0*pore_width,yheight=200.0*pore_height,focus_aw=0,focus_ah=0,E0=E0,dE=dE)
AT(0,PR,0) RELATIVE srca
COMPONENT srcoffaxis= Arm()
AT(0,0,0) RELATIVE Origin
ROTATED (0,0,0) RELATIVE Origin
EXTEND
%{
do {
rotate(kx,ky,kz, kx,ky,kz, alphax, 0,1,0);
x-=INSTRUMENT_GETPAR(optics_dist)*sin(alphax);
SCATTER;
}while(0);
%}
COMPONENT detector_pre_optics = PSD_monitor(restore_xray=1, xwidth=2.5, yheight=2.5, nx=201, ny=201, filename="det_preo.dat")
AT(0,0,optics_dist) RELATIVE Origin
COMPONENT emon_preoptics = E_monitor(restore_xray=1, xwidth=3, yheight=3, nE=201, filename="emon_prep.dat", Emin=0.1, Emax=12)
AT(0,0,optics_dist) RELATIVE Origin
COMPONENT optics_centre = Arm()
AT(0,0,optics_dist) RELATIVE Origin
EXTEND
%{
pstore=p;
%}
COMPONENT a_1 = Arm()
AT(0,0,0) RELATIVE optics_centre
ROTATED (0,0,-90+PA) RELATIVE optics_centre
COMPONENT misalign_rot_p = Arm()
AT(dPx,dPy+PR,dPz) RELATIVE a_1
ROTATED (dPrx/3600.0,dPry/3600.0,dPrz/3600.0) RELATIVE a_1
COMPONENT ref_p = Arm()
AT( 0,-PR,0) RELATIVE misalign_rot_p
/*GROUP paraoptics*/
COMPONENT mm_p_1 = MM_p(
pore_th=0, ring_nr=row, Z0=FL, pore_width=pore_width , pore_height=pore_height, chamfer_width=pore_wall, mirror_reflec=reflectivity, R_d=default_reflec, size_file=ringfile)
WHEN(Para) AT(0,0,0) RELATIVE ref_p
ROTATED (0.0,0.0,0.0) RELATIVE ref_p
EXTEND
%{
if (SCATTERED){
parascatter=SCATTERED;
pararef=p/pstore;
}
%}
COMPONENT det_mid_optics= COPY(detector_pre_optics)(filename="det_mido.dat")
AT(0,0,0) RELATIVE optics_centre
COMPONENT emon_mid_optics=COPY(emon_preoptics)(filename="emon_mido.dat")
AT(0,0,0) RELATIVE optics_centre
COMPONENT misalign_rot_h = Arm()
AT(dHx,dHy+PR,dHz) RELATIVE a_1
ROTATED (dHrx/3600.0,dHry/3600.0,dHrz/3600.0) RELATIVE a_1
COMPONENT ref_h = Arm()
AT( 0,-PR,0) RELATIVE misalign_rot_h
COMPONENT mm_h_1 = MM_h(
pore_th=0, ring_nr=row, Z0=FL, pore_width=pore_width, pore_height=pore_height, chamfer_width=pore_wall, mirror_reflec=reflectivity, R_d=default_reflec, size_file=ringfile)
WHEN (Hyper) AT(0,0,0) RELATIVE ref_h
ROTATED (0.0,0.0,0.0) RELATIVE ref_h
EXTEND
%{
if (SCATTERED){
hyperscatter=SCATTERED;
hyperref=p/(pstore*pararef);
}
%}
COMPONENT detector_post_optics = PSD_monitor(restore_xray=1,xwidth=2.5, yheight=2.5, nx=201, ny=201, filename="det_posto.dat")
AT(0,0,optics_dist+0.5) RELATIVE Origin
COMPONENT det_post_op_dblscat = COPY(detector_post_optics)(filename="det_post_dbl.dat")
WHEN( hyperscatter==2 && parascatter==2) AT(0,0,0) RELATIVE PREVIOUS
COMPONENT emon_post_optics=COPY(emon_preoptics)(filename="emon_posto.dat")
AT(0,0,optics_dist+0.5) RELATIVE Origin
COMPONENT emon_post_optics_dblscat=COPY(emon_post_optics)(filename="emon_posto_dbl.dat")
WHEN( hyperscatter==2 && parascatter==2) AT(0,0,0) RELATIVE PREVIOUS
/*a block of three detectors of fixed size*/
COMPONENT focal_detector = PSD_monitor(restore_xray=1,xwidth=1e-2, yheight=1e-2, nx=201, ny=201, filename="focal_det.dat")
AT(0,0,FL) RELATIVE optics_centre
COMPONENT superfocal_detector = PSD_monitor(restore_xray=1,xwidth=1e-6, yheight=1e-6, nx=201, ny=201, filename="superfocal_det.dat")
AT(0,0,FL) RELATIVE optics_centre
COMPONENT ultrafocal_detector = PSD_monitor(restore_xray=1,xwidth=1e-12, yheight=1e-12, nx=201, ny=201, filename="ultrafocal_det.dat")
AT(0,0,FL) RELATIVE optics_centre
/*A detector that may be changed from outside this file*/
COMPONENT user_focal_detector = PSD_monitor(restore_xray=1, xwidth=XWidth, yheight=YHeight, nx=((int)NX), ny=((int)NY), filename="user_focal_detector.dat")
AT(0,0,FL) RELATIVE optics_centre
COMPONENT auto_focal_detector = Monitor_nD(restore_xray=1,xwidth=.2, yheight=.2, options="x bins=256 limits auto, y bins=256 limits auto", filename="auto_focal.dat")
AT(0,0,FL) RELATIVE optics_centre
COMPONENT FLmond= Monitor_nD(
restore_xray=1,filename="FLmond",xwidth=0.1, yheight=.1, options="list=5000 user1 x y kx ky kz E", user1="nid",
username1="ray_id")
WHEN(lists) AT(0,0,FL) RELATIVE optics_centre
/* This section is executed when the simulation ends (C code). Other */
/* optional sections are : SAVE */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END
|