1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: NuSTAR_1shell_con
*
* %Identification
* Written by: Erik B Knudsen <erkn@fysik.dtu.dk> & Desiree D. M. Ferreira <desiree@space.dtu.dk> (email)
* Date: 12/12/2016
* Origin: DTU Physics/DTU Space
* Release: McXtrace 1.2
* Version: 1.0
* %INSTRUMENT_SITE: AstroX_ESA
*
* Single shell model of the NuSTAR-optic in use as telescope.
*
* %Description
* A model of the NuSTAR-telescope using just a single shell as optical element.
* That means to make use of this instrument
* it is necessary to run a series of simulation while varying the input parameter shellnumber.
*
* The model needs as input a file geomfile, which contains (in ascii) tabled details about the geometry of the shells.
* The data in the geomfile is assumed to be in the format:
* #row L/m rad_h/m rad_m/m rad_p/m width/m
* ...
* row: running index for the rows/rings
* L: The length of the plates for this ring
* rad_h: The radius at the "hyperbolic" end of the optic. At the detector end.
* rad_m: The radius at the midpoint of the optic. This is the reference.
* rad_p: The radius at the "parabolic" and of the optic. At the source end.
* width: pore width ?
*
* Example: NuSTAR_1shell_con.instr shellnumber=1
*
* %Parameters
* FL: [m] The focal length of the optical system
* optics_dist: [m] The distance between souce and optic. In space this would be quite large :-).
* SRC_POS_X: [m] Displacement of source along X
* SRC_POS_Y: [m] Displacement of source along Y
* offaxis_angle: [arcmin] Angle of collimated light from source
* reflectivity: [ ] Data file containing reflectivities (such as from IMD)
* E0: [keV] Central energy of X-rays
* dE: [keV] Half spread of energy spectrum to be emitted from source
* shellnumber: [ ] The row number for the miror module. This defines the shell.
* geomfile: [ ] File which contains the geometry of the pores (i.e. radii,lengths)
* FLd: [m] Detectors distance
*
* %Link
* <a href="http://www.cosmos.esa.int/web/athena">The ATHENA web pages @ ESA</a>
*
* %End
*******************************************************************************/
/* Change name of instrument and input parameters with default values */
DEFINE INSTRUMENT NuSTAR_1shell_con(FL=10.12,FLd=0, optics_dist=10,
SRC_POS_X=0, SRC_POS_Y=0, offaxis_angle=0, drx=0,dry=0,drz=0 ,
string reflectivity="mirror_coating_unity.txt", E0=5, dE=0.001, int shellnumber=0,
string parabolic_datafile="om_con_1a_110901_t1.txt", string hyperbolic_datafile="om_con_3a_110901_t1.txt")
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double RP,RMP,PL,RH,RMH,HL,PHP,PHH, AP, AH;
int Pcoat,Hcoat;
double src_pos_x;
double src_pos_y;
#pragma acc declare create(alphax)
double alphax,alphay;
double pore_width=0.83e-3;
char *coatings[]={
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt",
"mirror_coating_unity.txt"
};
%}
USERVARS %{
int parascatter;
int hyperscatter;
double pararef;
double hyperref;
long long nid;
double pstore;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
src_pos_x=SRC_POS_X;
src_pos_y=SRC_POS_Y;
if (offaxis_angle){
alphax=offaxis_angle * MIN2RAD;
}
alphay=(src_pos_y)/optics_dist;
t_Table tpa,tph;
int status=0;
if( (status=Table_Read(&tpa,parabolic_datafile,0))<1){
fprintf(stderr,"Error: Could not open/parse file %s\n",parabolic_datafile);
exit(-1);
}
if( (status=Table_Read(&tph,hyperbolic_datafile,0))<1){
fprintf(stderr,"Error: Could not open/parse file %s\n",hyperbolic_datafile);
exit(-1);
}
/*extract relevant numbers from the tables*/
RP=Table_Index(tpa,shellnumber,0)*1e-3;
RMP=Table_Index(tpa,shellnumber,1)*1e-3;
AP=Table_Index(tpa,shellnumber,4);
PL=Table_Index(tpa,shellnumber,5)*1e-3;
Pcoat=Table_Index(tpa,shellnumber,7);
RH=Table_Index(tph,shellnumber,1)*1e-3;
RMH=Table_Index(tph,shellnumber,0)*1e-3;
AH=Table_Index(tph,shellnumber,4);
HL=Table_Index(tph,shellnumber,5)*1e-3;
Hcoat=Table_Index(tph,shellnumber,7);
PHH=(Table_Index(tph,shellnumber,9)-Table_Index(tph,shellnumber,8))*1e-3;
PHP=(Table_Index(tpa,shellnumber,9)-Table_Index(tpa,shellnumber,8))*1e-3;
if (RMH!=RMP){
printf("aaargh %g %g %g %g \n",RP, RMP,RMH, RH);
//exit(-1);
}
if(!FLd){
FLd=FL;
}
printf("fff: %g %g\n",FL,FLd);
#pragma acc update device(alphax)
%}
/* instrument is defined as a sequence of components. */
TRACE
/* The Arm() class component defines reference points and orientations */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used */
/* for further RELATIVE reference, Other useful keywords are : ROTATED */
/* EXTEND GROUP PREVIOUS. Also think about adding an xray source ! */
/* Progress_bar is an Arm displaying simulation progress. */
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
EXTEND
%{
parascatter=0;
hyperscatter=0;
nid++;
hyperref=1;
pararef=1;
%}
COMPONENT src = Source_div(
xwidth=0,yheight=2.0*PHP,focus_aw=0,focus_ah=0,E0=E0,dE=dE)
AT(0,RP-PHP/2.0,0) RELATIVE Origin
COMPONENT srcradsym = Arm()
AT(0,0,0) RELATIVE Origin
EXTEND
%{
do {
x=0;
double eta=2*M_PI*rand01();
rotate(x,y,z, x,y,z, eta, 0,0,1);
} while(0);
%}
COMPONENT srcoffaxis= Arm()
WHEN(alphax!=0) AT(0,0,0) RELATIVE Origin
ROTATED (0,0,0) RELATIVE Origin
EXTEND
%{
do {
rotate(kx,ky,kz, kx,ky,kz, alphax, 0,1,0);
x-=INSTRUMENT_GETPAR(optics_dist)*sin(alphax);
SCATTER;
}while(0);
%}
COMPONENT detector_pre_optics = PSD_monitor(restore_xray=1, xwidth=3, yheight=1.5, nx=101, ny=51, filename="det_preo.dat")
AT(0,0,optics_dist) RELATIVE Origin
COMPONENT optics_centre = Arm()
AT(0,0,optics_dist) RELATIVE Origin
EXTEND
%{
pstore=p;
%}
COMPONENT misalign = Arm()
AT(0,0,0) RELATIVE optics_centre
ROTATED (drx/3600.0, dry/3600.0, drz/3600.0) RELATIVE optics_centre
EXTEND
%{
//printf("%ld %g %g \n",nid,RP,RMP);
//printf("%ld %g %g \n",nid,RH,RMH);
%}
COMPONENT Shell_p_1 = Shell_c(
yheight=1, radius_m=RMP,primary=1, length=PL, Z0=FL, yheight=PHP, mirror_reflec=coatings[Pcoat], R_d=0)
AT(0,0,-1e-4) RELATIVE misalign
EXTEND
%{
if (SCATTERED){
parascatter=SCATTERED;
pararef=p/pstore;
}
//printf("1: %g %g %g\n",alpha,radius_1,radius_2);
%}
COMPONENT midopdet = PSD_monitor(
restore_xray=1,xwidth=3,yheight=1.5,nx=201,ny=101, filename="midop.dat")
AT(0,0,0) RELATIVE misalign
COMPONENT Shell_h_1 = Shell_c(
yheight=1, radius_m=RMH, primary=0,primary=0, length=HL, Z0=FL, yheight=PHH, mirror_reflec=coatings[Hcoat], R_d=0)
AT(0,0,0) RELATIVE misalign
GROUP hyperoptics
EXTEND
%{
if (SCATTERED){
hyperscatter=SCATTERED;
hyperref=p/(pstore*pararef);
}
//printf("2: %g %g %g\n",alpha,radius_1,radius_2);
%}
//COMPONENT fourpi = PSD_monitor_4PI(restore_xray=1,filename="sphere.dat", radius=2, nx=51,ny=51)
//AT(0,0,0) RELATIVE optics_centre
COMPONENT detector_post_optics = PSD_monitor(restore_xray=1,xwidth=.45, yheight=0.45, nx=501, ny=501, filename="det_posto.dat")
AT(0,0,optics_dist+0.5) RELATIVE Origin
COMPONENT paramon = Monitor_nD(
restore_xray=1,filename="paramond",xwidth=3, yheight=1.5, options="list=2000 user1,user2,user3", user1="nid",user2="parascatter",user3="pararef",
username1="ray_id",username2="parabolic_shell_id",username3="parabolic_reflectivity")
AT(0,0,optics_dist+0.5) RELATIVE Origin
COMPONENT hypermon = Monitor_nD(
restore_xray=1,filename="hypermond",xwidth=3, yheight=1.5, options="list=2000 user1,user2,user3", user1="nid",user2="hyperscatter",user3="hyperref",
username1="ray_id",username2="hyperbolic_shell_id",username3="hyperbolic_reflectivity")
AT(0,0,optics_dist+0.5) RELATIVE Origin
COMPONENT big_detector = PSD_monitor(restore_xray=1, xwidth=0.4, yheight=0.4, nx=201, ny=201, filename="bigdet.dat")
AT(0,0,FLd) RELATIVE optics_centre
COMPONENT medium_detectpr = PSD_monitor(restore_xray=1, xwidth=0.05, yheight=0.05, nx=201, ny=201, filename="meddet.dat")
AT(0,0,FLd) RELATIVE optics_centre
COMPONENT focal_detector = PSD_monitor(restore_xray=1,xwidth=2e-3, yheight=2e-3, nx=801, ny=801, filename="focal_det.dat")
AT(0,0,FLd) RELATIVE optics_centre
COMPONENT superfocal_detector = PSD_monitor(restore_xray=1,xwidth=1e-6, yheight=1e-6, nx=201, ny=201, filename="superfocal_det.dat")
AT(0,0,FLd) RELATIVE optics_centre
COMPONENT ultrafocal_detector = PSD_monitor(restore_xray=1,xwidth=1e-12, yheight=1e-12, nx=201, ny=201, filename="ultrafocal_det.dat")
AT(0,0,FLd) RELATIVE optics_centre
COMPONENT FLmond= Monitor_nD(
restore_xray=1,filename="FLmond",xwidth=0.1, yheight=.1, options="list=all user1 x y k E", user1="nid",
username1="ray_id")
AT(0,0,FLd) RELATIVE optics_centre
/* This section is executed when the simulation ends (C code). Other */
/* optional sections are : SAVE */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END
|