1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*******************************************************************************
* Instrument: CXO
*
* %Identification
* Written by: Erik B Knudsen (erkn@fysik.dtu.dk)
* Date: Nov '20
* Origin: DTU Physics
* Version: 1.0
* %INSTRUMENT_SITE: AstroX_NASA
*
* Chandra X-ray Observatory CXO
*
* %Description
* Model of the Chandra X-ray Observatory based on the description avaiable
* in the Chandra Observers' Guide. Fully collimated X-ray light impinges on the
* optic consisting of 4 mirrors in the true Wolter I configuration.
*
*
* %Parameters
* <parameter1>: [<unit>] <parameter1 description>
* E0: [keV] Central eX-ray energy to be simulated.
* dE: [keV] Half-width of energy spectrum
* verbose: [0] Emit extra information.
* mcoat: [str] Filename of file which conatins reflectivity for coating
* OA_angle: [deg] Off-axis angle. Angle around y-axis at which radiation will hit the optic.
*
* %Link
* https://cxc.harvard.edu/proposer/POG/html/index.html
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT CXO(E0=1, dE=0.001, verbose=1, string mcoat="Ir_CXO.dat", OA_angle=0)
DECLARE
%{
double Rp[4]={1.23/2.0, 0.99/2.0, 0.87/2.0, 0.65/2.0};
double Rm[4];
double Rh[4];
const double FL=10.070;
const double PL=0.84;
const double th_c_deg[4]={3.42, 2.75, 2.42, 1.80};
double th_c[4];
const double OD=10;
char optionstring[]="x auto y auto";
char optionstring1[128];
char optionstring2[128];
%}
USERVARS %{
int bounce;
double xdiv;
%}
INITIALIZE
%{
/*compute the midpoint and hyperbolic radii*/
double alpha,thetap,thetah,P,d,e,C0;
int i;
for(i=0;i<4;i++){
th_c[i]=th_c_deg[i]*DEG2RAD;
Rm[i]=atan(th_c[i])*FL;
alpha=th_c[i]/4.0;
thetap=alpha;
thetah=alpha*3;
P=FL*tan(4*alpha)*tan(thetap);
d=FL*tan(4*alpha)*tan(4*alpha-thetah);
e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
C0=4*e*e*P*d/(e*e-1);
/*RP and RH is assumed given by the length along the axis=0.84*/
Rp[i]=sqrt( P*P + 2*P*(PL+FL) + C0);
Rh[i]=sqrt( e*e *(d+FL-PL)*(d+FL-PL) - (FL-PL)*(FL-PL));
if(verbose){
printf("CXO radii (Rp,Rm,Rh): %f %f %f\n",Rp[i],Rm[i],Rh[i]);
printf("CXO diam outer (Dp): %.2f\n",Rp[i]*2);
printf("CXO diffs %.2f %.2f %.2f\n",Rp[i]-Rp[i-1], Rm[i]-Rm[i-1], Rh[i]-Rh[i-1]);
printf("theta(p,h) = (%g,%g) deg. = (%g,%g) rad.\n",thetap*RAD2DEG,thetah*RAD2DEG,thetap,thetah);
}
}
snprintf(optionstring1,127,"xdiv limits -1 1");
snprintf(optionstring2,127,"u1 limits -1 1");
%}
TRACE
COMPONENT origin = Progress_bar()
AT (0, 0, 0) RELATIVE ABSOLUTE
COMPONENT optics_centre = Arm()
AT(0,0,OD) RELATIVE origin
COMPONENT optics_entry = Arm()
AT(0,0,-PL) RELATIVE optics_centre
COMPONENT off_axis = Arm()
AT(0,0,0) RELATIVE optics_entry
ROTATED (0,OA_angle,0) RELATIVE optics_entry
COMPONENT src_div = Source_div(xwidth=1.23,yheight=1.23, focus_aw=2*DEG2RAD, focus_ah=1e-9, E0=E0, dE=dE)
AT(0,0,-OD+PL) RELATIVE off_axis
COMPONENT preOp_emon = E_monitor(nE=201,Emin=0.05, Emax=9.95, filename="preOp_e", xwidth=1.25, yheight=1.25)
AT(0,0,OD-PL-1e-3) RELATIVE origin
COMPONENT preOp_psd = PSD_monitor(xwidth=1.25, yheight=1.25, nx=201, ny=201, filename="preOp_xy")
AT(0,0,0) RELATIVE PREVIOUS
COMPONENT preOp_div = Monitor_nD(options=optionstring1, bins=101, xwidth=1.25, yheight=1.25,filename="preOp_dx")
AT(0,0,0) RELATIVE PREVIOUS
EXTEND
%{
double k=sqrt(kx*kx+ky*ky+kz*kz);
xdiv=acos(kz/sqrt(kx*kx+kz*kz));
if (kx<0) xdiv=-xdiv;
xdiv*=RAD2DEG;
%}
/*primary optics*/
COMPONENT sh1_p = Shell_p(
radius_p=Rp[0], radius_m=Rm[0], mirror_reflec=mcoat, yheight=Rp[0]-Rp[1], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
bounce=SCATTERED;
%}
COMPONENT sh3_p = Shell_p(
radius_p=Rp[1], radius_m=Rm[1], mirror_reflec=mcoat, yheight=Rp[1]-Rp[2], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
bounce=SCATTERED;
%}
COMPONENT sh4_p = Shell_p(
radius_p=Rp[2], radius_m=Rm[2], mirror_reflec=mcoat, yheight=Rp[2]-Rp[3], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
bounce=SCATTERED;
%}
COMPONENT sh6_p = Shell_p(
radius_p=Rp[3], radius_m=Rm[3], mirror_reflec=mcoat, yheight=0.2, Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
bounce=SCATTERED;
double ee=sqrt(kx*kx+ky*ky+kz*kz)*K2E;
%}
COMPONENT midOp_emon = COPY(preOp_emon)(nE=201, filename="midOp_e")
WHEN(bounce==2) AT(0,0,0) RELATIVE optics_centre
/*secondary optics*/
COMPONENT sh1_h = Shell_h(
radius_h=Rh[0], radius_m=Rm[0], mirror_reflec=mcoat, yheight=Rm[0]-Rm[1], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
bounce+=SCATTERED;
%}
COMPONENT sh3_h = Shell_h(
radius_h=Rh[1], radius_m=Rm[1], mirror_reflec=mcoat, yheight=Rm[1]-Rm[2], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
bounce+=SCATTERED;
%}
COMPONENT sh4_h = Shell_h(
radius_h=Rh[2], radius_m=Rm[2], mirror_reflec=mcoat, yheight=Rm[2]-Rm[3], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
bounce+=SCATTERED;
%}
COMPONENT sh6_h = Shell_h(
radius_h=Rh[3], radius_m=Rm[3], mirror_reflec=mcoat, yheight=0.2, Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
bounce+=SCATTERED;
%}
COMPONENT postOp_emon = COPY(preOp_emon)(filename="postOp_e")
WHEN(bounce==4) AT(0,0,PL+1e-3) RELATIVE optics_centre
COMPONENT postOp_psd = COPY(preOp_psd)(filename="postOp_xy")
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS
COMPONENT postOp_div = Monitor_nD(options=optionstring2, user1="xdiv", bins=101, xwidth=1.25, yheight=1.25,filename="postOp_dx")
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS
COMPONENT near_psd = PSD_monitor(filename="near_xy",xwidth=1, yheight=1)
WHEN(bounce==4) AT(0,0,-3+FL) RELATIVE optics_centre
COMPONENT fp_emon = E_monitor(filename="fp_emon", nE=101, Emin=0, Emax=10, xwidth=1e-6, yheight=1e-6, restore_xray=1)
WHEN(bounce==4) AT(0,0,FL) RELATIVE optics_centre
COMPONENT fp_psd = PSD_monitor(filename="fp_xy", xwidth=1e-6, yheight=1e-6, restore_xray=1)
WHEN(bounce==4) AT(0,0,0)RELATIVE PREVIOUS
COMPONENT fp_psd_auto = Monitor_nD(options=optionstring, bins=201, xwidth=1e-1, yheight=1e-1, restore_xray=1)
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS
COMPONENT far_psd = PSD_monitor(filename="far_xy", xwidth=1, yheight=1)
WHEN(bounce==4) AT(0,0,FL+3) RELATIVE optics_centre
FINALLY
%{
%}
END
|