File: CXO.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (235 lines) | stat: -rw-r--r-- 6,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*******************************************************************************
* Instrument: CXO
*
* %Identification
* Written by: Erik B Knudsen (erkn@fysik.dtu.dk)
* Date: Nov '20
* Origin: DTU Physics
* Version: 1.0
* %INSTRUMENT_SITE: AstroX_NASA
*
* Chandra X-ray Observatory CXO
*
* %Description
* Model of the Chandra X-ray Observatory based on the description avaiable
* in the Chandra Observers' Guide. Fully collimated X-ray light impinges on the
* optic consisting of 4 mirrors in the true Wolter I configuration.
*
*
* %Parameters
* <parameter1>: [<unit>] <parameter1 description>
* E0: [keV]     Central eX-ray energy to be simulated.
* dE: [keV]     Half-width of energy spectrum
* verbose: [0]  Emit extra information.
* mcoat: [str]  Filename of file which conatins reflectivity for coating
* OA_angle: [deg] Off-axis angle. Angle around y-axis at which radiation will hit the optic. 
* 
* %Link
* https://cxc.harvard.edu/proposer/POG/html/index.html
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT CXO(E0=1, dE=0.001, verbose=1, string mcoat="Ir_CXO.dat", OA_angle=0)

DECLARE
%{
   double Rp[4]={1.23/2.0, 0.99/2.0, 0.87/2.0, 0.65/2.0};
   double Rm[4];
   double Rh[4];
   const double FL=10.070;
   const double PL=0.84;
   const double th_c_deg[4]={3.42, 2.75, 2.42, 1.80};
   double th_c[4];

   const double OD=10;
   char optionstring[]="x auto y auto"; 
   char optionstring1[128]; 
   char optionstring2[128]; 
%}

USERVARS %{
  int bounce;
  double xdiv;
%}

INITIALIZE
%{
   /*compute the midpoint and hyperbolic radii*/
  double alpha,thetap,thetah,P,d,e,C0;
  int i;
  for(i=0;i<4;i++){
    th_c[i]=th_c_deg[i]*DEG2RAD;
    Rm[i]=atan(th_c[i])*FL;
    alpha=th_c[i]/4.0;
    thetap=alpha;
    thetah=alpha*3;
    P=FL*tan(4*alpha)*tan(thetap);
    d=FL*tan(4*alpha)*tan(4*alpha-thetah);
    e=cos(4*alpha)*(1+tan(4*alpha)*tan(thetah));
    C0=4*e*e*P*d/(e*e-1);

    /*RP and RH is assumed given by the length along the axis=0.84*/
    Rp[i]=sqrt( P*P + 2*P*(PL+FL) + C0);
    Rh[i]=sqrt( e*e *(d+FL-PL)*(d+FL-PL) - (FL-PL)*(FL-PL));
    if(verbose){
      printf("CXO radii (Rp,Rm,Rh): %f %f %f\n",Rp[i],Rm[i],Rh[i]);
      printf("CXO diam outer  (Dp): %.2f\n",Rp[i]*2);
      printf("CXO diffs %.2f %.2f %.2f\n",Rp[i]-Rp[i-1], Rm[i]-Rm[i-1], Rh[i]-Rh[i-1]);
      printf("theta(p,h) = (%g,%g) deg. = (%g,%g) rad.\n",thetap*RAD2DEG,thetah*RAD2DEG,thetap,thetah);
    } 

  }

  snprintf(optionstring1,127,"xdiv limits -1 1");
  snprintf(optionstring2,127,"u1 limits -1 1");
%}

TRACE

COMPONENT origin = Progress_bar()
AT (0, 0, 0) RELATIVE ABSOLUTE

COMPONENT optics_centre = Arm()
AT(0,0,OD) RELATIVE origin

COMPONENT optics_entry = Arm()
AT(0,0,-PL) RELATIVE optics_centre

COMPONENT off_axis = Arm()
AT(0,0,0) RELATIVE optics_entry
ROTATED (0,OA_angle,0) RELATIVE optics_entry

COMPONENT src_div = Source_div(xwidth=1.23,yheight=1.23, focus_aw=2*DEG2RAD, focus_ah=1e-9, E0=E0, dE=dE)
AT(0,0,-OD+PL) RELATIVE off_axis

COMPONENT preOp_emon = E_monitor(nE=201,Emin=0.05, Emax=9.95, filename="preOp_e", xwidth=1.25, yheight=1.25)
AT(0,0,OD-PL-1e-3) RELATIVE origin

COMPONENT preOp_psd = PSD_monitor(xwidth=1.25, yheight=1.25, nx=201, ny=201, filename="preOp_xy")
AT(0,0,0) RELATIVE PREVIOUS

COMPONENT preOp_div = Monitor_nD(options=optionstring1, bins=101, xwidth=1.25, yheight=1.25,filename="preOp_dx")
AT(0,0,0) RELATIVE PREVIOUS
EXTEND
%{
  double k=sqrt(kx*kx+ky*ky+kz*kz);
  xdiv=acos(kz/sqrt(kx*kx+kz*kz));
  if (kx<0) xdiv=-xdiv;
  xdiv*=RAD2DEG;
%}

/*primary optics*/

COMPONENT sh1_p = Shell_p(
    radius_p=Rp[0], radius_m=Rm[0], mirror_reflec=mcoat, yheight=Rp[0]-Rp[1], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
  bounce=SCATTERED;
%}
COMPONENT sh3_p = Shell_p(
    radius_p=Rp[1], radius_m=Rm[1], mirror_reflec=mcoat, yheight=Rp[1]-Rp[2], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
  bounce=SCATTERED;
%}

COMPONENT sh4_p = Shell_p(
    radius_p=Rp[2], radius_m=Rm[2], mirror_reflec=mcoat, yheight=Rp[2]-Rp[3], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
  bounce=SCATTERED;
%}

COMPONENT sh6_p = Shell_p(
    radius_p=Rp[3], radius_m=Rm[3], mirror_reflec=mcoat, yheight=0.2, Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP primary
EXTEND
%{
  bounce=SCATTERED;
  double ee=sqrt(kx*kx+ky*ky+kz*kz)*K2E;
%}
COMPONENT midOp_emon = COPY(preOp_emon)(nE=201, filename="midOp_e")
WHEN(bounce==2) AT(0,0,0) RELATIVE optics_centre


/*secondary optics*/

COMPONENT sh1_h = Shell_h(
    radius_h=Rh[0], radius_m=Rm[0], mirror_reflec=mcoat, yheight=Rm[0]-Rm[1], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
  bounce+=SCATTERED;
%}

COMPONENT sh3_h = Shell_h(
    radius_h=Rh[1], radius_m=Rm[1], mirror_reflec=mcoat, yheight=Rm[1]-Rm[2], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
  bounce+=SCATTERED;
%}

COMPONENT sh4_h = Shell_h(
    radius_h=Rh[2], radius_m=Rm[2], mirror_reflec=mcoat, yheight=Rm[2]-Rm[3], Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
  bounce+=SCATTERED;
%}

COMPONENT sh6_h = Shell_h(
    radius_h=Rh[3], radius_m=Rm[3], mirror_reflec=mcoat, yheight=0.2, Z0=FL, R_d=0)
AT(0,0,0) RELATIVE optics_centre
GROUP secondary
EXTEND
%{
  bounce+=SCATTERED;
%}



COMPONENT postOp_emon = COPY(preOp_emon)(filename="postOp_e")
WHEN(bounce==4) AT(0,0,PL+1e-3) RELATIVE optics_centre

COMPONENT postOp_psd = COPY(preOp_psd)(filename="postOp_xy")
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS

COMPONENT postOp_div = Monitor_nD(options=optionstring2, user1="xdiv", bins=101, xwidth=1.25, yheight=1.25,filename="postOp_dx")
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS

COMPONENT near_psd = PSD_monitor(filename="near_xy",xwidth=1, yheight=1)
WHEN(bounce==4) AT(0,0,-3+FL) RELATIVE optics_centre

COMPONENT fp_emon = E_monitor(filename="fp_emon", nE=101, Emin=0, Emax=10, xwidth=1e-6, yheight=1e-6, restore_xray=1)
WHEN(bounce==4) AT(0,0,FL) RELATIVE optics_centre

COMPONENT fp_psd = PSD_monitor(filename="fp_xy", xwidth=1e-6, yheight=1e-6, restore_xray=1)
WHEN(bounce==4) AT(0,0,0)RELATIVE PREVIOUS

COMPONENT fp_psd_auto = Monitor_nD(options=optionstring, bins=201, xwidth=1e-1, yheight=1e-1, restore_xray=1)
WHEN(bounce==4) AT(0,0,0) RELATIVE PREVIOUS


COMPONENT far_psd = PSD_monitor(filename="far_xy", xwidth=1, yheight=1)
WHEN(bounce==4) AT(0,0,FL+3) RELATIVE optics_centre





FINALLY
%{
%}

END