1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: Czerny_Turner
*
* %Identification
* Written by: Stephane Bac, Antoine Padovani
* Date: Jul 21st 2022
* Origin: Synchrotron Soleil
* %INSTRUMENT_SITE: BARC
*
* Czerny-Turner monochromator.
*
* %Description
* This Czerny-Turner monochromator was built from "Design and fabrication of a Czerny-Turner monochromator-cum-spectrograph" by
* Murty, M.V.R.K.; Shukla, R.P.; Bhattacharya, S.S.; Krishnamurthy, G. (Bhabha Atomic Research Centre, Bombay (India). Spectroscopy Div.)
* Bhabha Atomic Research Centre, Bombay (India)
* 1987
* It can be found here: https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/019/19019134.pdf
* Example: Do a scan (scan parameter =1) from x_screw=20 to 103 mm. The calculated monitor "Wavelength(Ang) as a function of x_screw(mm)" will be a linear function. The monochromator functions properly.
*
* %Example: x_screw=60 Detector: w_monitor_I=1.10881e-06
*
* %Parameters
* x_screw: [mm] Displacement perpendicular to initial position of the lever (sine drive mechanism)
* scan: [0 or 1] 1 is to activate wavelength monitor while scanning the x_screw parameter
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT Czerny_Turner(x_screw=0, scan=0)
DECLARE
%{
double E0;
double dE;
double grazing_angle_reflect_grating;
double number_lines_per_mm; //Number of lines pr mm of the grating
double grazing_angle_order_grating;
double order;
double period;
double x_screw; //x_screw=L*sin(theta_calculated), L=164.61 and x_screw goes from 0 to 100 mm (0 to 10K Angstroms)
double theta_calculated;
double w_monitor_value;
double x_screw_var;
double w_monitor_error;
double number_events_w_monitor;
%}
INITIALIZE
%{
//For 5k Ang, give a d_phi=0 to the grating to verify with the 3D views that the ray behaves correctly
//E0=0.00248;
//dE=0;
//Our source range: 1.2 to 6.2 eV
E0 = 0.0037;
dE = 0.0025;
number_lines_per_mm = 1200;
theta_calculated = RAD2DEG*asin(x_screw/164.61);
fprintf(stdout,"theta_calculated %g degrees, should be 17.6833 for x_screw 50 mm approximately \n", theta_calculated);
order=1;
if (theta_calculated<9){ //to take into account the ray arriving on the other side of the norm. The order 1 does not go towards the M2 when theta_calculated is inferior to 9 degrees, so
//better to be centered on the order -1.
order=-1;
}
period = 1/(1e3*number_lines_per_mm);
fprintf(stdout,"Grating period %g \n", period);
//Information purposes only:
//For 5K Angstroms (x_screw = 50 mm), the angle between the grating's norm and the incident ray arrives at 8.6833 degrees
//and the angle between the grating's norm and the order m=1 is equal to 26.6833 deg
//the angle between the incident ray and the order m=1 equals to 26.6833-8.6833 = 18 degrees (angle called phi)
//we position the grating angle's norm on the bisector of phi
//then a sine drive mechanism gives us a simple linear relation: lambda = 2*period*cos(pĥi)*x_screw/L
//grazing_angle_reflect_grating = 90-8.6833;
//grazing_angle_order_grating = RAD2DEG*acos(-(12.39842/(E0))/1e10*order/period+cos(DEG2RAD*grazing_angle_reflect_grating));
//fprintf(stdout,"Grazing angle for order %g is %g degrees \n", order, grazing_angle_order_grating);
%}
TRACE
COMPONENT origin = Progress_bar()
AT (0, 0, 0) RELATIVE ABSOLUTE
COMPONENT Source = Bending_magnet(
E0=E0,
dE = dE,
B=1.72,
Ee=2.75
)
AT (0, 0, 0) RELATIVE origin
COMPONENT M1_position = Arm()
AT (0, 0, 844e-3) RELATIVE PREVIOUS
COMPONENT M1_rotation = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0, 0, 90) RELATIVE PREVIOUS
COMPONENT mirror_m1 = Mirror_elliptic(
length=150e-3,
width=150e-3,
x_a=1.025,
y_b=1.025,
z_c=1.025)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-(90-4.5), 0, 0) RELATIVE PREVIOUS
EXTEND
%{
if (!SCATTERED) ABSORB;
%}
COMPONENT arm = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-(90-4.5), 0, 0) RELATIVE PREVIOUS
//rotate 90 back so our frame is normal again
COMPONENT M1_arm_back = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (0, 0, -90) RELATIVE PREVIOUS
COMPONENT Grating_position = Arm()
AT (0, 0, 834.35e-3) RELATIVE PREVIOUS
COMPONENT Grating_rotation = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-90, 0, 0) RELATIVE PREVIOUS
COMPONENT Grating_rotation_lines_grating = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0, -90, 0) RELATIVE PREVIOUS
COMPONENT Grating_rotation_nine_degrees = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-9, 0, 0) RELATIVE PREVIOUS
SPLIT COMPONENT reflective_grating = Grating_reflect(
d_phi=1,order=order,
rho_l=number_lines_per_mm,
zdepth=102e-3,xwidth=102e-3)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (theta_calculated, 0, 0) RELATIVE PREVIOUS //theta_calculated will change, angle between the bisector of phi and the grating's norm
//4PI monitor for debugging purposes
//COMPONENT psd_monitor_4pi = PSD_monitor_4PI(
//filename="3D.dat",restore_xray=1)
//AT (0, 0, 0) RELATIVE PREVIOUS
COMPONENT Grating_rotation_lines_grating_back = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0, 90, 0) RELATIVE PREVIOUS
//rotate 90 back so our frame is normal again
COMPONENT Grating_arm_back = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (90, 0, 0) RELATIVE PREVIOUS
COMPONENT Grating_arm_back_2 = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (0, 180, 0) RELATIVE PREVIOUS
COMPONENT Grating_arm_back_3 = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (0, -theta_calculated-9, 0) RELATIVE PREVIOUS
COMPONENT M2_location = Arm()
AT (0,0,749.1e-3) RELATIVE PREVIOUS
COMPONENT M2_rotated = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (0,0,90) RELATIVE PREVIOUS
COMPONENT mirror_m2 = Mirror_elliptic(
length=150e-3,
width=150e-3,
x_a=0.925,
y_b=0.925,
z_c=0.925)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-(90-5), 0, 0) RELATIVE PREVIOUS
EXTEND
%{
if (!SCATTERED) ABSORB;
%}
COMPONENT arm2 = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-(90-5), 0, 0) RELATIVE PREVIOUS
//rotate 90 back so our frame is normal again
COMPONENT M4_arm_back = Arm()
AT (0,0,0) RELATIVE PREVIOUS
ROTATED (0, 0, -90) RELATIVE PREVIOUS
//4PI monitor for debugging purposes
//COMPONENT psd_monitor_4pi_2 = PSD_monitor_4PI(
//filename="3D2.dat",restore_xray=1)
//AT (0, 0, 0) RELATIVE PREVIOUS
COMPONENT arm3 = Arm()
AT (0, 0, 760.33e-3) RELATIVE PREVIOUS
ROTATED (0, 0, 0) RELATIVE PREVIOUS
COMPONENT arm4 = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0, 0, 0) RELATIVE PREVIOUS
COMPONENT slit = Slit(
xwidth=13.5e-6,
yheight=0.01)
AT (0, 0, 0) RELATIVE PREVIOUS
COMPONENT psd_monitor = PSD_monitor(
filename="psd",
xwidth=0.02, yheight=0.02,
nx=100,
ny=100,
restore_xray = 1
)
AT (0, 0, 10e-3) RELATIVE PREVIOUS
COMPONENT psd_giant_after_grating = PSD_monitor(xwidth=1e-2, yheight=1e-2, filename="psd_giant_after_grating",nx=2001,ny=1)
AT(0,0,0) RELATIVE PREVIOUS
COMPONENT e_monitor = Monitor_nD(
xwidth=1e-2, yheight=1e-2, options="energy bins=500 limits=[0 0.007], x bins=500", filename="e_monitor",restore_xray = 1)
AT (0,0,0) RELATIVE PREVIOUS
COMPONENT w_monitor = Monitor_nD(
xwidth=1e-2, yheight=1e-2, options="wavelength bins=500 limits=[1980 11000], x bins=500", filename="w_monitor",restore_xray = 1)
AT (0,0,0) RELATIVE PREVIOUS
FINALLY
%{
// If there is a scan, calculate the Wavelength(Angstroms) as a function of x_screw(mm).
if(scan>=1){
#ifdef USE_MPI
//MPI_MASTER is equivalent to if(mpi_node_root>=mpi_node_rank){ //statement }
//If DETECTOR_OUT_0D is inside of MPI_MASTER the program hangs forever.
//If outside it seems to work. Weird.
MPI_MASTER(
#endif
MCDETECTOR w_monitor_var = COMP_GETPAR(w_monitor,detector); // We have to think in terms of wavelength, the sine drive mechanism was built to linearize the wavelength.
w_monitor_value = w_monitor_var.centerX;
x_screw_var = x_screw;
w_monitor_error = 0; //Forgot how to get rid of the error bar.
//For the error we could have dlambda = lambda*2*period*cos(phi)/L*dx_screw/x_screw, but we need to have dx_screw. Does it make sense for dx_screw to exist in an exact simulation?
number_events_w_monitor = w_monitor_var.events;
#ifdef USE_MPI
);
//MPI_Barrier(MPI_COMM_WORLD);
#endif
//Adding a legend to the graph would be good, need to find out how to do that at a later date. todo
// This set of defines is to avoid getting a '.' in the component name
Rotation Rot;
rot_set_rotation(Rot,0,0,0);
mcdetector_out_0D("Wavelength(Ang) as a function of x_screw(mm)", number_events_w_monitor, w_monitor_value, w_monitor_error, "Wavelength", coords_set(0,0,0),Rot);
}
%}
END
|