1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/*******************************************************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: ID01
*
* %Identification
* Written by: Martin Cramer Pedersen (mcpe@nbi.dk)
*
* Date: March, 2015
* Origin: University of Copenhagen
* %INSTRUMENT_SITE: ESRF
*
* Nano-diffraction imaging beamline at ESRF, Grenoble
*
* %Description
* This model of ID01 is designed specifically to conduct virtual scanning nano-diffraction imaging
* experiments such as the one demonstrated Chahine et al., J. Appl. Cryst 47, 762-769. The model
* includes beam-defining slits, a double Si111-monochromator, a Fresnel Zone Plate, a polycrystalline
* sample designed specifically for this type of virtual experiments, and a detector set up mimicking the
* set up at the actual beam-line. The nanodiffraction experiment is performed by locating a suitable peak
* in the diffraction of the crystal (using the variables NominalEnergy, Delta, and Eta)
* and then scan across the sample (using the variables Pix and ySamplePosition). By plotting
* e.g. total detector intensity as a function of position, one can map out impurities in the sample by
* their scattering properties.
*
* %Example: ESRF_ID01.instr Pix=0 Piy=0 Detector: PSDMonitor_I=3.26027e-05
* %Example: ESRF_ID01.instr Delta=65.88 Eta=32.945 Pix=50 Piy=-50 Detector: MAXIPix_I=1.77323e-06
* %Example: ESRF_ID01.instr Delta=67.44 Eta=33.22 Pix=50 Piy=-50 Detector: MAXIPix_I=2.26516e-06
*
* %Parameters
* DistanceSampleToDetector: [m] Distance from sample to detector
* NominalEnergy: [keV] Nominal energy of photons after monochromation
* Delta: [deg] Angle rotating the detector around the sample in the yz-plane
* Nu: [deg] Horizontal plane rotation angle of the detector (for asymmetric peaks)
* Eta: [deg] Angle between the incoming beam and the sample normal in the yz-plane
* Phi: [deg] Horizontal plane rotation angle of the sample (for asymmetric peaks)
* Pix: [um] Horizontal offset of sample
* Piy: [um] Vertical offset of sample
* SampleMosaicity: [moa] Mosaicity of the sample crystal lattice
* SampleDeltadoverd: [1] Uncertainty in lattice parameter for the sample crystal lattice
*
* %Link
* http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID01
*
* %End
*******************************************************************************************************************/
DEFINE INSTRUMENT ESRF_ID01 (
DistanceSampleToDetector = 0.5,
NominalEnergy = 8.0,
Delta = 0.0,
Nu = 0.0,
Eta = 0.0,
Phi = 0.0,
Pix = 0.0,
Piy = 0.0,
SampleMosaicity = 1.0,
SampleDeltadoverd = 0.001
)
DECLARE
%{
// Optics
double DistanceSourceToPrimarySlit1 = 27.00;
double DistanceSourceToPrimarySlit2 = 27.05;
double DistanceSourceToMonochromator = 34.0;
double DistanceBetweenMonochromators = 0.1;
double DistanceSourceToSecondarySlit1 = 117.70;
double DistanceSourceToSecondarySlit2 = 117.75;
double DistanceSourceToFZP = 117.85;
double DistanceOSAToSample = 0.02;
double DistanceSourceToSample = 118.0;
// Slits
double PrimarySlit1Width = 0.0005;
double PrimarySlit1Height = 0.0006;
double PrimarySlit2Width = 0.0005;
double PrimarySlit2Height = 0.0006;
double SecondarySlit1Width = 0.0003;
double SecondarySlit1Height = 0.0003;
double SecondarySlit2Width = 0.0003;
double SecondarySlit2Height = 0.0003;
double OSARadius = 0.000025;
// Mirrors and monochromators
double Monochromator1Width = 0.04;
double Monochromator1Length = 0.08;
double Monochromator2Width = 0.04;
double Monochromator2Length = 0.08;
double dSi111 = 3.1356;
double dE;
double AngleMonochromator;
// Fresnel Zone Plate
double CentralStopRadius = 0.00002;
double FZPRadius = 0.00015;
double FZPFocalLength = 0.15;
// Sample
double SamplexWidth = 200e-6;
double SampleyHeight = 200e-6;
double SamplezDepth = 50e-6;
//double SamplezDepth = 20e-9;
double SubstratezDepth = 300e-6;
%}
INITIALIZE
%{
// Instrument angles
AngleMonochromator = RAD2DEG * asin(M_PI / (NominalEnergy * E2K * dSi111));
// Convert energy to wavelength
fprintf(stderr, "Target wavelength is %g AA. \n", 12.39842 / NominalEnergy);
fprintf(stderr, "The monochromators will be rotated by %g degrees. \n", AngleMonochromator);
// Energy bandwidth
dE = 0.001 * NominalEnergy;
%}
TRACE
/**********/
/* Source */
/**********/
COMPONENT Origin = Progress_bar(
)
AT (0, 0, 0) ABSOLUTE
COMPONENT Source = Source_gaussian(
sig_x = 120.0E-6,
sig_y = 16.0E-6,
sigPr_x = 1.0E-6,
sigPr_y = 1.0E-6,
dist = DistanceSourceToPrimarySlit2,
gauss = 1,
focus_xw = PrimarySlit2Width,
focus_yh = PrimarySlit2Height,
E0 = NominalEnergy,
dE = dE
)
AT (0, 0, 0) RELATIVE Origin
/*****************/
/* Primary slits */
/*****************/
COMPONENT PrimarySlit1 = Slit(
xwidth = PrimarySlit1Width,
yheight = PrimarySlit1Height
)
AT (0, 0, DistanceSourceToPrimarySlit1) RELATIVE Source
COMPONENT PrimarySlit2 = Slit(
xwidth = PrimarySlit2Width,
yheight = PrimarySlit2Height
)
AT (0, 0, DistanceSourceToPrimarySlit2) RELATIVE Source
/***********************/
/* First monochromator */
/***********************/
COMPONENT Monochromator1Arm1 = Arm()
AT (0, 0, DistanceSourceToMonochromator) RELATIVE Source
ROTATED (0, AngleMonochromator, 90) RELATIVE Source
COMPONENT Monochromator1 = Bragg_crystal(
length = Monochromator1Length,
width = Monochromator1Width
)
AT (0, 0, 0) RELATIVE Monochromator1Arm1
COMPONENT Monochromator1Arm2 = Arm()
AT (0, 0, 0) RELATIVE Monochromator1Arm1
ROTATED (0, 2.0 * AngleMonochromator, 90) RELATIVE Source
/************************/
/* Second monochromator */
/************************/
COMPONENT Monochromator2Arm1 = Arm()
AT (0, 0, DistanceBetweenMonochromators) RELATIVE Monochromator1Arm2
ROTATED (0, AngleMonochromator, 90) RELATIVE Source
COMPONENT Monochromator2 = Bragg_crystal(
length = Monochromator2Length,
width = Monochromator2Width
)
AT (0, 0, 0) RELATIVE Monochromator2Arm1
COMPONENT Monochromator2Arm2 = Arm()
AT (0, 0, 0) RELATIVE Monochromator2Arm1
ROTATED (0, 0, 90) RELATIVE Source
/*******************/
/* Secondary slits */
/*******************/
COMPONENT SecondarySlit1 = Slit(
xwidth = SecondarySlit1Width,
yheight = SecondarySlit1Height
)
AT (0, 0, DistanceSourceToSecondarySlit1 - DistanceSourceToMonochromator + DistanceBetweenMonochromators) RELATIVE Monochromator2Arm2
COMPONENT SecondarySlit2 = Slit(
xwidth = SecondarySlit2Width,
yheight = SecondarySlit2Height
)
AT (0, 0, DistanceSourceToSecondarySlit2 - DistanceSourceToSecondarySlit1) RELATIVE SecondarySlit1
/**********************/
/* Fresnel zone plate */
/**********************/
COMPONENT CentralStop = Beamstop (
radius = CentralStopRadius
)
AT (0, 0, DistanceSourceToFZP - DistanceSourceToSecondarySlit2 - 0.00001) RELATIVE SecondarySlit2
COMPONENT FresnelZonePlate = ZonePlate(
radius = FZPRadius,
L = FZPFocalLength,
lambda0 = 12.39842 / NominalEnergy,
//focus_xw = 2.0 * OSARadius,
//focus_yh = 2.0 * OSARadius,
focus_xw = 300e-9,
focus_yh = 300e-9,
focus_x0 = 0.0,
focus_y0 = 0.0,
//dist = DistanceSourceToSample - DistanceSourceToFZP - DistanceOSAToSample
dist = DistanceSourceToSample - DistanceSourceToFZP
)
AT (0, 0, DistanceSourceToFZP - DistanceSourceToSecondarySlit2) RELATIVE SecondarySlit2
COMPONENT OrderSortingAperture = Slit(
radius = OSARadius
)
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2 - DistanceOSAToSample) RELATIVE SecondarySlit2
/***********************/
/* Pre-sample monitors */
/***********************/
COMPONENT DivergenceMonitor = Divergence_monitor(
xwidth = 4.0 * OSARadius,
yheight = 4.0 * OSARadius,
nx = 200,
ny = 200,
filename = "DivMonitor",
rad=1,
restore_xray = 1
)
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2 - 0.003) RELATIVE SecondarySlit2
COMPONENT EnergyMonitor = E_monitor(
xwidth = 4.0 * OSARadius,
yheight = 4.0 * OSARadius,
Emin = 0.95 * NominalEnergy,
Emax = 1.05 * NominalEnergy,
nE = 200,
filename = "EnergyMonitor",
restore_xray = 1
)
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2 - 0.002) RELATIVE SecondarySlit2
COMPONENT PSDMonitor = PSD_monitor(
xwidth = 4.0 * OSARadius,
yheight = 4.0 * OSARadius,
nx = 100,
ny = 100,
filename = "PSDMonitor",
restore_xray = 1
)
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2 - 0.001) RELATIVE SecondarySlit2
/***********************/
/* Sample and detector */
/***********************/
COMPONENT SampleArm = Arm()
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2) RELATIVE SecondarySlit2
ROTATED (90.0 - Eta, Phi, 0) RELATIVE Source
COMPONENT Sample = Polycrystal(
MapFile = "polycrystal_1layer_2orts.map",
OrientationsFile = "stretch_2orts.orts",
ReflectionsDatafile = "GeReduced.lau",
//MaterialDatafile = "Ge.txt",
xwidth = SamplexWidth,
yheight = SampleyHeight,
zdepth = SamplezDepth,
DeltadOverd = SampleDeltadoverd,
Mosaicity = SampleMosaicity,
SigmaAbsorbtion = 0.0,
SigmaIncoherent = 0.0,
MaxNumberOfReflections = 1,
ProbabilityOfTransmission = 0.5,
ax = 5.6579, ay = 0.0000, az = 0.0000,
bx = 0.0000, by = 5.6579, bz = 0.0000,
cx = 0.0000, cy = 0.0000, cz = 5.6579
)
AT (Pix * 1e-6, Piy * 1e-6, SamplezDepth/2.0) RELATIVE SampleArm
COMPONENT DetectorArm = Arm()
AT (0, 0, DistanceSourceToSample - DistanceSourceToSecondarySlit2) RELATIVE SecondarySlit2
ROTATED (-Delta, Nu, 0) RELATIVE Source
COMPONENT MAXIPix = PSD_monitor(
filename = "DetectorMaxiPix.mcp",
xwidth = 0.0284,
yheight = 0.0284,
nx = 516,
ny = 516
)
AT (0, 0, DistanceSampleToDetector) RELATIVE DetectorArm
FINALLY
%{
%}
END
|