1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: MAXIV_Bloch
*
* %Identification
* Written by: Kristian Soerensen and Philip Smith (s154443@win.dtu.dk)
* Date: June 2018
* Origin: DTU Physics
* Version: 1.7
* %INSTRUMENT_SITE: MAXIV
*
* Bloch high resolution photoelectron spectroscopy beamline under development at the MAX IV synchrotron.
*
* %Description
* This is a simple simulation of the BLOCH beamline at MAXIV.
*
* Two kinds of parameters are given, P and P2.
* P Parameters are the ones used in the general simulation, i.e when the FOI is intensity ect.
* P2 parameters are used when the strain of the beamline is the FOI, i.e what happens when the distances change.
*
* %Example: E0=0.03 dE=0 undK=0 Nper=187 zm_mirror1=14 theta_mirror1=3 R0_M1=1 zm_mirror2=2 R0_M2=1 grating_mode=0 zm_mirror3=1 theta_mirror3=3 R0_M3=1 zm_ExitSlit=9 xwidth_ExSlit=0.005 yheight_ExSlit=0.005 zm_mirror4=19 theta_mirror4=3 R0_M4=1 SourceChoice=0 cff=2.25 m=3 Exitslit_yshift=2 Detector: M4Before_e_monitor_I=5.64942e-20
* %Example: E0=0.6 Detector: M4Before_e_monitor_I=1.80435e-21
*
* %Parameters:
* E0: [keV] The central energy to sample from source model.
* dE: [keV] Spectral width to sample from source model.
* Wanted_energy: [keV] The grating reflection energy. Uses E0 when not set.
* SourceChoice: [0/1] Choice of souce. For easy simulation do Flat souce [0],in nonzero, the undulator is used.
* r_rho: [l/mm] Ruling density of the grating.
* cff: [ ] Constant cff value for the grating.
* xwidth_ExSlit: [m] xwidth of exit slit.
* yheight_ExSlit: [m] yheight of exit slit.
* Exitslit_yshift: [ ] y-shift of the exit slit.
* m: [ ] Diffraction order, used for Monochromator angle. (fungerer ikke).
* display: [ ] If nonzero, different output will be printet, e.g PGM angle calculated.
* undK: [ ] Undulator K parameter, overrides E0, only used if SourceChoice is non zero.
* lu: [m] Magnetic period length of the undulator.
* Nper: [ ] Number of magnetic periods in the undulator.
* grating_mode: [0/1] If 1 the NIM mode will be used. If 0 cPGM. Otherwise, optimum will be calculated.
* MCAngle: [deg] Monte Carlo variation of grating. If wanted energy is given, MCAngle is found automaticaly.
* zm_mirror1: [m] distance(z) to first mirror from previous component.
* theta_mirror1: [m] glancing angle of first mirror.
* R0_M1: [ ] Constant relectivity of Mirror2 [0;1].
* zm_mirror2: [m] distance(z) to mirror2 from previous component.
* R0_M2: [ ] Constant relectivity of Mirror2 [0;1].
* zm_mirror3: [m] distance(z) to mirror3 from previous component.
* theta_mirror3: [deg] glancing angle of mirror3.
* R0_M3: [ ] Constant relectivity of Mirror3 [0;1].
* zm_ExitSlit: [m] distance from Mirror4 to exit slit.
* zm_mirror4: [m] distance(z) to mirror4 from previous component.
* theta_mirror4: [deg] glancing angle of mirror4.
* R0_M4: [ ] Constant relectivity of Mirror4 [0;1]
* verbose: [] Flag to print more information
* perfectMirrors: [] When 0, a toroidal mirros is used, otherwise a plane mirror is used.
* Error: [] When 1, alignment errors are applied randomly on the optics (from R. Sankari)
* angle_grating: [deg] Additional tilt on the grating angle.
* mirror2_angle: [] M2 angle used when grating_mode is 0, otherwise it is computed.
*
* %Link
* Bloch_MAX IV description: https://www.maxiv.lu.se/accelerators-beamlines/beamlines/bloch/
* %Link
* McXtrace komponent definition: http://www.mcxtrace.org
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT MAXIV_Bloch(
Wanted_energy=0.378,m=3,cff=0,
r_rho=800, // blazed=0,blazed_angle=0,
SourceChoice=0,E0=0.6, dE=0.4,
undK=5.6,Nper=187,
grating_mode=-1,
zm_mirror2=2,R0_M2=1,// R0_PG=1,
zm_mirror1=14,theta_mirror1=3,R0_M1=1,
zm_mirror3=1,theta_mirror3=3,R0_M3=1,
zm_mirror4=19,theta_mirror4=3,R0_M4=1,
zm_ExitSlit=9,xwidth_ExSlit=1e-2,yheight_ExSlit=1e-2,Exitslit_yshift=0.005,
int verbose=0,perfectMirrors=0,Error=0, angle_grating=6, mirror2_angle=6)
/******************************************************
*
*The DECLARE section is used to define parameters or small functions than can be used within the entire instrument.
*
*******************************************************/
DECLARE
%{
/* values for the undulator */
int h;
double E1st;
/*For monitor energies*/
double monitor_wl_min,monitor_wl_max, monitor_Emin, monitor_Emax;
/*Parameters for the slits*/
double slit_yshit;
/* Angles used in the beamline */
double theta_cPGM, theta_PG_NIM, theta_NIM,theta_mirror2, PGM_theta;
/*Parameters to find grating angle theta_cPGM.*/
double m, PGM_alpha, PGM_r_rho,PGM_beta,PGM_wl;
/* Distances for monochromtor, for motivation see (R. Sabkari: "ARPES beamline at MAX IV: Detailed optical design report", 2014) */
double A,B,C,D,E,F,G,X;
/* Parameters for errors */
double M2_theta_error,theta_PG1_error;
double M2_theta_error,theta_PG1_error,X_error,y_error ,pitch_error ,yaw_error ,roll_error ,X_error_PGM ,Y_error_PGM ,Z_error_PGM, pitch_error_PGM ,yaw_error_PGM ,roll_error_PGM ,Z_error_exitSlit,
Opening_error_exitslit;
/* MISC*/
double R0_cPGM, R0_NIM,d;
double MCAngleVariation;
double d,a,bb,c,vinkel,beta_wl,beta_rho;
//double angle_grating;
double alpha,beta;
//double mirror2_angle;
%}
/******************************************************
*
*The INITIALIZE section is used to caculate/define/run jobs once.
*You may use them as component parameter values.
*
*The INITIALIZE section is devided into several sub-secions. This is purly done for readability.
*
*******************************************************/
INITIALIZE
%{
/*
Description of initialize section:
1) Error section.
2) Undulator section.
3) Distances in monochromator section.
4) Calculate wanted energy and corresponding grating order.
5) Calculating angles used in the monochromator as defined from input parameters.
6) Monitor definitions.
7) Error messages.
*/
#include <complex.h>
/******************************************************
1)
Errors:
If Error=1, the error in accuracy will be implemented as a random error in the beamline.
The errors are found from R. Sankari.
These can easily be implemented.
*******************************************************/
M2_theta_error=0;theta_PG1_error=0;X_error=0;y_error=0;pitch_error=0;yaw_error =0;roll_error=0;X_error_PGM =0;Y_error_PGM =0;Z_error_PGM=0; pitch_error_PGM =0;yaw_error_PGM =0;roll_error_PGM =0;
Z_error_exitSlit=0;Opening_error_exitslit=0;
if(Error)
{
M2_theta_error=rand01()*(0.01*(1/3600));
theta_PG1_error=rand01()*(0.02*(1/3600));
X_error = 5e-6*rand01();
y_error = 5e-6*rand01();
pitch_error =0.5e-6*rand01()*RAD2DEG;
yaw_error = 0.5e-6*rand01()*RAD2DEG;
roll_error = 5e-6*rand01()*RAD2DEG;
X_error_PGM = 1e-4*rand01();
Y_error_PGM = 1e-4*rand01();
Z_error_PGM = 1e-4*rand01();
pitch_error_PGM =2e-6*rand01()*RAD2DEG;
yaw_error_PGM = 2e-6*rand01()*RAD2DEG;
roll_error_PGM = 2e-6*rand01()*RAD2DEG;
Z_error_exitSlit = 1e-5*rand01();
Opening_error_exitslit = 1e-6*rand01();
}
/******************************************************
2)
Calculate harmonic order(h) and fundamental harmonic(E1st) of the undulator
If SourceChoice!=0 and undulator will be used.
*******************************************************/
h=5;
if (E0>15.757){
h=7;
} else if (E0>20.253){
h=9;
} else if (E0>24.753){
h=11;
}else if (E0>29.254){
h=13;
}else if (E0>33.755){
h=15;
}
E1st=1.0018*E0/h;
/*******************************************************
3)
Distances used in the Monochromator:
*******************************************************/
A = 0.064819;
B = -0.000125;
C = 0.043821;
D = 0.020;
E = 0.620;
F = 0.042;
G = 0.140;
X = 0.072746;
theta_NIM = (M_PI_2-atan(F/X))*RAD2DEG;
/*******************************************************
4)
Finding wanted energy if none is given
Finding grating mode if none is given
*******************************************************/
if (!Wanted_energy){
/* If no wanted energy is given, it is assumed the wanted energy is E0. */
printf("Warning: No wanted energy is given. Default is E0=%f keV \n",E0);
Wanted_energy = E0;
}
if(grating_mode!=1 && grating_mode!=0){
// If no grating mode is given, the grating mode will be found using the incoming energy.
if(E0>=0.01 && E0<0.025){
grating_mode=1;
printf("Exception: Cannot set range [nan, nan]No grating mode is given. The NIM mode will be used. \n");
}
else if (E0>=0.025){
printf("No grating mode is given. The cPGM mode will be used.\n");
grating_mode=0;
}
else {
printf("Warning:Energy below 1 keV (%f keV), NIM mode is used. \n", E0);
grating_mode=0;
}
}
/*******************************************************
5)
Calculating the angle for the monochromator. For motivation, see Urpelainen, Samuli 2014.
*******************************************************/
MCAngleVariation=5;
/*If grating_mode=0, the cPGM will be used.*/
if (cff && !grating_mode){
beta_wl = (12.398/Wanted_energy)*pow(10,-10);
beta_rho = 1/(r_rho*1000);
a = (1-pow(cff,2));
bb = 2*pow(cff,2)*(m*beta_wl/beta_rho);
c = pow(cff,2)-1-pow(cff,2)*((pow(m,2)*pow(beta_wl,2))/pow(beta_rho,2));
beta = asin((-bb+sqrt(pow(bb,2)-4*a*c))/(2*a));
alpha =acos(cos(beta)/cff);
beta = (beta*RAD2DEG);
alpha = alpha*RAD2DEG;
angle_grating = (beta+90);
mirror2_angle = ((180+beta-alpha));
mirror2_angle= mirror2_angle/2;
// mirror2_angle = (90-blazed_angle+beta);
mirror2_angle = (90+beta);
}
/*if(blazed && blazed_angle){*/
/* angle_grating = angle_grating-blazed_angle;*/
/*}*/
if(verbose){
fprintf(stdout,"INFO(%s):Monochromator specs: \n Angle of pre-mirror=%f deg. \n Angle of grating=%f deg.\n",instrument_name,mirror2_angle,angle_grating);
}
MCAngleVariation=angle_grating*0.99;
/*******************************************************
6)
Monitor definitions:
*******************************************************/
if(E0 && dE){
monitor_Emin = E0-2*dE;
monitor_Emax = E0+2*dE;
} else if(E0 && !dE){
monitor_Emin = E0-3e-3;
monitor_Emax = E0+3e-2;
} else if (!E0){
printf("\n Error: No Energy is given! \n");
exit(-1);
}
monitor_wl_max = 12.3984/monitor_Emin;
monitor_wl_min = 12.3984/monitor_Emax;
/*******************************************************
7)
Error messages:
*******************************************************/
if (angle_grating>30 || angle_grating<0)
{
fprintf(stderr,"ERROR: cPGM grating angle is out of bounds(%f DEG). Simulation ended.\n",angle_grating);
exit(-1);
}
if (mirror2_angle>21 || mirror2_angle<0)
{
fprintf(stderr,"ERROR: M2 angle is out of bounds(%f DEG). Simulation ended.\n",mirror2_angle);
exit(-1);
}
if (theta_PG_NIM>30 || theta_PG_NIM<0)
{
fprintf(stderr,"ERROR: NIM grating angle is out of bounds(%f DEG). Simulation ended.\n",theta_PG_NIM);
exit(-1);
}
%}
/**************************************************************
*
*Trace section:
*The TRACE section is where the actual components are placed.
*
**************************************************************/
TRACE
COMPONENT origin = Progress_bar()
AT (0, 1.3, 0) RELATIVE ABSOLUTE
/**************************************************************
Sources:
1) When SourceChoice=0 the flat source is used.
2) When SourceChoice=1 the undulator is used. The TRACE option in the McXtrace GUI IS NOT possible when using the undulator.
using the Undulator:
Harmonics are found in initialize.
Find general info on the undulator at:
https://www.maxiv.lu.se/accelerators-beamlines/technology/insertion-devices/
Find general info on the 1.5 GeV storage ring at:
https://www.maxiv.lu.se/accelerators-beamlines/accelerators/accelerator-documentation/1-5-gev-storage-ring/
Find live info on the 1.5 storage ring at:
**************************************************************/
COMPONENT source_flat = Source_flat(
yheight=0.001e-5,xwidth=0.001,dist=zm_mirror1,focus_xw=0.02e-6,focus_yh=0.02,E0=E0,dE=dE)
WHEN (!SourceChoice)
AT (0, 0, 0) RELATIVE origin
EXTEND %{
do {
double k=sqrt(kx*kx+ky*ky+kz*kz);
kx=ky=0;kz=k;
}while(0);
%}
/*COMPONENT dmu = Undulator(verbose=1,E0=E0,dE=dE,Ee=1.5,dEe=((6e-9)*(60e-12))/1.5,Ie=0.5,tbunch=43,K=undK,gap=14e-3,Nper=Nper, */
/* lu=84e-3,sigey=1.3e-5,sigex=185e-5,sigepx=32e-6,sigepy=4.6e-6,focus_xw=1.1e-3,focus_yh=1.1e-3,dist=zm_mirror1,E1st=E1st)*/
/*WHEN (SourceChoice)*/
/*AT(0,0,0) RELATIVE origin*/
/****************************************
Monitors After source:
****************************************/
COMPONENT Source_E_monitor = E_monitor(nE=101,filename="source_E_monitor",xwidth=5e-3,yheight=5e-3,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 1) RELATIVE PREVIOUS
/*COMPONENT Source_wl_monitor = L_monitor(nL=101,filename="source_wl_monitor",xwidth=5e-3,yheight=5e-3,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
COMPONENT Source_psd_monitor = PSD_monitor(filename="Source_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 0.0) RELATIVE PREVIOUS
/**************************************************************
M1: toroidial mirror
1) When perfectMirrors=0, a toroidal mirros is used:
- collimates vertically
- focuses horizontally
2) When perfectMirrors=1, a plane mirror is used.
**************************************************************/
COMPONENT M1_arm= Arm()
AT(0,0,zm_mirror1) RELATIVE origin
ROTATED (0,0,90) RELATIVE origin
COMPONENT Mirror_toroid = Mirror_toroid(zdepth=0.340,xwidth=0.020,radius=246.9254,radius_o=246.9254,R0=R0_M1)
WHEN (!perfectMirrors)
AT (0, 0, 0) RELATIVE M1_arm
ROTATED (-theta_mirror1, 0, 0) RELATIVE M1_arm
COMPONENT M1_perfect_mirror = Mirror(zdepth=0.34,xwidth=0.02,R0=R0_M1)
WHEN (perfectMirrors)
AT (0, 0, 0) RELATIVE M1_arm
ROTATED (-theta_mirror1,0, 0) RELATIVE M1_arm
/****************************************
Monitors After Toroidal Mirror:
****************************************/
COMPONENT Toroidal_Monitor_arm1= Arm()
AT(0,0,zm_mirror1) RELATIVE origin
ROTATED (0,-2*theta_mirror1,0) RELATIVE origin
COMPONENT Toroidal_Monitor_arm2= Arm()
AT(0,0,1) RELATIVE Toroidal_Monitor_arm1
ROTATED (0,90,90) RELATIVE Toroidal_Monitor_arm1
COMPONENT M1_E_monitor = E_monitor(nE=101,filename="M1_E_monitor", xwidth=0.06,yheight=0.06,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (90,0,90) RELATIVE PREVIOUS
/*COMPONENT M1_wl_monitor = L_monitor(nL=101,filename="M1_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
COMPONENT M1_psd_monitor = PSD_monitor(filename="M1_psd_monitor",nx = 21,ny = 21,xwidth=0.06,yheight=0.06,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
/**************************************************************
cPGM mode:
1) Arms are placed to define rotation axis.
2) If perfect mirrors are used, grating will be removed,
orherwise, blazed should be used.
**************************************************************/
/*Rotation arms*/
COMPONENT cPGM_arm= Arm()
AT(0,0,zm_mirror1) RELATIVE origin
ROTATED (0,-2*theta_mirror1,0) RELATIVE origin
COMPONENT PG1_arm= Arm()
AT(0,F,2) RELATIVE cPGM_arm
ROTATED (0,0,0) RELATIVE cPGM_arm
COMPONENT M2_rotation_arm1= Arm()
AT(0,A-F,B) RELATIVE PG1_arm
ROTATED (-mirror2_angle+M2_theta_error,0,0) RELATIVE PG1_arm
COMPONENT M2_rotation_arm2= Arm()
AT(0,0,-D-(E/2)) RELATIVE M2_rotation_arm1
ROTATED (0,0,0) RELATIVE M2_rotation_arm1
COMPONENT M2_rotation_arm3= Arm()
AT(0,-C,0) RELATIVE M2_rotation_arm2
ROTATED (0,0,0) RELATIVE M2_rotation_arm2
/*Mirror and grating*/
COMPONENT mirror2 = Mirror(
zdepth=0.57,xwidth=0.015,R0=R0_M2)
WHEN (!grating_mode)
AT (0, 0, 0) RELATIVE M2_rotation_arm3
ROTATED (0,0, 0) RELATIVE M2_rotation_arm3
COMPONENT pg_a = Arm()
AT (0, 0, 0) RELATIVE PG1_arm
ROTATED (-angle_grating,0, 0) RELATIVE PG1_arm
COMPONENT Plane_grating2 = Grating_reflect(
d_phi=MCAngleVariation/100,
rho_l=r_rho,
zdepth=0.136,xwidth=0.015)
WHEN(grating_mode==0) AT(0,0,0) RELATIVE PG1_arm
ROTATED(-angle_grating,0,180) RELATIVE PG1_arm
COMPONENT postPgmfpi=PSD_monitor_4PI(filename="postpgm",radius=1, restore_xray=1)
AT(0,0,0) RELATIVE PREVIOUS
COMPONENT psd2ma = Arm()
AT(0,0,0) RELATIVE pg_a
ROTATED (angle_grating,0,0) RELATIVE pg_a
COMPONENT vbanana = Monitor_nD(xwidth=1,yheight=0.1,options="banana theta limits -6 6 energy limits 0.1 1.1", bins=1001,
filename="vbanana",restore_xray=1)
AT(0,0,0) RELATIVE psd2ma
ROTATED (0,0,90) RELATIVE psd2ma
COMPONENT psd2m = PSD_monitor(nx=1,ny=501, yheight=0.5, xwidth=0.1, filename="psd2m", restore_xray=1)
AT(0,0,2) RELATIVE psd2ma
/**/
/*COMPONENT Plane_grating_perfect_mirror = Mirror(*/
/* zdepth=0.136,xwidth=0.015,R0=R0_PG)*/
/*WHEN (!grating_mode && perfectMirrors)*/
/*AT (0, 0, 0) RELATIVE PG1_arm*/
/*ROTATED (-angle_grating,0, 0) RELATIVE PG1_arm*/
/**/
/**************************************************************
NIM mode:
1) Arm for the NIM mirror is placed
2) lamellar grating is used
There is no reason for a perfect mirror in the NIM case.
**************************************************************/
/*COMPONENT NIM_arm1= Arm()*/
/*AT(0,-A,X) RELATIVE M2_rotation_arm1*/
/*ROTATED (0,0,0) RELATIVE M2_rotation_arm1*/
/**/
/*COMPONENT NIM = Mirror(*/
/* zdepth=0.02,xwidth=0.02,R0=0) */
/*WHEN (!grating_mode)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
/*ROTATED (-theta_NIM,-2*theta_mirror1, 0) RELATIVE origin*/
/**/
/*COMPONENT Laminar_Grating = Reflective_grating(*/
/* d_phi=4,blazed=0,cff=0,display=0,blazed_angle=0,zdepth=0.136,xwidth=0.015,R0=R0_PG,r_rho=r_rho,b=0,N_slits=0,d=0)*/
/*WHEN (grating_mode)*/
/*AT (0, 0, 0) RELATIVE PG1_arm*/
/*ROTATED (-theta_PG_NIM,0, 0) RELATIVE PG1_arm*/
/****************************************
Monitors After Monochromator
****************************************/
COMPONENT Monochromator_Monitor_arm= Arm()
AT(0,F,2.7) RELATIVE PG1_arm
ROTATED (0,0,0) RELATIVE PG1_arm
COMPONENT Monochromator_E_monitor = E_monitor(nE=101,filename="AfterMonochromator_E_monitor", xwidth=0.06,yheight=0.06+(F/8),Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS
/*COMPONENT Monochromator_wl_monitor = L_monitor(nL=101,filename="AfterMonochromator_wl_monitor",xwidth=0.06,yheight=0.06+(F/8),Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
COMPONENT Monochromator_psd_monitor = PSD_monitor(filename="AfterMonochromator_psd_monitor",nx = 40,ny = 100,xwidth=0.06,yheight=0.06+(F/8),restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
/**************************************************************
Mirror 3:
1) M3_Arm to point in M3 location:
-Even though the monochromator is rotating, the cylindrical mirror has to stay stationary relative to M2
2) Plane mirror in place of the true cylindrical mirror (which isnt developed in McXtrace)
- Deflect horizontally
**************************************************************/
COMPONENT M3_arm= Arm()
AT(0,F,3) RELATIVE cPGM_arm
ROTATED (0,theta_mirror3,0) RELATIVE cPGM_arm
COMPONENT m3Psd=PSD_monitor(xwidth=0.5, yheight=0.5, filename="m3psd", restore_xray=1)
AT(0,0,0) RELATIVE M3_arm
COMPONENT mirror3 = Mirror_curved(
R0=1,
radius=0.94205,
length=0.06,
width=0.2)
AT (0, 0, 0) RELATIVE M3_arm
ROTATED (90, 0, 0) RELATIVE M3_arm
EXTEND
%{
/* if(!SCATTERED){*/
/* ABSORB;*/
/* }*/
%}
/* else{*/
/* printf("through\n");*/
/* }*/
/*%}*/
/**/
/*COMPONENT mirror3_perfect_mirror = Mirror(*/
/* zdepth=0.2, */
/* xwidth=0.06, */
/* R0=1)*/
/*WHEN(perfectMirrors)*/
/*AT (0, 0, 0) RELATIVE M3_arm*/
/*ROTATED (0, 0, 90) RELATIVE M3_arm*/
/**/
COMPONENT Exit_slit_arm0= Arm()
AT(0,0,0) RELATIVE M3_arm
ROTATED (0,0,0) RELATIVE M3_arm
COMPONENT M4_arm1= Arm()
AT(0,0,0) RELATIVE Exit_slit_arm0
ROTATED (0,theta_mirror3,0) RELATIVE Exit_slit_arm0
/****************************************
Monitors After Mirror 3
****************************************/
COMPONENT M3_Monitor_arm= Arm()
AT(0,0,0.5) RELATIVE M4_arm1
ROTATED (0,0,0) RELATIVE M4_arm1
COMPONENT M3_E_monitor = E_monitor(nE=101,filename="M3_E_monitor", xwidth=0.04,yheight=0.03,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS
/*COMPONENT M3_wl_monitor = L_monitor(nL=101,filename="M3_wl_monitor",xwidth=0.04,yheight=0.03,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
COMPONENT M3_psd_monitor = PSD_monitor(filename="M3_psd_monitor",nx = 171,ny = 171,xwidth=0.04,yheight=0.03,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
/**************************************************************
EXIT SLIT:
1)Exit slit placed in front of mirror 4
2) based on input parameters, different photons will be let through, i.e different wavelengths.
*************************************************************/
COMPONENT ExT_arm2= Arm()
AT(0,0,zm_ExitSlit) RELATIVE M4_arm1
ROTATED (0,0,0) RELATIVE M4_arm1
COMPONENT bef_slit = PSD_monitor(xwidth=3*xwidth_ExSlit, yheight=3*yheight_ExSlit, filename="bef_slit")
AT(0,0,-1e-3) RELATIVE ExT_arm2
COMPONENT Exitslit = Slit(
xwidth=xwidth_ExSlit,
yheight=yheight_ExSlit)
AT (0, 0,0) RELATIVE ExT_arm2
ROTATED (0,0,0) RELATIVE ExT_arm2
COMPONENT aft_slit = COPY(bef_slit)(filename="aft_slit")
AT(0,0,1e-3) RELATIVE ExT_arm2
/****************************************
Monitors Before Mirror 4
****************************************/
COMPONENT M4Before_psd_monitor = PSD_monitor(filename="M4Before_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.2,yheight=0.2)
AT (0, 0, 1) RELATIVE Exitslit
COMPONENT M4Before_e_monitor = E_monitor(nE=101,filename="M4Before_e_monitor",xwidth=0.2,yheight=0.2,Emin=0,Emax=2,restore_xray=1)
AT (0, 0, 1) RELATIVE Exitslit
/*COMPONENT M4Before_wl_monitor = L_monitor(nL=101,filename="M4Before_wl_monitor",xwidth=0.2,yheight=0.2,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 1) RELATIVE Exitslit*/
/**************************************************************
Mirror 4
1) Placing an arm
2) Placing a plane mirror instead of a ellipsoidal mirror for simplicity.
- deflect horizontally.
**************************************************************/
COMPONENT M4_arm2= Arm()
AT(0,0,zm_mirror4) RELATIVE M4_arm1
ROTATED (0,theta_mirror4,0) RELATIVE M4_arm1
COMPONENT mirror4 = Mirror(
zdepth=0.2,yheight=0.06,R0=R0_M4)
AT (0, 0, 0) RELATIVE M4_arm2
ROTATED (0, 0, 0) RELATIVE M4_arm2
/****************************************
Monitors After Mirror 4
****************************************/
COMPONENT M4_Monitor_Arm= Arm()
AT(0,0,0) RELATIVE mirror4
ROTATED (0,theta_mirror4,0) RELATIVE mirror4
COMPONENT M4_psd_monitor = PSD_monitor(filename="M4_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 0.3) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS
COMPONENT M4_e_monitor = E_monitor(nE=101,filename="M4_e_monitor",xwidth=0.06,yheight=0.06,Emin=0,Emax=2,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
/*COMPONENT M4_wl_monitor = L_monitor(nL=101,filename="M4_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
/*
COMPONENT Filter_Argon = Filter(
material_datafile="Ar.txt",
xwidth=0.2,
yheight=0.2,
zdepth=0.2)
WHEN(E0>0.0015759)
AT (0, 0, 0.5) RELATIVE M4_Monitor_Arm
COMPONENT Filter_Neon = Filter(
material_datafile="Ne.txt",
xwidth=0.2,
yheight=0.2,
zdepth=0.2)
WHEN(E0>0.0021565)
AT (0, 0, 0.4) RELATIVE PREVIOUS
COMPONENT Filter_Helium = Filter(
material_datafile="He.txt",
xwidth=0.2,
yheight=0.2,
zdepth=0.2)
WHEN(E0>0.0024587)
AT (0, 0, 0.4) RELATIVE PREVIOUS
COMPONENT Filter_psd_monitor = PSD_monitor(filename="Filter_psd_monitor",restore_xray=0,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 1) RELATIVE PREVIOUS
ROTATED (0,0,90) RELATIVE M4_Monitor_Arm
COMPONENT Filter_e_monitor = E_monitor(nE=101,filename="Filter_e_monitor",xwidth=0.06,yheight=0.06,Emin=0,Emax=50,restore_xray=0)
AT (0, 0, 0) RELATIVE M4_Monitor_Arm
COMPONENT Filter_wl_monitor = L_monitor(nL=101,filename="Filter_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=0)
AT (0, 0, 0) RELATIVE M4_Monitor_Arm
*/
/**************************************************************
Experiment hutch:
- sample station
- monitor
- detector
- sample
ect..
**************************************************************/
FINALLY
%{
%}
END
|