File: MAXIV_Bloch.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (700 lines) | stat: -rw-r--r-- 25,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*******************************************************************************
*         McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: MAXIV_Bloch
*
* %Identification
* Written by: Kristian Soerensen and Philip Smith (s154443@win.dtu.dk)
* Date: June 2018
* Origin: DTU Physics
* Version: 1.7
* %INSTRUMENT_SITE: MAXIV
*
* Bloch high resolution photoelectron spectroscopy beamline under development at the MAX IV synchrotron. 
*
* %Description
* This is a simple simulation of the BLOCH beamline at MAXIV. 
*
* Two kinds of parameters are given, P and P2.
* P Parameters are the ones used in the general simulation, i.e when the FOI is intensity ect.
* P2 parameters are used when the strain of the beamline is the FOI, i.e what happens when the distances change.
*
* %Example: E0=0.03 dE=0 undK=0 Nper=187 zm_mirror1=14 theta_mirror1=3 R0_M1=1 zm_mirror2=2 R0_M2=1  grating_mode=0 zm_mirror3=1 theta_mirror3=3 R0_M3=1 zm_ExitSlit=9 xwidth_ExSlit=0.005 yheight_ExSlit=0.005 zm_mirror4=19 theta_mirror4=3 R0_M4=1 SourceChoice=0 cff=2.25 m=3 Exitslit_yshift=2 Detector: M4Before_e_monitor_I=5.64942e-20
* %Example: E0=0.6 Detector: M4Before_e_monitor_I=1.80435e-21
*
* %Parameters:
* E0: [keV]      The central energy to sample from source model.
* dE: [keV]      Spectral width to sample from source model.
* Wanted_energy: [keV] The grating reflection energy. Uses E0 when not set.
* SourceChoice: [0/1]   Choice of souce. For easy simulation do Flat souce [0],in nonzero, the undulator is used.   
* r_rho: [l/mm]  Ruling density of the grating.
* cff: [ ]       Constant cff value for the grating.
* xwidth_ExSlit: [m]    xwidth of exit slit.
* yheight_ExSlit: [m]   yheight of exit slit.
* Exitslit_yshift: [ ]  y-shift of the exit slit.
* m: [ ]         Diffraction order, used for Monochromator angle. (fungerer ikke).
* display: [ ]   If nonzero, different output will be printet, e.g PGM angle calculated.
* undK: [ ]      Undulator K parameter, overrides E0, only used if SourceChoice is non zero.
* lu: [m]        Magnetic period length of the undulator.
* Nper: [ ]      Number of magnetic periods in the undulator.
* grating_mode: [0/1]   If 1 the NIM mode will be used. If 0 cPGM. Otherwise, optimum will be calculated.
* MCAngle: [deg] Monte Carlo variation of grating. If wanted energy is given, MCAngle is found automaticaly. 
* zm_mirror1: [m]       distance(z) to first mirror from previous component.
* theta_mirror1: [m]    glancing angle of first mirror.
* R0_M1: [ ]            Constant relectivity of Mirror2 [0;1].
* zm_mirror2: [m]       distance(z) to mirror2 from previous component.
* R0_M2: [ ]            Constant relectivity of Mirror2 [0;1].
* zm_mirror3: [m]       distance(z) to mirror3 from previous component.
* theta_mirror3: [deg]  glancing angle of mirror3.
* R0_M3: [ ]            Constant relectivity of Mirror3 [0;1].
* zm_ExitSlit: [m]      distance from Mirror4 to exit slit.
* zm_mirror4: [m]       distance(z) to mirror4 from previous component.
* theta_mirror4: [deg]  glancing angle of mirror4.
* R0_M4: [ ]            Constant relectivity of Mirror4 [0;1]
* verbose: []           Flag to print more information
* perfectMirrors: []    When 0, a toroidal mirros is used, otherwise a plane mirror is used. 
* Error: []             When 1, alignment errors are applied randomly on the optics (from  R. Sankari)
* angle_grating: [deg]  Additional tilt on the grating angle.
* mirror2_angle: []     M2 angle used when grating_mode is 0, otherwise it is computed.
*  
* %Link
* Bloch_MAX IV description: https://www.maxiv.lu.se/accelerators-beamlines/beamlines/bloch/
* %Link
* McXtrace komponent definition: http://www.mcxtrace.org
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT MAXIV_Bloch(
    Wanted_energy=0.378,m=3,cff=0,
    r_rho=800, // blazed=0,blazed_angle=0,
    SourceChoice=0,E0=0.6, dE=0.4,
    undK=5.6,Nper=187,
    grating_mode=-1,
    zm_mirror2=2,R0_M2=1,// R0_PG=1,
    zm_mirror1=14,theta_mirror1=3,R0_M1=1,
    zm_mirror3=1,theta_mirror3=3,R0_M3=1,
    zm_mirror4=19,theta_mirror4=3,R0_M4=1,
    zm_ExitSlit=9,xwidth_ExSlit=1e-2,yheight_ExSlit=1e-2,Exitslit_yshift=0.005,
    int verbose=0,perfectMirrors=0,Error=0, angle_grating=6, mirror2_angle=6)

/******************************************************
*
*The DECLARE section is used to define parameters or small functions than can be used within the entire instrument. 
*
*******************************************************/
DECLARE
%{ 
   /* values for the undulator */
   int h; 
   double E1st; 
   /*For monitor energies*/
   double monitor_wl_min,monitor_wl_max, monitor_Emin, monitor_Emax; 
   /*Parameters for the slits*/
   double slit_yshit; 
   /* Angles used in the beamline */
   double theta_cPGM, theta_PG_NIM, theta_NIM,theta_mirror2, PGM_theta;  
   /*Parameters to find grating angle theta_cPGM.*/
   double m, PGM_alpha, PGM_r_rho,PGM_beta,PGM_wl; 
   /* Distances for monochromtor, for motivation see (R. Sabkari: "ARPES beamline at MAX IV: Detailed optical design report", 2014) */
   double A,B,C,D,E,F,G,X; 
   /* Parameters for errors */
   double M2_theta_error,theta_PG1_error;
   double M2_theta_error,theta_PG1_error,X_error,y_error ,pitch_error ,yaw_error ,roll_error ,X_error_PGM ,Y_error_PGM ,Z_error_PGM, pitch_error_PGM ,yaw_error_PGM ,roll_error_PGM ,Z_error_exitSlit,
Opening_error_exitslit;
   /* MISC*/
   double R0_cPGM, R0_NIM,d;
   double MCAngleVariation;
   double d,a,bb,c,vinkel,beta_wl,beta_rho;
   //double angle_grating;
   double alpha,beta;
   //double mirror2_angle;
%}



/******************************************************
*
*The INITIALIZE section is used to caculate/define/run jobs once.
*You may use them as component parameter values.  
*
*The INITIALIZE section is devided into several sub-secions. This is purly done for readability.
*
*******************************************************/
INITIALIZE
%{
/*
Description of initialize section: 
1) Error section.
2) Undulator section.
3) Distances in monochromator section.
4) Calculate wanted energy and corresponding grating order.
5) Calculating angles used in the monochromator as defined from input parameters.
6) Monitor definitions.  
7) Error messages.
*/

#include <complex.h>
/******************************************************
1)
Errors: 
If Error=1, the error in accuracy will be implemented as a random error in the beamline.
The errors are found from R. Sankari.
These can easily be implemented.
*******************************************************/
M2_theta_error=0;theta_PG1_error=0;X_error=0;y_error=0;pitch_error=0;yaw_error =0;roll_error=0;X_error_PGM =0;Y_error_PGM =0;Z_error_PGM=0; pitch_error_PGM =0;yaw_error_PGM =0;roll_error_PGM =0;
Z_error_exitSlit=0;Opening_error_exitslit=0;

if(Error)
{
  M2_theta_error=rand01()*(0.01*(1/3600));
  theta_PG1_error=rand01()*(0.02*(1/3600));
  X_error = 5e-6*rand01();
  y_error = 5e-6*rand01();
  pitch_error =0.5e-6*rand01()*RAD2DEG;
  yaw_error = 0.5e-6*rand01()*RAD2DEG;
  roll_error = 5e-6*rand01()*RAD2DEG;
  X_error_PGM = 1e-4*rand01();
  Y_error_PGM = 1e-4*rand01();
  Z_error_PGM = 1e-4*rand01();
  pitch_error_PGM =2e-6*rand01()*RAD2DEG; 
  yaw_error_PGM = 2e-6*rand01()*RAD2DEG;
  roll_error_PGM = 2e-6*rand01()*RAD2DEG;
  Z_error_exitSlit = 1e-5*rand01();
  Opening_error_exitslit = 1e-6*rand01();
}

/******************************************************
2)
Calculate harmonic order(h) and fundamental harmonic(E1st) of the undulator

If SourceChoice!=0 and undulator will be used. 
*******************************************************/
h=5;
    if (E0>15.757){
	h=7;
    } else if (E0>20.253){
        h=9;
    } else if (E0>24.753){
	h=11;
    }else if (E0>29.254){
        h=13;
    }else if (E0>33.755){
        h=15;
    }
E1st=1.0018*E0/h;

/*******************************************************
3)
Distances used in the Monochromator:
*******************************************************/

A = 0.064819;
B = -0.000125;
C = 0.043821;
D = 0.020;
E = 0.620;
F = 0.042;
G = 0.140;
X = 0.072746;
theta_NIM = (M_PI_2-atan(F/X))*RAD2DEG;

/*******************************************************
4)
Finding wanted energy if none is given
Finding grating mode if none is given
*******************************************************/
if (!Wanted_energy){
  /* If no wanted energy is given, it is assumed the wanted energy is E0. */
  printf("Warning: No wanted energy is given. Default is E0=%f keV \n",E0);
  Wanted_energy = E0;
}
if(grating_mode!=1 && grating_mode!=0){
  // If no grating mode is given, the grating mode will be found using the incoming energy. 
  if(E0>=0.01 && E0<0.025){
    grating_mode=1;
    printf("Exception: Cannot set range [nan, nan]No grating mode is given. The NIM mode will be used. \n");
  } 
  else if (E0>=0.025){
    printf("No grating mode is given. The cPGM mode will be used.\n");
    grating_mode=0;
  } 
  else {
    printf("Warning:Energy below 1 keV (%f keV), NIM mode is used. \n", E0);
    grating_mode=0;
  }
}
/*******************************************************
5)
Calculating the angle for the monochromator. For motivation, see Urpelainen, Samuli 2014.
*******************************************************/
MCAngleVariation=5;
/*If grating_mode=0, the cPGM will be used.*/

if (cff && !grating_mode){
  beta_wl = (12.398/Wanted_energy)*pow(10,-10);
  beta_rho = 1/(r_rho*1000);
  a = (1-pow(cff,2));
  bb = 2*pow(cff,2)*(m*beta_wl/beta_rho);
  c = pow(cff,2)-1-pow(cff,2)*((pow(m,2)*pow(beta_wl,2))/pow(beta_rho,2)); 
  beta = asin((-bb+sqrt(pow(bb,2)-4*a*c))/(2*a));      
  alpha =acos(cos(beta)/cff);
  beta = (beta*RAD2DEG);
  alpha = alpha*RAD2DEG;
  angle_grating = (beta+90);   
  mirror2_angle = ((180+beta-alpha));
  mirror2_angle= mirror2_angle/2;
  //            mirror2_angle = (90-blazed_angle+beta);   
  mirror2_angle = (90+beta);   
} 
/*if(blazed && blazed_angle){*/
/*  angle_grating = angle_grating-blazed_angle;*/
/*}*/

if(verbose){
  fprintf(stdout,"INFO(%s):Monochromator specs: \n Angle of pre-mirror=%f deg. \n Angle of grating=%f deg.\n",instrument_name,mirror2_angle,angle_grating);
}
MCAngleVariation=angle_grating*0.99;




/*******************************************************
6)
Monitor definitions:
*******************************************************/

if(E0 && dE){
  monitor_Emin = E0-2*dE;
  monitor_Emax = E0+2*dE;
} else if(E0 && !dE){
  monitor_Emin = E0-3e-3;
  monitor_Emax = E0+3e-2;
} else if (!E0){
  printf("\n Error: No Energy is given! \n");
  exit(-1);
}
monitor_wl_max = 12.3984/monitor_Emin;
monitor_wl_min = 12.3984/monitor_Emax;

/*******************************************************
7)
Error messages:
*******************************************************/
if (angle_grating>30 || angle_grating<0)
{
  fprintf(stderr,"ERROR: cPGM grating angle is out of bounds(%f DEG). Simulation ended.\n",angle_grating);
  exit(-1);
}
if (mirror2_angle>21 || mirror2_angle<0)
{
  fprintf(stderr,"ERROR: M2 angle is out of bounds(%f DEG). Simulation ended.\n",mirror2_angle);
  exit(-1);
}
if (theta_PG_NIM>30 || theta_PG_NIM<0)
{
  fprintf(stderr,"ERROR: NIM grating angle is out of bounds(%f DEG). Simulation ended.\n",theta_PG_NIM);
  exit(-1);
}
%}

/**************************************************************
*
*Trace section:
*The TRACE section is where the actual components are placed.
*
**************************************************************/
TRACE


COMPONENT origin = Progress_bar()
AT (0, 1.3, 0) RELATIVE ABSOLUTE

/**************************************************************
Sources:
1) When SourceChoice=0 the flat source is used.
2) When SourceChoice=1 the undulator is used. The TRACE option in the McXtrace GUI IS NOT possible when using the undulator.  

using the Undulator:
Harmonics are found in initialize. 
Find general info on the undulator at:
https://www.maxiv.lu.se/accelerators-beamlines/technology/insertion-devices/
Find general info on the 1.5 GeV storage ring at:
https://www.maxiv.lu.se/accelerators-beamlines/accelerators/accelerator-documentation/1-5-gev-storage-ring/
Find live info on the 1.5 storage ring at:
**************************************************************/

COMPONENT source_flat = Source_flat(
    yheight=0.001e-5,xwidth=0.001,dist=zm_mirror1,focus_xw=0.02e-6,focus_yh=0.02,E0=E0,dE=dE)
WHEN (!SourceChoice)
AT (0, 0, 0) RELATIVE origin
EXTEND %{
  do {
    double k=sqrt(kx*kx+ky*ky+kz*kz);
    kx=ky=0;kz=k;
  }while(0);
%}

/*COMPONENT dmu = Undulator(verbose=1,E0=E0,dE=dE,Ee=1.5,dEe=((6e-9)*(60e-12))/1.5,Ie=0.5,tbunch=43,K=undK,gap=14e-3,Nper=Nper, */
/*    lu=84e-3,sigey=1.3e-5,sigex=185e-5,sigepx=32e-6,sigepy=4.6e-6,focus_xw=1.1e-3,focus_yh=1.1e-3,dist=zm_mirror1,E1st=E1st)*/
/*WHEN (SourceChoice)*/
/*AT(0,0,0) RELATIVE origin*/

/****************************************
 Monitors After source:
****************************************/
COMPONENT Source_E_monitor = E_monitor(nE=101,filename="source_E_monitor",xwidth=5e-3,yheight=5e-3,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 1) RELATIVE PREVIOUS

/*COMPONENT Source_wl_monitor = L_monitor(nL=101,filename="source_wl_monitor",xwidth=5e-3,yheight=5e-3,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/

COMPONENT Source_psd_monitor = PSD_monitor(filename="Source_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 0.0) RELATIVE PREVIOUS

/**************************************************************
 M1: toroidial mirror
1) When perfectMirrors=0, a toroidal mirros is used:
 - collimates vertically
 - focuses horizontally 
2) When perfectMirrors=1, a plane mirror is used. 
**************************************************************/

COMPONENT M1_arm= Arm()
AT(0,0,zm_mirror1) RELATIVE origin 
ROTATED (0,0,90) RELATIVE origin   

COMPONENT Mirror_toroid = Mirror_toroid(zdepth=0.340,xwidth=0.020,radius=246.9254,radius_o=246.9254,R0=R0_M1)
WHEN (!perfectMirrors)
AT (0, 0, 0) RELATIVE M1_arm
ROTATED (-theta_mirror1, 0, 0) RELATIVE M1_arm

COMPONENT M1_perfect_mirror = Mirror(zdepth=0.34,xwidth=0.02,R0=R0_M1)
WHEN (perfectMirrors)
AT (0, 0, 0) RELATIVE M1_arm
ROTATED (-theta_mirror1,0, 0) RELATIVE M1_arm

/****************************************
 Monitors After Toroidal Mirror:
****************************************/
COMPONENT Toroidal_Monitor_arm1= Arm()
AT(0,0,zm_mirror1) RELATIVE origin
ROTATED (0,-2*theta_mirror1,0) RELATIVE origin

COMPONENT Toroidal_Monitor_arm2= Arm()
AT(0,0,1) RELATIVE Toroidal_Monitor_arm1
ROTATED (0,90,90) RELATIVE Toroidal_Monitor_arm1

COMPONENT M1_E_monitor = E_monitor(nE=101,filename="M1_E_monitor", xwidth=0.06,yheight=0.06,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (90,0,90) RELATIVE PREVIOUS

/*COMPONENT M1_wl_monitor = L_monitor(nL=101,filename="M1_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/

COMPONENT M1_psd_monitor = PSD_monitor(filename="M1_psd_monitor",nx = 21,ny = 21,xwidth=0.06,yheight=0.06,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS

/**************************************************************
cPGM mode:
1) Arms are placed to define rotation axis.
2) If perfect mirrors are used, grating will be removed, 
orherwise, blazed should be used. 

 **************************************************************/
/*Rotation arms*/
COMPONENT cPGM_arm= Arm()
AT(0,0,zm_mirror1) RELATIVE origin
ROTATED (0,-2*theta_mirror1,0) RELATIVE origin

COMPONENT PG1_arm= Arm()
AT(0,F,2) RELATIVE cPGM_arm
ROTATED (0,0,0) RELATIVE cPGM_arm

COMPONENT M2_rotation_arm1= Arm()
AT(0,A-F,B) RELATIVE PG1_arm
ROTATED (-mirror2_angle+M2_theta_error,0,0) RELATIVE PG1_arm

COMPONENT M2_rotation_arm2= Arm()
AT(0,0,-D-(E/2)) RELATIVE M2_rotation_arm1
ROTATED (0,0,0) RELATIVE M2_rotation_arm1

COMPONENT M2_rotation_arm3= Arm()
AT(0,-C,0) RELATIVE M2_rotation_arm2
ROTATED (0,0,0) RELATIVE M2_rotation_arm2

/*Mirror and grating*/
COMPONENT mirror2 = Mirror(
    zdepth=0.57,xwidth=0.015,R0=R0_M2) 
WHEN (!grating_mode)
AT (0, 0, 0) RELATIVE M2_rotation_arm3
ROTATED (0,0, 0) RELATIVE M2_rotation_arm3

COMPONENT pg_a = Arm()
AT (0, 0, 0) RELATIVE PG1_arm
ROTATED (-angle_grating,0, 0) RELATIVE PG1_arm

COMPONENT Plane_grating2 = Grating_reflect(
    d_phi=MCAngleVariation/100,
    rho_l=r_rho,
    zdepth=0.136,xwidth=0.015)
WHEN(grating_mode==0) AT(0,0,0) RELATIVE PG1_arm
ROTATED(-angle_grating,0,180) RELATIVE PG1_arm

COMPONENT postPgmfpi=PSD_monitor_4PI(filename="postpgm",radius=1, restore_xray=1)
AT(0,0,0) RELATIVE PREVIOUS

COMPONENT psd2ma = Arm()
AT(0,0,0) RELATIVE pg_a
ROTATED (angle_grating,0,0) RELATIVE pg_a

COMPONENT vbanana = Monitor_nD(xwidth=1,yheight=0.1,options="banana theta limits -6 6 energy limits 0.1 1.1", bins=1001, 
	filename="vbanana",restore_xray=1)
AT(0,0,0) RELATIVE psd2ma
ROTATED (0,0,90) RELATIVE psd2ma

COMPONENT psd2m = PSD_monitor(nx=1,ny=501, yheight=0.5, xwidth=0.1, filename="psd2m", restore_xray=1)
AT(0,0,2) RELATIVE psd2ma


/**/
/*COMPONENT Plane_grating_perfect_mirror = Mirror(*/
/*    zdepth=0.136,xwidth=0.015,R0=R0_PG)*/
/*WHEN (!grating_mode && perfectMirrors)*/
/*AT (0, 0, 0) RELATIVE PG1_arm*/
/*ROTATED (-angle_grating,0, 0) RELATIVE PG1_arm*/
/**/
/**************************************************************
NIM  mode:
1) Arm for the NIM mirror is placed
2) lamellar grating is used
There is no reason for a perfect mirror in the NIM case.
**************************************************************/

/*COMPONENT NIM_arm1= Arm()*/
/*AT(0,-A,X) RELATIVE M2_rotation_arm1*/
/*ROTATED (0,0,0) RELATIVE M2_rotation_arm1*/
/**/
/*COMPONENT NIM = Mirror(*/
/*    zdepth=0.02,xwidth=0.02,R0=0) */
/*WHEN (!grating_mode)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/
/*ROTATED (-theta_NIM,-2*theta_mirror1, 0) RELATIVE origin*/
/**/
/*COMPONENT Laminar_Grating = Reflective_grating(*/
/*    d_phi=4,blazed=0,cff=0,display=0,blazed_angle=0,zdepth=0.136,xwidth=0.015,R0=R0_PG,r_rho=r_rho,b=0,N_slits=0,d=0)*/
/*WHEN (grating_mode)*/
/*AT (0, 0, 0) RELATIVE PG1_arm*/
/*ROTATED (-theta_PG_NIM,0, 0) RELATIVE PG1_arm*/

/****************************************
 Monitors After Monochromator
****************************************/
COMPONENT Monochromator_Monitor_arm= Arm()
AT(0,F,2.7) RELATIVE PG1_arm 
ROTATED (0,0,0) RELATIVE PG1_arm

COMPONENT Monochromator_E_monitor = E_monitor(nE=101,filename="AfterMonochromator_E_monitor", xwidth=0.06,yheight=0.06+(F/8),Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS

/*COMPONENT Monochromator_wl_monitor = L_monitor(nL=101,filename="AfterMonochromator_wl_monitor",xwidth=0.06,yheight=0.06+(F/8),Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/

COMPONENT Monochromator_psd_monitor = PSD_monitor(filename="AfterMonochromator_psd_monitor",nx = 40,ny = 100,xwidth=0.06,yheight=0.06+(F/8),restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS

/**************************************************************  
Mirror 3:
1) M3_Arm to point in M3 location:
 -Even though the monochromator is rotating, the cylindrical mirror has to stay stationary relative to M2 
2) Plane mirror in place of the true cylindrical mirror (which isnt developed in McXtrace)
 - Deflect horizontally
**************************************************************/

COMPONENT M3_arm= Arm()
AT(0,F,3) RELATIVE cPGM_arm 
ROTATED (0,theta_mirror3,0) RELATIVE cPGM_arm

COMPONENT m3Psd=PSD_monitor(xwidth=0.5, yheight=0.5, filename="m3psd", restore_xray=1)
AT(0,0,0) RELATIVE M3_arm

COMPONENT mirror3 = Mirror_curved(
    R0=1,
    radius=0.94205, 
    length=0.06,
    width=0.2)
AT (0, 0, 0) RELATIVE M3_arm
ROTATED (90, 0, 0) RELATIVE M3_arm
EXTEND
%{
/*    if(!SCATTERED){*/
/*        ABSORB;*/
/*    }*/
%}
/*    else{*/
/*        printf("through\n");*/
/*    }*/
/*%}*/
/**/
/*COMPONENT mirror3_perfect_mirror = Mirror(*/
/*    zdepth=0.2, */
/*    xwidth=0.06, */
/*    R0=1)*/
/*WHEN(perfectMirrors)*/
/*AT (0, 0, 0) RELATIVE M3_arm*/
/*ROTATED (0, 0, 90) RELATIVE M3_arm*/
/**/
COMPONENT Exit_slit_arm0= Arm()
AT(0,0,0) RELATIVE M3_arm 
ROTATED (0,0,0) RELATIVE M3_arm

COMPONENT M4_arm1= Arm()
AT(0,0,0) RELATIVE Exit_slit_arm0 
ROTATED (0,theta_mirror3,0) RELATIVE Exit_slit_arm0

/****************************************
 Monitors After Mirror 3
****************************************/

COMPONENT M3_Monitor_arm= Arm()
AT(0,0,0.5) RELATIVE M4_arm1 
ROTATED (0,0,0) RELATIVE M4_arm1

COMPONENT M3_E_monitor = E_monitor(nE=101,filename="M3_E_monitor", xwidth=0.04,yheight=0.03,Emin=monitor_Emin,Emax=monitor_Emax,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS

/*COMPONENT M3_wl_monitor = L_monitor(nL=101,filename="M3_wl_monitor",xwidth=0.04,yheight=0.03,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/

COMPONENT M3_psd_monitor = PSD_monitor(filename="M3_psd_monitor",nx = 171,ny = 171,xwidth=0.04,yheight=0.03,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS

/**************************************************************
EXIT SLIT:
1)Exit slit placed in front of mirror 4
2) based on input parameters, different photons will be let through, i.e different wavelengths.
*************************************************************/


COMPONENT ExT_arm2= Arm()
AT(0,0,zm_ExitSlit) RELATIVE M4_arm1 
ROTATED (0,0,0) RELATIVE M4_arm1

COMPONENT bef_slit = PSD_monitor(xwidth=3*xwidth_ExSlit, yheight=3*yheight_ExSlit, filename="bef_slit")
AT(0,0,-1e-3) RELATIVE ExT_arm2

COMPONENT Exitslit = Slit(
    xwidth=xwidth_ExSlit, 
    yheight=yheight_ExSlit)
AT (0, 0,0) RELATIVE ExT_arm2
ROTATED (0,0,0) RELATIVE ExT_arm2

COMPONENT aft_slit = COPY(bef_slit)(filename="aft_slit")
AT(0,0,1e-3) RELATIVE ExT_arm2

/****************************************
 Monitors Before Mirror 4
****************************************/

COMPONENT M4Before_psd_monitor = PSD_monitor(filename="M4Before_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.2,yheight=0.2)
AT (0, 0, 1) RELATIVE Exitslit

COMPONENT M4Before_e_monitor = E_monitor(nE=101,filename="M4Before_e_monitor",xwidth=0.2,yheight=0.2,Emin=0,Emax=2,restore_xray=1)
AT (0, 0, 1) RELATIVE Exitslit

/*COMPONENT M4Before_wl_monitor = L_monitor(nL=101,filename="M4Before_wl_monitor",xwidth=0.2,yheight=0.2,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 1) RELATIVE Exitslit*/

/**************************************************************
 Mirror 4
1) Placing an arm
2) Placing a plane mirror instead of a ellipsoidal mirror for simplicity.
  - deflect horizontally.
**************************************************************/

COMPONENT M4_arm2= Arm()
AT(0,0,zm_mirror4) RELATIVE M4_arm1
ROTATED (0,theta_mirror4,0) RELATIVE M4_arm1

COMPONENT mirror4 = Mirror(
    zdepth=0.2,yheight=0.06,R0=R0_M4)
AT (0, 0, 0) RELATIVE M4_arm2 
ROTATED (0, 0, 0) RELATIVE M4_arm2


/****************************************
 Monitors After Mirror 4
****************************************/

COMPONENT M4_Monitor_Arm= Arm()
AT(0,0,0) RELATIVE mirror4 
ROTATED (0,theta_mirror4,0) RELATIVE mirror4

COMPONENT M4_psd_monitor = PSD_monitor(filename="M4_psd_monitor",restore_xray=1,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 0.3) RELATIVE PREVIOUS
ROTATED (0,0,0) RELATIVE PREVIOUS

COMPONENT M4_e_monitor = E_monitor(nE=101,filename="M4_e_monitor",xwidth=0.06,yheight=0.06,Emin=0,Emax=2,restore_xray=1)
AT (0, 0, 0) RELATIVE PREVIOUS

/*COMPONENT M4_wl_monitor = L_monitor(nL=101,filename="M4_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=1)*/
/*AT (0, 0, 0) RELATIVE PREVIOUS*/


/*
COMPONENT Filter_Argon = Filter(
    material_datafile="Ar.txt", 
    xwidth=0.2, 
    yheight=0.2, 
    zdepth=0.2)
WHEN(E0>0.0015759)
AT (0, 0, 0.5) RELATIVE M4_Monitor_Arm

COMPONENT Filter_Neon = Filter(
    material_datafile="Ne.txt", 
    xwidth=0.2, 
    yheight=0.2, 
    zdepth=0.2)
WHEN(E0>0.0021565)
AT (0, 0, 0.4) RELATIVE PREVIOUS

COMPONENT Filter_Helium = Filter(
    material_datafile="He.txt", 
    xwidth=0.2, 
    yheight=0.2, 
    zdepth=0.2)
WHEN(E0>0.0024587)
AT (0, 0, 0.4) RELATIVE PREVIOUS



COMPONENT Filter_psd_monitor = PSD_monitor(filename="Filter_psd_monitor",restore_xray=0,nx = 271,ny = 271,xwidth=0.06,yheight=0.06)
AT (0, 0, 1) RELATIVE PREVIOUS
ROTATED (0,0,90) RELATIVE M4_Monitor_Arm

COMPONENT Filter_e_monitor = E_monitor(nE=101,filename="Filter_e_monitor",xwidth=0.06,yheight=0.06,Emin=0,Emax=50,restore_xray=0)
AT (0, 0, 0) RELATIVE M4_Monitor_Arm

COMPONENT Filter_wl_monitor = L_monitor(nL=101,filename="Filter_wl_monitor",xwidth=0.06,yheight=0.06,Lmin=monitor_wl_min,Lmax=monitor_wl_max,restore_xray=0)
AT (0, 0, 0) RELATIVE M4_Monitor_Arm
*/


/**************************************************************

Experiment hutch:
   - sample station
   - monitor
   - detector
   - sample
ect..
**************************************************************/



FINALLY
%{
%}

END