1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: MAXIV_FemtoMAX
*
* %Identification
* Written by: Erik B Knudsen (erkn@fysik.dtu.dk)
* Date: Jun 2017
* Origin: DTU Physics
* Version: 0.3
* %INSTRUMENT_SITE: MAXIV
*
* Simulation of the FemtoMAX short pulse facility at MAX IV laboratory
*
* %Description
* This a a skeleton version of the FemtoMAX short-pulse facility at MAXIV
* N.b. This model is out of date with the present day instrumentation of FemtoMAX.
*
* %Example: DXUS=1e-2 Detector: EXAFS_I=2.74995e-13
*
* %Parameters
* DXUS: [m] Horizontal opening of the user slit.
* DYUS: [m] Vertical opening of the user slit.
* MONO: [ ] Flag enabling the Crystal monochromator.
* MLMONO: [ ] Flag enabling the mulitlayer monochromator.
* U2SRC: [ ] Flag enabling wide source model.
* U3SRC: [ ] Flag enabling the narrow source model. Overrides U2SRC.
* RX: [ ] X-rotation of the sample goniometer.
* RY: [ ] Y-rotation of the sample goniometer.
*
* %Link
* https://www.maxiv.lu.se/accelerators-beamlines/beamlines/femtomax/
*
* %End
*******************************************************************************/
/* Change name of instrument and input parameters with default values */
DEFINE INSTRUMENT MAXIV_FemtoMAX( DXUS=1e-2,DYUS=1e-2, MONO=1, MLMONO=1, int U2SRC=1, int U3SRC=0,
RX=0, RY=0)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double dxs1;
double dys1;
double dxs2;
double dys2;
double dxs3;
double dys3;
double gamma_fm;
double gamma_mono;
double gamma_mlmono;
double Ls_ml;
double Ld_ml;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
gamma_fm=1.2;
gamma_mono=1.2*MONO;
gamma_mlmono=1.2*MLMONO;
dxs1=1e-3;
dys1=1e-3;
dxs2=1e-3;
dys2=1e-3;
dxs3=1e-2;
dys3=1e-2;
Ls_ml=1e3;
Ld_ml=1e3;
%}
/* Here comes the TRACE section, where the actual */
/* instrument is defined as a sequence of components. */
TRACE
/* The Arm() class component defines reference points and orientations */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used */
/* for further RELATIVE reference, Other useful keywords are : ROTATED */
/* EXTEND GROUP PREVIOUS. Also think about adding an xray source ! */
/* Progress_bar is an Arm displaying simulation progress. */
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
COMPONENT U2 = Source_div(
xwidth=1e-5,yheight=1e-5,focus_aw=1e-3, focus_ah=1e-3, E0=12.5, dE=10)
WHEN(U2SRC) AT(0,0,0) RELATIVE Origin
/*COMPONENT U2ss = Source_spectra(*/
/* spectra_stem_x=stemx,spectra_stem_y=stemy,*/
/* nE=51,E0=E0,dE=dE,Emin=5,Emax=15,nx=51,ny=51,npx=51,npy=51)*/
/*WHEN (U2SRCss) AT(0,0,0) RELATIVE Origin*/
COMPONENT U3 = Source_div(
xwidth=1e-6,yheight=1e-6, focus_aw=5e-6, focus_ah=2e-6, E0=12.5, dE=0.1)
WHEN(U3SRC) AT(0,0,0) RELATIVE Origin
/*COMPONENT U3ss = Source_spectra(*/
/* spectra_stem_x=stemx,spectra_stem_y=stemy,*/
/* nE=51,E0=E0,dE=dE,Emin=5,Emax=15,nx=51,ny=51,npx=51,npy=51)*/
/*WHEN (U3SRCss) AT(0,0,6.65) RELATIVE U2*/
COMPONENT screen = PSD_monitor(
xwidth=0.01, yheight=0.01, filename="fm_screen")
AT(0,0,3.3) RELATIVE U3
COMPONENT a0 = Arm()
AT(-0.01,0,3.351) RELATIVE screen
ROTATED (0,2,0) RELATIVE screen
/*COMPONENT Be_prism = Filter(*/
/* refraction = 1, xwidth = 0.1, yheight = 0.1, zdepth = 0.4)*/
/*AT (0.05, 0, 0.2) RELATIVE a0*/
/*ROTATED (0,0,0) RELATIVE a0*/
COMPONENT a1 = Arm()
AT (0, 0, 3.351) RELATIVE screen
COMPONENT slit1 = Slit(
xwidth=dxs1, yheight=dys1)
AT(0,0,0.9355) RELATIVE a1
COMPONENT popin_yag1 = PSD_monitor(
xwidth=1e-3, yheight=1e-3,filename="popin_yag1")
AT(0,0, 0.3355) RELATIVE slit1
COMPONENT mirror_arm0 = Arm()
AT(0,0,3.28) RELATIVE PREVIOUS
ROTATED (0,0,90) RELATIVE PREVIOUS
COMPONENT focus_mirror0 = Mirror_curved(
coating = "Rh.txt", radius = 10, length = 1.2, width = 0.2)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (90,gamma_fm,0) RELATIVE PREVIOUS
COMPONENT focus_mirror1 = COPY(focus_mirror0)
AT(0,0.21,0) RELATIVE focus_mirror0
COMPONENT focus_mirror_exit0 = Arm()
AT (0,0,0) RELATIVE focus_mirror1
ROTATED (0,gamma_fm,0) RELATIVE focus_mirror1
COMPONENT focus_mirror_exit1 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (-90,0,0) RELATIVE PREVIOUS
COMPONENT emon_mono = Monitor_nD(radius=0.11, restore_xray=1, options="e limits 0 20", bins=200,filename="emon_probe")
AT(0,0,0) RELATIVE PREVIOUS
COMPONENT slit2 = Slit(
xwidth=dxs2, yheight=dys2)
AT(0,0,1.2) RELATIVE focus_mirror_exit1
COMPONENT popin_yag2 = COPY(popin_yag1)(yheight=1e-2,filename="popin_yag2")
AT(0,0,0.4) RELATIVE slit2
COMPONENT mono = Bragg_crystal(
material = "Si.txt", length = 0.8, width = 0.01,
V = 160.1826, h = 1, k = 1, l = 1, alpha = 0)
WHEN(MONO) AT (0, 0, 0.6) RELATIVE PREVIOUS
ROTATED (gamma_mono,0,0) RELATIVE PREVIOUS
COMPONENT mono_exit = Arm()
AT(0,0,0) RELATIVE mono
ROTATED (gamma_mono,0,0) RELATIVE mono
COMPONENT popin_yag_s1 = PSD_monitor(
xwidth=0.01, yheight=0.01, filename="fm_popin_yag_s1")
AT(0,0,0.6) RELATIVE PREVIOUS
COMPONENT multilayer_mono = Multilayer_elliptic(
coating = "Ref_W_Si.txt",
theta = gamma_mlmono, s1 = Ls_ml, s2 = Ld_ml, length = 0.4,
width = 0.2, Emin=7, Estep=0.05, Emax=10)
WHEN (MLMONO) AT (0, 0, 0.4) RELATIVE PREVIOUS
ROTATED (gamma_mlmono,0,0) RELATIVE PREVIOUS
COMPONENT multilayer_mono_exit = Arm()
WHEN(MLMONO) AT(0,0,0) RELATIVE multilayer_mono
ROTATED (gamma_mlmono,0,0) RELATIVE multilayer_mono
COMPONENT fpi= PSD_monitor_4PI(radius=0.5, filename="fpi",nx=41,ny=41, restore_xray=1)
AT(0,0,0) RELATIVE PREVIOUS
COMPONENT slit3 = Slit(
xwidth=dxs3*1e2, yheight=dys3*1e2)
AT(0,0,0.4) RELATIVE multilayer_mono_exit
COMPONENT fpi2 = PSD_monitor(xwidth=0.05, yheight=0.05, nx=101,ny=101,filename="fpi2")
AT(0,0,1e-3) RELATIVE PREVIOUS
COMPONENT Be_lenses = Lens_parab_Cyl(
material_datafile = "Be.txt", r = 0.5e-3, yheight = 100e-6,
d = 1e-4, N = 12)
AT (0, 0, 0.6) RELATIVE PREVIOUS
COMPONENT user_slit = Slit(
xwidth = DXUS, yheight = DYUS)
AT (0, 0, 1) RELATIVE PREVIOUS
COMPONENT popin_yag4 = COPY(popin_yag1)()
AT(0,0,0.4) RELATIVE user_slit
COMPONENT gonio0 = Arm()
AT(0,0,0.84) RELATIVE PREVIOUS
ROTATED (0,RY,0) RELATIVE PREVIOUS
COMPONENT gonio1 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (RX,0,0) RELATIVE PREVIOUS
COMPONENT CAMP = PSD_monitor(
xwidth=0.1, yheight=0.1, filename="fm_CAMP")
AT (0,0,2) RELATIVE gonio0
COMPONENT EXAFS = PSD_monitor(
xwidth=0.1, yheight=0.1, filename="fm_EXAFS")
AT (0,0,2.5) RELATIVE CAMP
COMPONENT Wall = PSD_monitor(
xwidth=0.1, yheight=0.1, filename="fm_Wall")
AT (0,0,3) RELATIVE EXAFS
/* This section is executed when the simulation ends (C code). Other */
/* optional sections are : SAVE */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END
|