1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*******************************************************************************
* McXtrace instrument definition URL=http://www.mcxtrace.org
*
* Instrument: SOLEIL_DIFFABS
*
* %Identification
* Written by: E. Farhi and D. Thiaudiere
* Date: May 2023
* Origin: SOLEIL
* Release: McXtrace 3.2
* Version: 0.2
* %INSTRUMENT_SITE: SOLEIL
*
* SOLEIL DIFFABS Combining X‐ray diffraction and absorption to study a large variety of materials
*
* %Description
* This is model of the DIFFABS beam-line at synchrotron SOLEIL, combining diffraction and absorption.
*
* The range of instrumental techniques that can be used on this line concerns
* numerous sectors of fundamental research and finalized applied research (oil
* industry, nuclear field , metallurgy) among which the science of materials and
* chemistry hold a predominant position. In particular, in situ studies of the
* transformations in materials at ultra-high temperature will be the domain of
* excellence of this line. The interest of coupled absorption, or coupled -
* diffraction measurements on powders or monocristalssingle crystals, is to ensure
* that both experiments are carried out on the same zone of the sample, in
* absolutely identical physico-chemical conditions (temperature, pressure,
* reactive atmosphere around the sample), which is very important for establishing
* correlations between the information provided by both types of measurements in
* the case of complex materials or materials under extreme conditions.
*
* Position | Element
* ---------|--------------------------------------------------------------------
* 0 | the BM D13-1 Bender B=1.71 T in range 3-23 keV, e-beam cross-section 55.1x20.6 µm2 123.7x1.6 µrad. Other specs give 60.1x24.9 µm and 134.8x2.1 µrad. Critical energy 8.6 keV.
* 11.85 | primary slit
* 14.92 | M1 bent mirror with Rh/Si coating. Focuses vertically the beam on the DCM. length 1300 mm, width 100 mm. 2.4 mrad incidence above 19 keV, 3 mrad in 12.5-19 keV, and 5 mrad in 6.5-12.5 keV, and 6 mrad below.
* 17.462 | a Si(111) DCM. First crystal is 200x100 mm flat at 2.54 m from M1; 2nd is bent 70x100 mm to focus the beam horizontally.
* 19.28 | M2 bent mirror with Rh coating, 1300x100 mm. Focuses vertically the beam. At 1.817 from DCM.
* 27.752 | _secondary slits when using the KB. We ignore them here_.
* 31.227 | _a KB mirror set M3/M4 for micro focusing. Optional, see the practical 5 "Optics"._
* 31.45 | sample stage with e.g. Fluorescence and/or PowderN components. At 13.99 from DCM.
* 32.09 | a set of detectors (transmission, XRD and XRF), radius 654 mm
*
* %Example: E0=13 Detector: xpad_I=1.7e6
*
* %Parameters
* E0: [keV] Central energy of the interval to be looked at
* dE: [keV] Half-width of the energy interval
* M1_angle: [mrad] Rotation angle of M1/M2 mirrors. When left as 0, it is set automatically from E0.
* M1_radius:[m] Curvature radius of M1 mirror (Rh, 1300x100) longitudinal. Positive=mirror is focusing. 0=flat.
* M2_radius:[m] Curvature radius of M2 mirror (Rh, 1300x100) sagittal. Positive=mirror is focusing. 0=flat.
* DCM_theta:[deg] Rotation angle of DCM crystals. When left as 0, it is set automatically from E0.
* sample: [str] Sample structure file, LAU/CIF format.
*
* %Link
* https://www.synchrotron-soleil.fr/en/beamlines/diffabs
* %L
* Gallard, PhD, (2019) https://www.theses.fr/2019AIXM0037.pdf
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT SOLEIL_DIFFABS(E0=13,dE=1,
M1_angle=0, M1_radius=1400, M2_radius=1400,
DCM_theta=0,
string sample="LaB6_660b_AVID2.hkl")
DECLARE
%{
double dcm_gap;
%}
INITIALIZE
%{
// DCM
double DM= 5.4909; // Si d-spacing
double d = DM/sqrt(3); // <111> reflection |<111>|=3
dcm_gap = 0.01; // gap between the 2 monochromator crystals
if (!DCM_theta && E0) {
// n.lambda = 2 d sin(theta) = 2*PI/E2K / E0 with n=ORDER=1
double sin_theta = 2*PI/E2K/E0 / 2 / d;
if (fabs(sin_theta) < 1)
DCM_theta = asin(sin_theta)*RAD2DEG;
} else if (DCM_theta && !E0)
E0 = 2*PI/E2K / (2*d*sin(DCM_theta*DEG2RAD));
// M1 mirror
if (!M1_angle) {
if (19 <= E0) M1_angle=2.4;
if (12.5 <= E0 && E0 < 19) M1_angle=3;
if (6.5 <= E0 && E0 < 12.5) M1_angle=5;
if (E0 < 6.5) M1_angle=6;
}
if (!DCM_theta || !E0 || dE <=0)
exit(fprintf(stderr, "%s: ERROR: Monochromator can not reflect E0=%g +/- %g [keV]. Aborting.\n", NAME_INSTRUMENT, E0, dE));
MPI_MASTER(
printf("%s: E0=%g [keV] M1_angle=%g [mrad] %g [deg]\n", NAME_INSTRUMENT, E0, M1_angle, M1_angle*RAD2DEG/1000);
printf("%s: Monochromator theta=%g [deg]\n", NAME_INSTRUMENT, DCM_theta);
);
M1_angle *= RAD2DEG/1000;
%}
// -----------------------------------------------------------------------------
TRACE
COMPONENT origin = Progress_bar()
AT (0,0,0) ABSOLUTE
// the BM D13-1 Bender B=1.71 T in range 3-23 keV
// e-beam cross-section 60.1x24.9 µm and 134.8x2.1 µrad. Critical energy 8.6 keV.
COMPONENT BM_D13_1 = Bending_magnet(
E0 = E0, dE = dE, Ee = 2.75,
Ie = 0.5, B = 1.71, sigex=60.1e-6, sigey=24.9e-6)
AT (0, 0, 0) RELATIVE origin
// 11.85 | primary slit
COMPONENT primary_slit = Slit(
xwidth = 0.03, yheight = 0.01)
AT (0, 0, 11.85) RELATIVE origin
// -----------------------------------------------------------------------------
// 14.92 | M1 bent mirror with Rh/Si coating. Reduces the vertical divergence.
// length 1300 mm, width 100 mm.
// 2.4 mrad incidence above 19 keV, 3 mrad in 12.5-19 keV, and 5 mrad in 6.5-12.5 keV, and 6 mrad below.
COMPONENT M1_location = Arm()
AT(0,0,14.92) RELATIVE origin
COMPONENT M1_rotated = Arm() // rotation of the mirror
AT(0,0,0) RELATIVE M1_location
ROTATED (-M1_angle,0,0) RELATIVE M1_location
// should image the slit to get a parallel beam.
COMPONENT M1 = Mirror_curved( // 90 deg brings it from YZ (vert) to XZ (horiz)
length=1.3, width=0.1,
coating="Rh.txt", radius=M1_radius)
AT(0,0,0) RELATIVE M1_rotated
ROTATED (0, 0, 90) RELATIVE M1_rotated
EXTEND %{
if (!SCATTERED) ABSORB;
%}
COMPONENT M1_out = Arm() // 2-theta direction
AT(0,0,0) RELATIVE M1_rotated
ROTATED (-M1_angle,0,0) RELATIVE M1_rotated
// -----------------------------------------------------------------------------
// 17.462 | a Si(111) DCM. First crystal is 200x100 mm flat at 2.54 m from M1
// 2nd is bent 70x100 mm to reduce the horizontal divergence (perp. to beam).
// restrict the DCM input to avoid parasitic reflections
COMPONENT DCM_slit_in = COPY(primary_slit)
AT (0,0,2.3) RELATIVE PREVIOUS
COMPONENT DCM_in = Monitor_nD(
xwidth = 5e-2, yheight=5e-2, restore_xray=1,
options="x y", bins=128)
AT (0,0,0.001) RELATIVE PREVIOUS
COMPONENT DCM_in_div = COPY(DCM_in)(
options="dx limits=[-0.05 0.05], dy limits=[-0.5 0.5]")
AT (0, 0, 0) RELATIVE PREVIOUS
COMPONENT DCM_location = Arm()
AT (0,0,2.54) RELATIVE M1_out
// the M1 mirror should reduce the divergence so that the beam is parallel
// when hitting the monochromators, to reduce the energy spread
COMPONENT bragg_crystal = Bragg_crystal(
length=0.2,
width=0.1,
material = "Si.txt",
h = 1, k = 1, l = 1,
crystal_type = 2
)
AT (0, 0, 0) RELATIVE DCM_location
ROTATED (-DCM_theta, 0, 0) RELATIVE DCM_location
EXTEND
%{
if (!SCATTERED) ABSORB;
%}
COMPONENT arm_crystal1 = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (-DCM_theta, 0, 0) RELATIVE PREVIOUS
/* -------------------------------------------------- CC crystal 2 */
COMPONENT bragg_crystal_two = COPY(bragg_crystal)(
length=0.2)
AT (0, dcm_gap, DCM_theta ? dcm_gap/tan(DCM_theta*DEG2RAD) : 0) RELATIVE bragg_crystal
ROTATED (DCM_theta, 0, 0) RELATIVE arm_crystal1
EXTEND
%{
if (!SCATTERED) ABSORB;
%}
COMPONENT arm_crystal2 = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (DCM_theta, 0, 0) RELATIVE PREVIOUS
/* -------------------------------------------------- Horizontal slit 5 */
// the beam is positioned at Y=+dy*sin(2*DCM_theta*DEG2RAD)/sin(DCM_theta*DEG2RAD)
// with dy=0.01 (CC gap) wrt the CC entry
COMPONENT DCM_out = COPY(DCM_in)(yheight=0.02)
AT (0, 0, 0.2) RELATIVE arm_crystal2
ROTATED (0,0,0) RELATIVE arm_crystal2 // TODO: small rotation to move beam at 0 divergence
COMPONENT DCM_out_div = COPY(DCM_in)(options="dx limits=[-0.5 0.5], dy limits=[-0.5 0.5]", yheight=0.2)
AT (0, 0,0) RELATIVE DCM_out
COMPONENT DCM_out_e = Monitor_nD(
options="energy", xwidth=0.1, yheight=0.2, bins=512, min=E0-dE, max=E0+dE)
AT (0, 0,0) RELATIVE DCM_out
COMPONENT DCM_slit_out = Slit(xwidth=0.1, yheight=0.2*sin(DCM_theta*DEG2RAD))
AT (0, 0, 0) RELATIVE PREVIOUS
// -----------------------------------------------------------------------------
// 19.28 | M2 bent mirror with Rh coating, 1300x100 mm. Focuses horizontally the beam, and increases the divergence. At 1.817 from DCM.
COMPONENT M2_location = Arm()
AT (0,0,1.818) RELATIVE arm_crystal2
COMPONENT M2_rotated = Arm() // rotation of the mirror
AT(0,0,0) RELATIVE M2_location
ROTATED (M1_angle,0,0) RELATIVE M2_location
COMPONENT M2 = Mirror_curved( // bring it from YZ to XZ (horiz)
length=1.3, width=.1,
coating="Rh.txt", radius=M2_radius)
AT(0,0,0) RELATIVE M2_rotated
ROTATED (0, 0, -90) RELATIVE M2_rotated
EXTEND %{
if (!SCATTERED) ABSORB;
%}
COMPONENT M2_out = Arm() // 2-theta direction
AT(0,0,0) RELATIVE M2_rotated
ROTATED (M1_angle,0,0) RELATIVE M2_rotated
// -----------------------------------------------------------------------------
// 31.45 | sample stage with e.g. Fluorescence and/or PowderN components. At 13.99 from DCM, 12.17 from M2
COMPONENT sample_stage = COPY(DCM_in)
AT (0,0,12.17) RELATIVE M2_out
ROTATED (0,0,90) RELATIVE M2_out
SPLIT COMPONENT powder = PowderN(reflections=sample,
xwidth = 0.001, yheight=0.01, zdepth=5e-6,
p_interact=0.5,
d_phi=5)
AT (0,0,0) RELATIVE sample_stage
GROUP samples
// The Rayleigh scattering at E0 is large, and creates massive background.
// We ignore it here.
COMPONENT fluo = Fluorescence(
material=sample,
xwidth = 0.001, yheight=0.01, zdepth=5e-6, // flag_rayleigh=0,
p_interact=1, target_z=1, focus_aw=180, focus_ah=5)
AT (0,0,0) RELATIVE sample_stage
GROUP samples
// 4pi energy monitor
COMPONENT fluo_monitor = Monitor_nD(
radius=0.2, options="energy", bins=1024, min=0, max=E0*1.2)
// WHEN (K2E*sqrt(kx*kx+ky*ky+kz*kz) < 0.95*E0)
AT (0,0,0) RELATIVE PREVIOUS
// ideal "banana" detector
COMPONENT det_angle = Monitor_nD(options="abs theta limits=[2 90]",
radius=0.6, yheight=1e-2, bins=10000)
WHEN (0.75 * E0 < K2E*sqrt(kx*kx+ky*ky+kz*kz)) // model detector energy discrimination
AT (0,0,0) RELATIVE sample_stage
// -----------------------------------------------------------------------------
// 32.09 | a set of detectors (transmission, XRD and XRF), radius 654 mm
COMPONENT xpad = Monitor_nD(radius=.645, yheight = 0.05,
options="theta bins=512 limits=[-8 120], y bins=128")
WHEN (0.75 * E0 < K2E*sqrt(kx*kx+ky*ky+kz*kz)) // model detector energy discrimination
AT (0,0,0) RELATIVE sample_stage
END
|