1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/*******************************************************************************
* Instrument: SOLEIL_MARS
*
* %Identification
* Written by: IGUILIZ Salah-Eddine, MENUT Denis and FARHI Emmanuel.
* Date: July 2022
* Origin: SOLEIL
* Version: 1.0
* %INSTRUMENT_SITE: SOLEIL
*
* The MARS beam-line at Synchrotron SOLEIL.
*
* %Description
* MARS beamline is aiming to extend the research capabilities on radioactive
* matter towards the use of synchrotron radiation in multidisciplinary fields
* biology, chemistry, physics) with respect to national and European safety law*.
*
* The design of MARS beamline (infrastructure and optics) is also optimized to
* alternatively run two experimental stations in orlder to perform
* characterizations with transmission and high resolution X-ray powder-diffraction
* (XRD), Wide Angle X-ray Scattering (WAXS), Small Angle X-ray scattering (SAXS),
* standard and high resolution X-ray absorption spectroscopy (XANES, EXAFS and
* HERFD-XANES) and microbeam techniques (microXRF, XAS, XRD).
*
* This model implements the XRD station for powders.
*
* %Example: E0=16.99 Detector: detector_diffraction_I=2.56e+09
*
* %Parameters
* E0: [keV] Central energy to be emitted by the source
* dEr: [1] Relative half width to emitted by the source, e.g. 1e-4
* alpha: [deg] Asymmetry angle for the crystals.
* reflections: [str] Sample structure file, LAU/CIF format.
* reflec_material_M12: [str] reflecting coating on curved mirrors, e.g. Pt
*
* %Link
* https://www.synchrotron-soleil.fr/en/beamlines/mars
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT SOLEIL_MARS(E0=16.99,
string reflec_material_M12="Pt.dat",
string reflections="LaB6_660b_AVID2.hkl",
dEr=1e-4,alpha=0)
DECLARE
%{
//Slit 1
double DistanceToPrimarySlit1 = 11.340;
double DistanceToPrimarySlit2 = 11.440;
double PrimarySlit1Width = 0.02;
double PrimarySlit1Height = 0.002;
double PrimarySlit2Width = 0.02;
double PrimarySlit2Height = 0.002;
//Mirror M1
double DistanceSourceToM1 = 12.784;
double M12_depth = 0.06;
double M12_length = 2.1;
double AngleM1 = 0.0031*RAD2DEG;
//DCM
double DistanceSourceToDCM = 14.395;
double DcmGap = 0.101268;
double AngleDCM = 10.59;
double alpha = 0;
double DcmHoriGap = 0.09863;
double Ts=0.04506/(2*0.1832);
double Tz=0.04506/(2*0.9830);
//double DiagonaleDcmGap = sqrt(Ts*Ts+Tz*Tz);
//BeamMonitor1
double DistanceToPrimaryBeamMonitor = 15.678;
double PrimaryBeamMonitorWidth = 0.05;
double PrimaryBeamMonitorHeight = 0.05;
//Mirror M2
double DistanceSourceToM2 = 16.826;
double AngleM2 = 0.0031*RAD2DEG;
double RadiusM1 = 8248;
double RadiusM2 = 6600;
//Slit 2
double DistanceToSecondarySlit1 = 18.231;
double DistanceToSecondarySlit2 = 18.315;
double SecondarySlit1Width = 0.03; // 3x5
double SecondarySlit1Height = 0.05;
double SecondarySlit2Width = 0.005;
double SecondarySlit2Height = 0.03;
//BeamMonitor2
double DistanceToSecondaryBeamMonitor = 18.588;
double SecondaryBeamMonitorWidth = 0.5;
double SecondaryBeamMonitorHeight = 0.5;
//Sample
double DistanceToSample = 23.06;
//cristal analyzor
double DistanceCentreToCristal = 0.446;
double AngleCa = 6.2267;
//slit A1
double distanceCristalslitA1 = 0.194;
//slit A2
double distanceCristalslitA2 = 0.224;
//detector
double distanceCristaldetector = 0.224;
/* Declarations */
double M12_width=0.05;
double calculated_angle;
%}
INITIALIZE
%{
calculated_angle=RAD2DEG*asin(12398.42*sqrt(8)/(2*5.4309*(E0*1e3)));
fprintf(stdout,"%s: Energy %g [keV] Mono Angle %g [deg]\n", NAME_INSTRUMENT, E0, calculated_angle);
%}
TRACE
COMPONENT origin = Progress_bar()
AT (0, 0, 0) RELATIVE ABSOLUTE
COMPONENT Source = Bending_magnet(
focus_xw=PrimarySlit1Width,
focus_yh=PrimarySlit1Height,
E0=E0, dE = dEr*E0,
Ee = 2.75, Ie = 0.5, B = 1.71, sigex=79.6e-6, sigey=25.3e-6,
dist=DistanceToPrimarySlit1
)
AT (0, 0, 0) RELATIVE origin
/*Wavelength*/
COMPONENT displaySourceLength = Monitor_nD(
xwidth=0.2, yheight=0.2, options="energy",
bins=512, min=E0*(1-dEr), max=E0*(1+dEr)
)
AT(0,0,2) RELATIVE Source
/*Visualise*/
COMPONENT displaySource = PSD_monitor(
filename="emon_psd1"
)
AT(0,0,10) RELATIVE Source
/* ------------------------------------- Vertical slit 1 */
COMPONENT slit1 = Slit(
xwidth=PrimarySlit1Width,
yheight=PrimarySlit1Height)
AT (0, 0, DistanceToPrimarySlit1) RELATIVE Source
/* -------------------------------------- Horizontal slit 1 */
COMPONENT slit2 = Slit(
xwidth=PrimarySlit2Width,
yheight=PrimarySlit2Height)
AT (0, 0, DistanceToPrimarySlit2) RELATIVE Source
/* -------------------------------------- Mirror M1 */
COMPONENT M1_arm_translation = Arm()
AT(0,0,DistanceSourceToM1) RELATIVE Source
COMPONENT M1_arm_rotation_1 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,0, -90) RELATIVE PREVIOUS
COMPONENT mirror_M1 = Mirror_curved(
length = M12_length,
width = M12_width,
radius = RadiusM1,
coating=reflec_material_M12)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,AngleM1, 0) RELATIVE PREVIOUS
COMPONENT M1_arm_rotation_2 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,AngleM1, 0) RELATIVE PREVIOUS
COMPONENT M1_arm_rotation_2_undo = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,0, 90) RELATIVE PREVIOUS
COMPONENT beam_arm_before_crystal = Arm()
AT(0,0,DistanceSourceToDCM-DistanceSourceToM1) RELATIVE PREVIOUS
/*----------------------------------------Monochromator (fixed offset)*/
COMPONENT dcm_xtal0 = Bragg_crystal(
length=0.04, width=0.05,
alpha=alpha, h=2, k=2, l=0, material="Si.txt",crystal_type=2)
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (-calculated_angle,0,0) RELATIVE PREVIOUS
COMPONENT dcm0 = Arm()
AT(0,0,0) RELATIVE dcm_xtal0
ROTATED (-calculated_angle,0,0) RELATIVE PREVIOUS
//this dcm is a fixed offset dcm, the second crystal translates itself
//The double crystal monochromator (DCM), manufactured by FMB Oxford, is equipped with 14 independent motorized stages in order to optimize its alignment and then to assure a fixed exit beam over the entire energy range with a constant upward offset of 20 mm with respect to the primary beam. https://iopscience.iop.org/article/10.1088/1742-6596/190/1/012042/pdf
COMPONENT dcm_xtal1 = COPY(dcm_xtal0)(length=0.02)
AT(0,20e-3, calculated_angle ? 20e-3/tan(calculated_angle*DEG2RAD) : 0) RELATIVE dcm_xtal0
ROTATED (calculated_angle,0,0) RELATIVE dcm0
COMPONENT dcm1 =Arm()
AT(0,0,0) RELATIVE dcm_xtal1
ROTATED (calculated_angle,0,0) RELATIVE dcm_xtal1
/*---------------------------------------- BeamMonitor1 */
COMPONENT emon_dcm0 = E_monitor(
xwidth=PrimaryBeamMonitorWidth,
yheight=PrimaryBeamMonitorHeight,
filename="emon_dcm0",
Emin=E0-dEr*E0,
Emax=E0+dEr*E0,
nE=101)
AT(0,0,DistanceToPrimaryBeamMonitor-DistanceSourceToDCM) RELATIVE dcm1
/*Visualise*/
COMPONENT displayMono = PSD_monitor(
filename="emon_psd"
)
AT(0,0,0) RELATIVE PREVIOUS
/*Wavelength*/
COMPONENT displayMonoLength = E_monitor(
xwidth=0.2, yheight=0.2,
nE=512, filename="Output.E", Emin=E0*(1-dEr), Emax=E0*(1+dEr)
)
AT(0,0,0) RELATIVE PREVIOUS
/* -------------------------------------- Toroidal mirror M2 */
COMPONENT M2_arm_translation = Arm()
AT(0,0,DistanceSourceToM2-DistanceToPrimaryBeamMonitor) RELATIVE PREVIOUS
COMPONENT M2_arm_rotation_1 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,0, 90) RELATIVE PREVIOUS
COMPONENT mirror_M2 = Mirror_curved(
length = M12_length,
width = M12_width,
radius = RadiusM2,
coating=reflec_material_M12)
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0,AngleM2, 0) RELATIVE PREVIOUS
COMPONENT M2_arm_rotation_2 = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,AngleM2, 0) RELATIVE PREVIOUS
COMPONENT M2_arm_rotation_2_undo = Arm()
AT(0,0,0) RELATIVE PREVIOUS
ROTATED (0,0,-90) RELATIVE PREVIOUS
/* ------------------------------------- Vertical slit 2 */
COMPONENT slitSecon1 = Slit(
xwidth=SecondarySlit1Width,
yheight=SecondarySlit1Height)
AT (0, 0, DistanceToSecondarySlit1-DistanceSourceToM2) RELATIVE PREVIOUS
/* -------------------------------------- Horizontal slit 2 */
COMPONENT slitSecon2 = Slit(
xwidth=SecondarySlit2Width,
yheight=SecondarySlit2Height)
AT (0, 0, DistanceToSecondarySlit2-DistanceToSecondarySlit1) RELATIVE PREVIOUS
/*---------------------------------------- BeamMonitor2 */
COMPONENT emon_dcm1 = E_monitor(
xwidth=SecondaryBeamMonitorWidth,
yheight=SecondaryBeamMonitorHeight,
filename="BeamMonitor2",
Emin=E0-dEr*E0,
Emax=E0+dEr*E0,
nE=101)
AT(0,0,DistanceToSecondaryBeamMonitor-DistanceToSecondarySlit2) RELATIVE PREVIOUS
/*Visualise*/
COMPONENT displaySlit2 = PSD_monitor(
filename="emon_psd3"
)
AT(0,0,0) RELATIVE PREVIOUS
/*------------------------------------ Sample */
SPLIT 10 COMPONENT Sample = PowderN(
reflections = reflections,
xwidth = 0.005,
yheight = 0.05,
zdepth = 0.0001,
d_phi=asin(0.02/0.670)*RAD2DEG,
p_interact=0.5
)
AT (0, 0, DistanceToSample-DistanceToSecondaryBeamMonitor) RELATIVE PREVIOUS
GROUP samples
// The Rayleigh scattering at E0 is large, and creates massive background.
// We ignore it here.
COMPONENT SampleF = Fluorescence(
material=reflections,
xwidth = 0.005,
yheight = 0.05,
zdepth = 0.0001,
focus_ah=asin(0.02/0.670)*RAD2DEG,
focus_aw=180, target_z=1, flag_rayleigh=0,
p_interact=0.99)
AT (0, 0, 0) RELATIVE PREVIOUS
GROUP samples
/*------------------------------------- detector */
COMPONENT detector_diffraction = Monitor_nD(
bins=90000, options="abs theta",
min=5,max=90, radius= 0.670, yheight = 0.02, restore_xray=1
)
WHEN (0.75 * E0 < K2E*sqrt(kx*kx+ky*ky+kz*kz)) // model detector energy discrimination
AT(0,0,0) RELATIVE Sample
COMPONENT detector_fluo = Monitor_nD(
bins=1024, options="energy", min=0, max=E0*1.2,
radius= 0.670, yheight = 0.02
)
WHEN (K2E*sqrt(kx*kx+ky*ky+kz*kz) < 0.95*E0)
AT(0,0,0) RELATIVE Sample
END
|