File: DivPos_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (152 lines) | stat: -rw-r--r-- 4,211 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: DivPos_monitor
*
* %Identification
* Written by: Erik B Knudsen
* Based on neutron component by Kim Lefmann
* Date: Jun. 16
* Origin: DTU Physics
* Release: McXtrace 1.3
*
* Divergence/position monitor (acceptance diagram).
*
* %Description
* 2D detector for intensity as a function of both horizontal position
* and wavelength. This gives information similar to an aceptance diagram used
* eg. to investigate beam profiles in neutron guides.
*
* Example: DivPos_monitor(nh=20, ndiv=20, filename="Output.dip",
*           xwidth=0.1, yheight=0.1, maxdiv_h=2)
*
* %Parameters
* INPUT PARAMETERS:
*
* xwidth:  [m] Width of detector.
* yheight: [m] Height of detector.
* nh:      [1] Number of bins in position
* ndiv:    [1] Number of bins in divergence
* nx:      [1] Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane
* ny:      [1] Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane
* nz:      [1] Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane
* maxdiv_h: [deg] Maximal horizontal divergence detected
* filename: [str] Name of file in which to store the detector image
* restore_xray: [1] If set, the monitor does not influence the photon state
* nowritefile: [1]  If set, monitor will skip writing to disk.
*
* CALCULATED PARAMETERS:
*
* Div_N:    Array of photon ray counts
* Div_p:    Array of photon weight counts
* Div_p2:   Array of second moments
*
* %End
*******************************************************************************/

DEFINE COMPONENT DivPos_monitor
SETTING PARAMETERS (int nh=20 , int ndiv=20, string filename=0, 
  xwidth=0.1, yheight=0.1, maxdiv_h=2, restore_xray=0, nx=0, ny=0, nz=1, int nowritefile=0)

DECLARE
%{
  DArray2d Div_N;
  DArray2d Div_p;
  DArray2d Div_p2;
  double xmin;
  double xmax;
  double ymin;
  double ymax;
%}

INITIALIZE
%{
    int i,j;

    xmax = xwidth/2;  xmin = -xmax;
    ymax = yheight/2; ymin = -ymax;

    if ((xmin >= xmax) || (ymin >= ymax)) {
            printf("DivPos_monitor: %s: Null detection area !\n"
                   "ERROR           (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting",
           NAME_CURRENT_COMP);
      exit(0);
    }

    for (i=0; i<nh; i++)
     for (j=0; j<ndiv; j++)
     {
      Div_N[i][j] = 0;
      Div_p[i][j] = 0;
      Div_p2[i][j] = 0;
     }
    NORM(nx,ny,nz);

    // Use instance name for monitor output if no input was given
    if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}

TRACE
%{
    int i,j;
    double div;
    double k, kn;

    PROP_Z0;
    if (x>xmin && x<xmax && y>ymin && y<ymax)
    {
      /* Find length of projection onto the [nx ny nz] axis */
      kn = scalar_prod(kx, ky, kz, nx, ny, nz);
      div = RAD2DEG*atan2(kx,kn);

      if (div < maxdiv_h && div > -maxdiv_h)
      {
        i = floor((x - xmin)*nh/(xmax - xmin));
        j = floor((div + maxdiv_h)*ndiv/(2.0*maxdiv_h));
        Div_N[i][j]++;
        Div_p[i][j] += p;
        Div_p2[i][j] += p*p;
        SCATTER;
      }
    }
    if (restore_xray) {
        RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
    }
%}

SAVE
%{
  if(!nowritefile){
    DETECTOR_OUT_2D(
        "Position-divergence monitor",
        "pos [m]",
        "divergence [deg]",
        xmin, xmax, -maxdiv_h, maxdiv_h,
        nh, ndiv,
        &Div_N[0][0],&Div_p[0][0],&Div_p2[0][0],
        filename);
  }
%}

FINALLY
%{
  destroy_darr2d(Div_N);
  destroy_darr2d(Div_p);
  destroy_darr2d(Div_p2);
%}

MCDISPLAY
%{
    
    multiline(5, (double)xmin, (double)ymin, 0.0,
                 (double)xmax, (double)ymin, 0.0,
                 (double)xmax, (double)ymax, 0.0,
                 (double)xmin, (double)ymax, 0.0,
                 (double)xmin, (double)ymin, 0.0);
%}

END