File: Divergence_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (166 lines) | stat: -rw-r--r-- 5,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Divergence_monitor
*
* %Identification
* Written by: Erik B Knudsen
* Based on neutron component by Kim Lefmann
* Date: Jun. '16
* Version: $Revision$
* Origin: DTU Physics
*
* Horizontal+vertical divergence monitor.
*
* %Description
* A 2D divergence sensitive monitor. The counts are distributed in
* (n times m) pixels.
*
* Example: Divergence_monitor(nh=20, nv=20, filename="Output.pos",
*           xwidth=0.1, yheight=0.1,
*           maxdiv_h=2, maxdiv_v=2)
*
* %Parameters
* INPUT PARAMETERS:
*
* xwidth: [m]           Width of detector. 
* yheight: [m]          Height of detector.
* nv: [1]               Number of pixel columns 
* nh: [1]               Number of pixel rows 
* nx: [1]               Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane 
* ny: [1]               Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane 
* nz: [1]               Vector definition of "forward" direction wrt. divergence, to be used e.g. when the monitor is rotated into the horizontal plane 
* maxdiv_v: [degrees]   Maximal vertical divergence detected 
* maxdiv_h: [degrees]   Maximal horizontal divergence detected 
* filename: [str]          Name of file in which to store the detector image text
* restore_xray: [1]     If set, the monitor does not influence the photon state 
* rad:  [1]             If set - divergence will be measured in radians.
* nowritefile: [1]      If set, monitor will skip writing to disk
*
* CALCULATED PARAMETERS:
*
* Div_N:    Array of photon ray counts
* Div_p:    Array of photon weight counts
* Div_p2:   Array of second moments
*
* %End
*******************************************************************************/
DEFINE COMPONENT Divergence_monitor

SETTING PARAMETERS (int nh=20, int nv=20, int rad=0, string filename=0, 
    xwidth=0.1, yheight=0.1, maxdiv_h=1, maxdiv_v=1, restore_xray=0, nx=0, ny=0, nz=1, int nowritefile=0)

    /* Xray  parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */ 
DECLARE
  %{
    DArray2d Div_N;
    DArray2d Div_p;
    DArray2d Div_p2;
    double xmin;
    double xmax;
    double ymin;
    double ymax;
  %}
INITIALIZE
  %{
    int i,j;

    xmax = xwidth/2;  xmin = -xmax;
    ymax = yheight/2; ymin = -ymax;

    if ((xmin >= xmax) || (ymin >= ymax)) {
            printf("ERROR: (%s): Null detection area! Exiting.\n",NAME_CURRENT_COMP);
      exit(-1);
    }

    Div_N= create_darr2d(nh,nv);
    Div_p= create_darr2d(nh,nv);
    Div_p2=create_darr2d(nh,nv);

    NORM(nx,ny,nz);
    
    // Use instance name for monitor output if no input was given
    if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
  %}
TRACE
  %{
    int i,j;
    double h_div, v_div;
    double k, kn;

    PROP_Z0;
    if (x>xmin && x<xmax && y>ymin && y<ymax)
    {
      /* Find length of projection onto the [nx ny nz] axis */
      kn = scalar_prod(kx, ky, kz, nx, ny, nz);
      if (rad){
          h_div = atan2(kx,kn);
          v_div = atan2(ky,kn);
      }else{
          h_div = RAD2DEG*atan2(kx,kn);
          v_div = RAD2DEG*atan2(ky,kn);
      }
      if (h_div < maxdiv_h && h_div > -maxdiv_h &&
          v_div < maxdiv_v && v_div > -maxdiv_v)
      {
        i = floor((h_div + maxdiv_h)*nh/(2.0*maxdiv_h));
        j = floor((v_div + maxdiv_v)*nv/(2.0*maxdiv_v));
        double p2=p*p;
#pragma acc atomic
        Div_N[i][j] = Div_N[i][j] + 1;
#pragma acc atomic
        Div_p[i][j] = Div_p[i][j] + p;
#pragma acc atomic
        Div_p2[i][j] = Div_p2[i][j] + p2;
        SCATTER;
      }
    }   
    if (restore_xray) {
        RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
    }
  %}
SAVE
  %{
    if(!nowritefile){
      if (rad){
          DETECTOR_OUT_2D(
                  "Divergence monitor",
                  "X divergence [rad]",
                  "Y divergence [rad]",
                  -maxdiv_h, maxdiv_h, -maxdiv_v, maxdiv_v,
                  nh, nv,
                  &Div_N[0][0],&Div_p[0][0],&Div_p2[0][0],
                  filename);
      } else {
          DETECTOR_OUT_2D(
                  "Divergence monitor",
                  "X divergence [deg]",
                  "Y divergence [deg]",
                  -maxdiv_h, maxdiv_h, -maxdiv_v, maxdiv_v,
                  nh, nv,
                  &Div_N[0][0],&Div_p[0][0],&Div_p2[0][0],
                  filename);
      }
    }
  %}
FINALLY
  %{
    destroy_darr2d(Div_N);
    destroy_darr2d(Div_p);
    destroy_darr2d(Div_p2);
  %}
MCDISPLAY
  %{
    
    multiline(5, (double)xmin, (double)ymin, 0.0,
                 (double)xmax, (double)ymin, 0.0,
                 (double)xmax, (double)ymax, 0.0,
                 (double)xmin, (double)ymax, 0.0,
                 (double)xmin, (double)ymin, 0.0);
%}

END