1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Bragg_crystal
*
* %Identification
* Written by: Marcus H Mendenhall, NIST <marcus.mendenhall@nist.gov>
* Based on: Perfect_crystal.comp written by Anette Vickery, Andrea Prodi, Erik Knudsen
* Date: December 1, 2016
* Version: 2.1
* Origin: NIST, Gaithersburg, MD, USA
*
* Perfect, reflecting crystal with common cubic structures (diamond, fcc, or bcc, and others if symmetry form factor multipliers provided explicitly)
*
* %Description
* Bragg_crystal.comp supercedes Perfect_Crystal.comp with major edits and corrections.
*
* For details see:
* The optics of focusing bent-crystal monochromators on X-ray powder diffractometers with application to lattice parameter determination and microstructure analysis,
* Marcus H. Mendenhall,* David Black and James P. Cline, J. Appl. Cryst. (2019). 52, https://doi.org/10.1107/S1600576719010951
*
* Reads atomic formfactors from a data input file.
*
* The crystal code reflects ray in an ideal geometry, i.e. does not include surface imperfections or mosaicity.
* The crystal planes from which the reflection is made lies in the X-Z plane on the unbent crystal rotated
* by an angle alpha about the Y axis with respect to the crystal surface.
*
* The crystal itself is set in the X-Z plane positioned such that the long axis of the crystal surface coincides with
* the Z-axis, with its normam pointing in the positve Y-direction. The angle between the Bragg planes and the crystal surface is alpha
*
* This code has been validated against both experimental data
* (2 channel-cut 3-bounce Si 440 crystals together in non-dispersive mode, at Cu kalpha)
* and against theoretical rocking rocking curves from XOP for Si220 at Sc kalpha and Si440 at Cu kalpha.
*
* Changelog:
* - Off-axis rays fixed June 2015 so axial divergence corrections are right
* - Inclusion of polarization and temperature dependence (via Debye-Waller factor), June-September 2015
* - Errors in complex arithmetic in DarwinReflectivity2 corrected, September 2015, MHM
* - Symmetries for form factors corrected 20150924
* - Rotation code updated to use exact DarwinReflectivity Theta0, Thetah so answer is right even if alpha != 0. 20151009 MHM
* - Results for (1,1,1) etc. with complex form factor made to agree with XOP. December 1st, 2016
*
* Notation follows Tadashi Matsushita and Hiro-O Hashizume, X-RAY MONOCHROMATORS. Handbook on Synchrotron Radiation,North-Holland Publishing Company, 1:263–274, 1983.
*
* Non-copyright notice:
* Contributed by the National Institute of Standards and Technology; not subject to copyright in the United States.
* This is not an official contribution, in that the results are in no way certified by NIST.
*
* Example: Bragg_crystal(
* length=0.05, width=0.02, V=160.1826, h=1, k=1, l=1, alpha=0)
*
* %Parameters
* INPUT PARAMETERS
* width: [m] x width of the crystal.
* length: [m] z depth (length) of the crystal.
* material: [str] Si, Ge (maybe also GaAs?)
* V: [AA^3] Unit cell volume
* h: [1] Miller index of reflection
* k: [1] Miller index of reflection
* l: [1] Miller index of reflection
* alpha: [rad] Asymmetry angle (alpha=0 for symmetric reflection, ie the Bragg planes are parallel to the crystal surface). alpha is defined so that positive alpha reduces the Bragg angle to the plane i.e. alpha=Thetain grazes the planes. if alpha!=0, one should restrict to rays which have small kx values, since otherwise the alpha rotation is not around the diffraction axis.
* R0: [0-1] Reflectivity. Overrides the computed Darwin reflectivity. Probably only useful for debugging.
* debye_waller_B: [AA^2] Debye-Waller temperature factor, M=B*(sin(theta)/lambda)^2*(2/3), default=silicon at room temp.
* crystal_type: [1] 1 => Mx_crystal_explicit: provide explicit real and imaginary form factor multipliers structure_factor_scale_r, structure_factor_scale_i; 2 => Mx_crystal_diamond: diamond; 3 => Mx_crystal_fcc: fcc; 4 => Mx_crystal_fcc: bcc
* form_factors: [str] File for X-ray form factors
* structure_factor_scale_r: [1] real form factor multiplier
* structure_factor_scale_i: [1] imaginary form factor multiplier
*
* %End
*******************************************************************************/
DEFINE COMPONENT Bragg_crystal
SETTING PARAMETERS (length=0.05, width=0.02, V=160.1826, string form_factors="FormFactors.txt", string material="Si.txt", alpha=0.0,
R0=0, debye_waller_B=0.4632, int crystal_type=1, int h=1, int k=1, int l=1,
structure_factor_scale_r=0.0, structure_factor_scale_i=0.0)
DEPENDENCY "-std=c99"
SHARE
%{
%include "perfect_crystals-lib"
%}
DECLARE
%{
int Z;
double rho;
double At;
double f_rel;
double f_nt;
t_Table m_t;
t_Table f0_t;
%}
INITIALIZE
%{
int status;
if (material){
if ((status=Table_Read(&(m_t),material,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(m_t.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
}else{
fprintf(stderr,"Error(%s): No material file specified\n",NAME_CURRENT_COMP);
}
if(form_factors){
if ((status=Table_Read(&(f0_t),form_factors,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
exit(-1);
}
}
%}
TRACE
%{
double E; // (keV) x-ray energy
double K; // length of k-vector
double kxu,kyu,kzu; // unit vector in the direction of k-vector.
double tin; // 'time' of intersection of ray with y=0 plane (which include the crystal surface)
double x_int,y_int,z_int; // intersection with the y=0 plane
double dist; // distance from position at t=0 to the y=0 plane
double f00, f0h, fp, fpp; // atomic form factors for Q=0 is (f00 + fp + i*fpp) and for Q= ha*+kb*+lc* it is (f0h + fp + i*fpp).
double Thetain; // (rad) angle between the crystal surface and the incident ray
double Theta0; // (rad) angle between the Bragg planes and the incident ray
double Thetah; // (rad) angle between the Bragg planes and the reflected ray
double Thetaout; // (rad) angle between the crystal surface and the reflected ray
double DeltaTheta0; // (rad) the center of the reflectivity curve is at asin(n*lambda/(2*d)) + DeltaTheta0
double Rpi, Rsig, R; // Reflectivity value calculated by DarwinReflectivity() function for each incoming photon
double x0,y0,z0,kx0,ky0,kz0,phi0,t0,Ex0,Ey0,Ez0,p0;
x0=x; y0=y; z0=z; kx0=kx; ky0=ky; kz0=kz; phi0=phi; t0=t; Ex0=Ex; Ey0=Ey; Ez0=Ez; p0=p;
/* get the photon's kvector and energy */
K=sqrt(kx*kx+ky*ky+kz*kz);
E = K2E*K; /* use built-in constants for consistency */
/* make unit vector in the direction of k :*/
kxu = kx; kyu = ky; kzu = kz;
NORM(kxu,kyu,kzu);
/* printf("incoming kx,ky,kz, Ex, Ey, Ez, k.E: %f %f %f %g %g %g %g\n", kx,ky,kz,Ex,Ey,Ez, kxu*Ex+kyu*Ey+kzu*Ez); */
/*intersection calculation*/
tin = -y/kyu;
if (tin>=0){
/* check whether our intersection lies within the boundaries of the crystal*/
x_int=x+kxu*tin;
y_int=y+kyu*tin;
z_int=z+kzu*tin;
if (fabs(x_int)<=width/2 && fabs(z_int)<=length/2){
dist=sqrt(SQR(x-x_int)+SQR(y-y_int)+SQR(z-z_int));
PROP_DL(dist); /* now the photon is on the crystal surface, ready to be reflected... */
SCATTER;
Thetain=fabs(asin(kyu)); /* k(x,y,z)u is a unit vector, the y component is sin(theta) */
double d=cbrt(V)/(sqrt(h*h+k*k+l*l));/*this is valid only for cubic structures*/
f00 = Z;
f0h = Table_Value(f0_t,1/(2*d),Z);
fp = Table_Value(m_t,E,1)-Z;
fpp = Table_Value(m_t,E,2);
double alpha1=alpha;
/* check for 3rd & 1st quadrant hits, backward hit from above or forward hit from below and reverse sense of alpha */
if( (ky<0 && kz<0) || (ky>0 && kz>0) ) alpha1=-alpha1;
Mx_DarwinReflectivity(&Rpi , &Thetah, &Theta0, &DeltaTheta0, f00, f0h, fp, fpp, V, alpha1, h, k, l,
debye_waller_B, E, Thetain,1, crystal_type, structure_factor_scale_r, structure_factor_scale_i
);
Mx_DarwinReflectivity(&Rsig, &Thetah, &Theta0, &DeltaTheta0, f00, f0h, fp, fpp, V, alpha1, h, k, l,
debye_waller_B, E, Thetain,2, crystal_type, structure_factor_scale_r, structure_factor_scale_i
);
double pi_x, pi_y, pi_z, sig_x, sig_y, sig_z;
double kx0=kx, ky0=ky, kz0=kz, Ex0=Ex, Ey0=Ey, Ez0=Ez;
/* sig_x,y,z is k(in) x surface_normal i.e. the direction of sigma polarization */
vec_prod_func(&sig_x , &sig_y , &sig_z , kx0, ky0, kz0, 0, -1, 0);
NORM(sig_x, sig_y, sig_z);
/* pi is a vector perpendicular to k_in and sig i.e. the direction of pi polarization incoming */
vec_prod_func(&pi_x, &pi_y, &pi_z, kx0, ky0, kz0, sig_x, sig_y, sig_z);
NORM(pi_x , pi_y , pi_z );
#ifdef MCDEBUG
printf("%s: Thetain: %.3f sigma: (%g, %g, %g) pi: (%g, %g, %g) \n", NAME_CURRENT_COMP,
Thetain*180/PI, sig_x, sig_y, sig_z, pi_x, pi_y, pi_z);
#endif
double sth=sin(Theta0+Thetah), cth=cos(Theta0+Thetah);
if(sig_x*pi_y*pi_z > 0) { /* backwards hit, rotate the other way */
sth=-sth;
}
double sx2=sig_x*sig_x, sy2=sig_y*sig_y, sz2=sig_z*sig_z, r2=sig_x*sig_x+sig_y*sig_y;
/* initialize a rotation matrix by the appropriate angle around the sigma axis, this from Mathematica RotationMatrix[] */
double m[3][3]={
sx2 + (cth*(sy2 + sx2*sz2))/r2,sig_x*sig_y - sig_z*sth + (cth*sig_x*sig_y*(-1 + sz2))/r2,sig_x*sig_z - cth*sig_x*sig_z + sig_y*sth,
sig_x*sig_y + sig_z*sth + (cth*sig_x*sig_y*(-1 + sz2))/r2,sy2 + (cth*(sx2 + sy2*sz2))/r2,sig_y*sig_z - cth*sig_y*sig_z - sig_x*sth,
sig_x*sig_z - cth*sig_x*sig_z - sig_y*sth,sig_y*sig_z - cth*sig_y*sig_z + sig_x*sth,cth*r2 + sz2
};
#ifdef MCDEBUG
printf("%s matrix=\n%12.3f %12.3f %12.3f\n%12.3f %12.3f %12.3f\n%12.3f %12.3f %12.3f\n", NAME_CURRENT_COMP,
m[0][0],m[0][1],m[0][2],m[1][0],m[1][1],m[1][2],m[2][0],m[2][1],m[2][2]
);
#endif
/* execute the rotation about the sigma vector */
kx=m[0][0]*kx0+m[0][1]*ky0+m[0][2]*kz0;
ky=m[1][0]*kx0+m[1][1]*ky0+m[1][2]*kz0;
kz=m[2][0]*kx0+m[2][1]*ky0+m[2][2]*kz0;
/* resolve incoming polarization into sig and pi bits, and scale by sqrt(reflectivity) which is amplitude scale */
double Esig=(Ex*sig_x+Ey*sig_y+Ez*sig_z), Epi=(Ex*pi_x+Ey*pi_y+Ez*pi_z);
if(Esig==0 && Epi==0) { /* someone didn't set the polarization direction; set it now to a random value and it will propagate */
double psi=rand01()*PI/2;
Esig=cos(psi); Epi=sin(psi);
}
Esig=Esig*sqrt(Rsig);
Epi=Epi*sqrt(Rpi);
R=Esig*Esig+Epi*Epi; /* projected reflectivity, squared back to intensity */
/* pi is now a vector perpendicular to k_out and sig i.e. the direction of pi polarization outgoing */
vec_prod_func(&pi_x, &pi_y, &pi_z, kx, ky, kz, sig_x, sig_y, sig_z);
NORM(pi_x , pi_y , pi_z );
/* a linear combination of these is still perpendicular to k, but has the correct polarization weighting */
Ex=Epi*pi_x+Esig*sig_x;
Ey=Epi*pi_y+Esig*sig_y;
Ez=Epi*pi_z+Esig*sig_z;
NORM(Ex, Ey, Ez);
#ifdef MCDEBUG
printf("%s: Rsig, Rpi, R, k0, k1, e0, e1: %g %g %g (%g, %g, %g) (%g, %g, %g) (%g, %g, %g) (%g, %g, %g)\n", NAME_CURRENT_COMP,
Rsig, Rpi, R,
kx0, ky0, kz0, kx, ky, kz, Ex0, Ey0, Ez0, Ex, Ey, Ez);
#endif
/* apply Darwin reflectivity if not is supplied from outside*/
if (!R0){
p*=R;
}else{
p*=R0;
}
/*catch dead rays*/
if (p==0) ABSORB;
} else {
//RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);//
x=x0; y=y0; z=z0; kx=kx0; ky=ky0; kz=kz0; phi=phi0; t=t0; Ex=Ex0; Ey=Ey0; Ez=Ez0; p=p0;
}
}
%}
MCDISPLAY
%{
rectangle("xz",0,0,0,width,length);
%}
END
|