File: Bragg_crystal.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (261 lines) | stat: -rw-r--r-- 13,072 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Bragg_crystal
* 
* %Identification
* Written by: Marcus H Mendenhall, NIST <marcus.mendenhall@nist.gov>
* Based on: Perfect_crystal.comp written by Anette Vickery, Andrea Prodi, Erik Knudsen
* Date: December 1, 2016
* Version: 2.1
* Origin: NIST, Gaithersburg, MD, USA
*
* Perfect, reflecting crystal with common cubic structures (diamond, fcc, or bcc, and others if symmetry form factor multipliers provided explicitly)
*
* %Description
* Bragg_crystal.comp supercedes Perfect_Crystal.comp with major edits and corrections.
*
* For details see:
* The optics of focusing bent-crystal monochromators on X-ray powder diffractometers with application to lattice parameter determination and microstructure analysis, 
* Marcus H. Mendenhall,* David Black and James P. Cline, J. Appl. Cryst. (2019). 52, https://doi.org/10.1107/S1600576719010951
*
* Reads atomic formfactors from a data input file.
*
* The crystal code reflects ray in an ideal geometry, i.e. does not include surface imperfections or mosaicity.
* The crystal planes from which the reflection is made lies in the X-Z plane on the unbent crystal rotated
* by an angle alpha about the Y axis with respect to the crystal surface.
*
* The crystal itself is set in the X-Z plane positioned such that the long axis of the crystal surface coincides with
* the Z-axis, with its normam pointing in the positve Y-direction. The angle between the Bragg planes and the crystal surface is alpha
*
* This code has been validated against both experimental data
* (2 channel-cut 3-bounce Si 440 crystals together in non-dispersive mode, at Cu kalpha)
* and against theoretical rocking rocking curves from XOP for Si220 at Sc kalpha and Si440 at Cu kalpha.
*
* Changelog:  
* - Off-axis rays fixed June 2015 so axial divergence corrections are right
* - Inclusion of polarization and temperature dependence (via Debye-Waller factor), June-September 2015
* - Errors in complex arithmetic in DarwinReflectivity2 corrected, September 2015, MHM
* - Symmetries for form factors corrected 20150924
* - Rotation code updated to use exact DarwinReflectivity Theta0, Thetah so answer is right even if alpha != 0. 20151009 MHM
* - Results for (1,1,1) etc. with complex form factor made to agree with XOP. December 1st, 2016
*
* Notation follows Tadashi Matsushita and Hiro-O Hashizume, X-RAY MONOCHROMATORS. Handbook on Synchrotron Radiation,North-Holland Publishing Company, 1:263–274, 1983.
*
* Non-copyright notice:
* Contributed by the National Institute of Standards and Technology; not subject to copyright in the United States. 
* This is not an official contribution, in that the results are in no way certified by NIST.
*
* Example: Bragg_crystal(
*       length=0.05, width=0.02, V=160.1826, h=1, k=1, l=1, alpha=0)
*
* %Parameters
* INPUT PARAMETERS
* width:    [m]    x width of the crystal.
* length:   [m]    z depth (length) of the crystal.
* material: [str]  Si, Ge (maybe also GaAs?)
* V:        [AA^3] Unit cell volume
* h:        [1]    Miller index of reflection
* k:        [1]    Miller index of reflection
* l:        [1]    Miller index of reflection
* alpha:    [rad]  Asymmetry angle (alpha=0 for symmetric reflection, ie the Bragg planes are parallel to the crystal surface). alpha is defined so that positive alpha reduces the Bragg angle to the plane i.e. alpha=Thetain grazes the planes. if alpha!=0,  one should restrict to rays which have small kx values, since otherwise the alpha rotation is not around the diffraction axis.
* R0:       [0-1]  Reflectivity. Overrides the computed Darwin reflectivity. Probably only useful for debugging.
* debye_waller_B: [AA^2] Debye-Waller temperature factor, M=B*(sin(theta)/lambda)^2*(2/3), default=silicon at room temp.
* crystal_type: [1] 1 => Mx_crystal_explicit: provide explicit real and imaginary form factor multipliers structure_factor_scale_r, structure_factor_scale_i; 2 => Mx_crystal_diamond: diamond; 3 => Mx_crystal_fcc: fcc; 4 => Mx_crystal_fcc: bcc
* form_factors:             [str] File for X-ray form factors
* structure_factor_scale_r: [1]   real      form factor multiplier
* structure_factor_scale_i: [1]   imaginary form factor multiplier
*
* %End
*******************************************************************************/

DEFINE COMPONENT Bragg_crystal
SETTING PARAMETERS (length=0.05, width=0.02, V=160.1826, string form_factors="FormFactors.txt", string material="Si.txt", alpha=0.0,
        R0=0, debye_waller_B=0.4632, int crystal_type=1, int h=1, int k=1, int l=1,
        structure_factor_scale_r=0.0, structure_factor_scale_i=0.0)
DEPENDENCY "-std=c99"

SHARE
%{
    %include "perfect_crystals-lib"
%}

DECLARE
%{
  int Z;
  double rho;
  double At;
  double f_rel;
  double f_nt;
  t_Table m_t;
  t_Table f0_t;
%}

INITIALIZE
%{
    int status;
    if (material){
        if ((status=Table_Read(&(m_t),material,0))==-1){
            fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material);
            exit(-1);
        }
        char **header_parsed;
        header_parsed=Table_ParseHeader(m_t.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
        if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
        if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
        if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
    }else{
        fprintf(stderr,"Error(%s): No material file specified\n",NAME_CURRENT_COMP);
    }
    if(form_factors){
        if ((status=Table_Read(&(f0_t),form_factors,0))==-1){
            fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
            exit(-1);
        }
    }
%}

TRACE
%{
    double E;				// (keV) x-ray energy
    double K; 				// length of k-vector
    double kxu,kyu,kzu;			// unit vector in the direction of k-vector.
    double tin;				// 'time' of intersection of ray with y=0 plane (which include the crystal surface)
    double x_int,y_int,z_int;		// intersection with the y=0 plane
    double dist;				// distance from position at t=0 to the y=0 plane
    double f00, f0h, fp, fpp;		// atomic form factors for Q=0 is (f00 + fp + i*fpp) and for Q= ha*+kb*+lc* it is (f0h + fp + i*fpp).
    double Thetain;			// (rad) angle between the crystal surface and the incident ray
    double Theta0;			// (rad) angle between the Bragg planes and the incident ray
    double Thetah;			// (rad) angle between the Bragg planes and the reflected ray
    double Thetaout;			// (rad) angle between the crystal surface and the reflected ray
    double DeltaTheta0;			// (rad) the center of the reflectivity curve is at asin(n*lambda/(2*d)) + DeltaTheta0
    double Rpi, Rsig, R;          // Reflectivity value calculated by DarwinReflectivity() function for each incoming photon
    double x0,y0,z0,kx0,ky0,kz0,phi0,t0,Ex0,Ey0,Ez0,p0;
    
    x0=x; y0=y; z0=z; kx0=kx; ky0=ky; kz0=kz; phi0=phi; t0=t; Ex0=Ex; Ey0=Ey; Ez0=Ez; p0=p;
    /* get the photon's kvector and energy */
    K=sqrt(kx*kx+ky*ky+kz*kz);
    E = K2E*K; /* use built-in constants for consistency */
    /* make unit vector in the direction of k :*/
    kxu = kx; kyu = ky; kzu = kz;
    NORM(kxu,kyu,kzu);
    /* printf("incoming kx,ky,kz, Ex, Ey, Ez, k.E: %f %f %f %g %g %g %g\n", kx,ky,kz,Ex,Ey,Ez, kxu*Ex+kyu*Ey+kzu*Ez); */
    
    /*intersection calculation*/
    tin = -y/kyu;
    if (tin>=0){
        /* check whether our intersection lies within the boundaries of the crystal*/
        x_int=x+kxu*tin;
        y_int=y+kyu*tin;
        z_int=z+kzu*tin;
        
        if (fabs(x_int)<=width/2 && fabs(z_int)<=length/2){
            dist=sqrt(SQR(x-x_int)+SQR(y-y_int)+SQR(z-z_int));
            PROP_DL(dist); 			/* now the photon is on the crystal surface, ready to be reflected... */
            SCATTER;
            Thetain=fabs(asin(kyu)); /* k(x,y,z)u is a unit vector, the y component is sin(theta) */
            double d=cbrt(V)/(sqrt(h*h+k*k+l*l));/*this is valid only for cubic structures*/
            f00 = Z;
            f0h = Table_Value(f0_t,1/(2*d),Z);
            fp  = Table_Value(m_t,E,1)-Z;
            fpp = Table_Value(m_t,E,2);

            double alpha1=alpha;
            /* check for 3rd & 1st quadrant hits, backward hit from above or forward hit from below and reverse sense of alpha */
            if( (ky<0 && kz<0) || (ky>0 && kz>0) ) alpha1=-alpha1;
            Mx_DarwinReflectivity(&Rpi , &Thetah, &Theta0, &DeltaTheta0, f00, f0h, fp, fpp, V, alpha1, h, k, l,
                debye_waller_B, E, Thetain,1, crystal_type, structure_factor_scale_r, structure_factor_scale_i
            );
            Mx_DarwinReflectivity(&Rsig, &Thetah, &Theta0, &DeltaTheta0, f00, f0h, fp, fpp, V, alpha1, h, k, l,
                debye_waller_B, E, Thetain,2, crystal_type, structure_factor_scale_r, structure_factor_scale_i
            );

            double pi_x, pi_y, pi_z, sig_x, sig_y, sig_z;
            double kx0=kx, ky0=ky, kz0=kz, Ex0=Ex, Ey0=Ey, Ez0=Ez;

            /* sig_x,y,z is k(in) x surface_normal i.e. the direction of sigma polarization */
            vec_prod_func(&sig_x , &sig_y , &sig_z , kx0, ky0, kz0, 0, -1, 0);
            NORM(sig_x, sig_y, sig_z);
            /* pi is a vector perpendicular to k_in and sig i.e. the direction of pi polarization incoming */
            vec_prod_func(&pi_x, &pi_y, &pi_z, kx0, ky0, kz0, sig_x, sig_y, sig_z);
            NORM(pi_x , pi_y , pi_z );

#ifdef MCDEBUG
            printf("%s: Thetain: %.3f sigma: (%g, %g, %g) pi: (%g, %g, %g) \n", NAME_CURRENT_COMP,
                   Thetain*180/PI, sig_x, sig_y, sig_z, pi_x, pi_y, pi_z);
#endif

            double sth=sin(Theta0+Thetah), cth=cos(Theta0+Thetah);
            if(sig_x*pi_y*pi_z > 0) { /* backwards hit, rotate the other way */
                sth=-sth;
            }
            double sx2=sig_x*sig_x, sy2=sig_y*sig_y, sz2=sig_z*sig_z, r2=sig_x*sig_x+sig_y*sig_y;

            /* initialize a rotation matrix by the appropriate angle around the sigma axis, this from Mathematica RotationMatrix[] */
            double m[3][3]={
                sx2 + (cth*(sy2 + sx2*sz2))/r2,sig_x*sig_y - sig_z*sth + (cth*sig_x*sig_y*(-1 + sz2))/r2,sig_x*sig_z - cth*sig_x*sig_z + sig_y*sth,
                sig_x*sig_y + sig_z*sth + (cth*sig_x*sig_y*(-1 + sz2))/r2,sy2 + (cth*(sx2 + sy2*sz2))/r2,sig_y*sig_z - cth*sig_y*sig_z - sig_x*sth,
                sig_x*sig_z - cth*sig_x*sig_z - sig_y*sth,sig_y*sig_z - cth*sig_y*sig_z + sig_x*sth,cth*r2 + sz2
            };

#ifdef MCDEBUG
            printf("%s matrix=\n%12.3f %12.3f %12.3f\n%12.3f %12.3f %12.3f\n%12.3f %12.3f %12.3f\n", NAME_CURRENT_COMP,
                m[0][0],m[0][1],m[0][2],m[1][0],m[1][1],m[1][2],m[2][0],m[2][1],m[2][2]
            );
#endif

            /* execute the rotation about the sigma vector */
            kx=m[0][0]*kx0+m[0][1]*ky0+m[0][2]*kz0;
            ky=m[1][0]*kx0+m[1][1]*ky0+m[1][2]*kz0;
            kz=m[2][0]*kx0+m[2][1]*ky0+m[2][2]*kz0;

            /* resolve incoming polarization into sig and pi bits, and scale by sqrt(reflectivity) which is amplitude scale */
            double Esig=(Ex*sig_x+Ey*sig_y+Ez*sig_z), Epi=(Ex*pi_x+Ey*pi_y+Ez*pi_z);
            if(Esig==0 && Epi==0) { /* someone didn't set the polarization direction; set it now to a random value and it will propagate */
                double psi=rand01()*PI/2;
                Esig=cos(psi); Epi=sin(psi);
            }
            Esig=Esig*sqrt(Rsig);
            Epi=Epi*sqrt(Rpi);
            R=Esig*Esig+Epi*Epi; /* projected reflectivity, squared back to intensity */

            /* pi is now a vector perpendicular to k_out and sig i.e. the direction of pi polarization outgoing */
            vec_prod_func(&pi_x, &pi_y, &pi_z, kx, ky, kz, sig_x, sig_y, sig_z);
            NORM(pi_x , pi_y , pi_z );

            /* a linear combination of these is still perpendicular to k, but has the correct polarization weighting */
            Ex=Epi*pi_x+Esig*sig_x;
            Ey=Epi*pi_y+Esig*sig_y;
            Ez=Epi*pi_z+Esig*sig_z;
            NORM(Ex, Ey, Ez);
#ifdef MCDEBUG
            printf("%s: Rsig, Rpi, R, k0, k1, e0, e1: %g %g %g (%g, %g, %g) (%g, %g, %g) (%g, %g, %g) (%g, %g, %g)\n", NAME_CURRENT_COMP,
                   Rsig,  Rpi, R,
                   kx0, ky0, kz0, kx, ky, kz, Ex0, Ey0, Ez0, Ex, Ey, Ez);
#endif
            /* apply Darwin reflectivity if not is supplied from outside*/
            if (!R0){
                p*=R;
            }else{
                p*=R0;
            }
            /*catch dead rays*/
            if (p==0) ABSORB;
        } else {
	  //RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);//
	  x=x0; y=y0; z=z0; kx=kx0; ky=ky0; kz=kz0; phi=phi0; t=t0; Ex=Ex0; Ey=Ey0; Ez=Ez0; p=p0;
        }
    }
%}

MCDISPLAY
%{
    
    rectangle("xz",0,0,0,width,length);
%}

END