1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Filter
*
* %Identification
* Written by: Erik Knudsen
* Date: Jan 24, 2011
* Origin: DTU Physics
* Release: McXtrace 1.1
*
* Block of an attenuating material
*
* %Description
* A chunk of attenuating material. Attenuation is computed through
* the effective length travelled within the material.
* No scattering is modelled at present.
*
* Filter shape may be a cylinder, a sphere, a box or any other shape.
* box/plate: xwidth x yheight x zdepth
* cylinder: radius x yheight (along Y axis)
* sphere: radius
* any shape: geometry=OFF/PLY_file
*
* Example: Filter(material_datafile="Ge.txt",
* geometry="wire.ply",xwidth=0.02,yheight=0,zdepth=0)
*
* %Parameters
* INPUT PARAMETERS
*
* xwidth: [m] Width of block.
* yheight: [m] Height of block.
* zdepth: [m] Thickness of block.
* radius: [m] Radius of cylinder or sphere.
* material_datafile: [str] File where the material parameters for the filter may be found. Format is similar to what may be found off the NIST website. [Be.txt]
* geometry: [str] File containing the polygon definition of a general shape object. When xwidth is also given, the object is rescaled accordingly (OFF/PLY)
* fixed_delta:[0/1] Use a fixed delta to compute refraction - useful for debugging.
* refraction: [0/1] If nonzero, refraction is enabled.
*
* %Link
* Meshlab https://www.meshlab.net/
* %Link
* Geomview and Object File Format (OFF) <http://www.geomview.org>
* %Link
* Java version of Geomview (display only) jroff.jar <http://www.holmes3d.net/graphics/roffview/>
* %Link
* qhull <http://qhull.org>
* %Linkink
* Powercrust https://www.cs.ucdavis.edu/~amenta/powercrust.html
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %End
*******************************************************************************/
DEFINE COMPONENT Filter
SETTING PARAMETERS (refraction=1,fixed_delta=0,string material_datafile="Be.txt",
string geometry=0,xwidth=0,yheight=0,zdepth=0,radius=0)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "read_table-lib"
%include "interoff-lib"
#ifndef SHAPES_T
#define SHAPES_T
enum shapes_t {NONE=-1,SPHERE, CYLINDER, CUBE, ELLIPSOID, ANY};
#endif
#pragma acc routine
int filter_refract(double *kx, double *ky, double *kz, double nx, double ny, double nz, double delta0, double delta1){
const double n2=scalar_prod(nx,ny,nz, nx,ny,nz);
const double k=sqrt(scalar_prod(*kx,*ky,*kz, *kx,*ky,*kz));
const double nr=(1.0-delta0)/(1.0-delta1);
double kxi=*kx;
double kyi=*ky;
double kzi=*kz;
double s;
NORM(kxi,kyi,kzi);
if(n2!=1){
NORM(nx,ny,nz);
}
//kinv=1.0/sqrt(k2);
s=scalar_prod(nx,ny,nz,kxi,kyi,kzi);
if(s>0){
/*n points in the direction of k - i.e. into material 1, so use -n instead*/
double sinth2=nr*nr*(1.0-(s)*(s));
*kx=nr* (kxi) - (nr*(-s)+sqrt(1.0-sinth2))*(-nx);
*ky=nr* (kyi) - (nr*(-s)+sqrt(1.0-sinth2))*(-ny);
*kz=nr* (kzi) - (nr*(-s)+sqrt(1.0-sinth2))*(-nz);
} else {
/*n points oppsite to k - i.e. out of material 1, into mat. 0*/
double sinth2=nr*nr*(1.0-s*s);
*kx=nr* (kxi) - (nr*s+sqrt(1.0-sinth2))*nx;
*ky=nr* (kyi) - (nr*s+sqrt(1.0-sinth2))*ny;
*kz=nr* (kzi) - (nr*s+sqrt(1.0-sinth2))*nz;
}
*kx *=k;
*ky *=k;
*kz *=k;
return 1;
}
%}
DECLARE
%{
int Z;
int mu_c;
double Ar;
double rho;
double delta_prefactor;
double betafact;
t_Table table;
int shape;
off_struct offdata;
int filter_row;
%}
INITIALIZE
%{
int status=0;
/*if geometry is specified - try to read the off/ply file and set shape*/
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
if (off_init(geometry, xwidth, yheight, zdepth, 0, &(offdata)))
shape=ANY;
} else if (radius && yheight){
shape=CYLINDER;
} else if (radius){
shape=SPHERE;
} else if (xwidth && yheight && zdepth){
shape=CUBE;
} else {
fprintf(stderr,"Error (%s): Filter has zero effective volume\n",NAME_CURRENT_COMP);
exit(-1);
}
if ( (status=Table_Read(&(table),material_datafile,0))==-1){
fprintf(stderr,"Error (%s): Could not parse file \"%s\".\n",NAME_CURRENT_COMP,material_datafile);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(table.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if (header_parsed[0]){Z=strtol(header_parsed[0],NULL,10);}
if (header_parsed[1]){Ar=strtod(header_parsed[1],NULL);}
if (header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
else{fprintf(stderr,"Warning(%s): %s not found in header of %s, set to 1\n",NAME_CURRENT_COMP,"rho",material_datafile);rho=1;}
/*If we are using a three column format assume only attenuation
I.e. set the delta prefactor to 0*/
if (table.columns==3) {
mu_c=1;
delta_prefactor=0;
} else {
mu_c=5;
delta_prefactor= NA*(rho*1e-24)/Ar * 2.0*M_PI*RE;
}
if(10*(double)mcget_ncount()>(table.max_x-table.min_x)/(table.step_x)){
/*it is probably worth Rebinning*/
printf("%s: Rebinning material data (%s) for faster tracing...",NAME_CURRENT_COMP,material_datafile);
Table_Rebin(&(table));
printf("done\n");
}
%}
TRACE
%{
double alpha,e,k,mu,mu0,delta,beta,f;
double l0,l1,nx,ny,nz;
int i,status=0;
if (shape==CYLINDER) {
status=cylinder_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius,yheight);
} else if (shape==SPHERE) {
status=sphere_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius);
} else if (shape==CUBE) {
status=box_intersect(&l0,&l1,x,y,z,kx,ky,kz,xwidth,yheight,zdepth);
} else if (shape==ANY) {
status = off_x_intersect(&l0, &l1, NULL, NULL, x, y, z, kx, ky, kz, offdata );
}
if(status){
PROP_DL(l0);
l1-=l0;
k=sqrt(kx*kx+ky*ky+kz*kz);
e=k*K2E;
/*Material's Number Density of Electrons [e/A^3] incl f' scattering length correction*/
f=Table_Value(table,e,1);
delta = (fixed_delta ? fixed_delta : f/(k*k) * delta_prefactor);
mu0=Table_Value(table,e,mu_c)*rho*1e2;
beta = mu0/(2*k);
/*change direction of ray due to refraction*/
if(refraction){
switch (shape){
case CUBE:
if( fabs(x-xwidth*0.5)<FLT_EPSILON || fabs(x+xwidth*0.5)<FLT_EPSILON ){
nx=1.0;ny=0.0;nz=0.0;
}else if( fabs(y-yheight*0.5)<FLT_EPSILON || fabs(y+yheight*0.5)<FLT_EPSILON ){
nx=0.0;ny=1.0;nz=0.0;
}else if( fabs(z-zdepth*0.5)<FLT_EPSILON || fabs(z+zdepth*0.5)<FLT_EPSILON ){
nx=0.0;ny=0.0;nz=1.0;
};
break;
default:
1;
}
status=filter_refract(&kx,&ky,&kz,nx,ny,nz,0.0,delta);
SCATTER;
/*change of direction - we must now intersect again*/
if (shape==CUBE) {
status=box_intersect(&l0,&l1,x,y,z,kx,ky,kz,xwidth,yheight,zdepth);
}else if (shape==ANY){
status = off_x_intersect(&l0, &l1, NULL, NULL, x, y, z, kx, ky, kz, offdata );
}
}
/*change k ' we're now inside some material*/
kx*=1-delta;
ky*=1-delta;
kz*=1-delta;
/*propagate to next intersection with filter (assumed to be exit)*/
p*=exp(-mu0*l1);
SCATTER;
PROP_DL(l1);
/*change direction of ray due to refraction*/
if(refraction){
switch (shape){
case CUBE:
if( fabs(x-xwidth*0.5)<FLT_EPSILON || fabs(x+xwidth*0.5)<FLT_EPSILON ){
nx=1.0;ny=0.0;nz=0.0;
}else if( fabs(y-yheight*0.5)<FLT_EPSILON || fabs(y+yheight*0.5)<FLT_EPSILON ){
nx=0.0;ny=1.0;nz=0.0;
}else if( fabs(z-zdepth*0.5)<FLT_EPSILON || fabs(z+zdepth*0.5)<FLT_EPSILON ){
nx=0.0;ny=0.0;nz=1.0;
};
break;
default:
1;
}
SCATTER;
status=filter_refract(&kx,&ky,&kz,nx,ny,nz,delta,0.0);
}
/*correct for optical path length through the material*/
/*change k back*/
kx/=1-delta;
ky/=1-delta;
kz/=1-delta;
}
%}
FINALLY
%{
Table_Free(&(table));
%}
MCDISPLAY
%{
if (shape==CUBE){
box(0,0,0,xwidth,yheight,zdepth,0, 0, 1, 0);
} else if (shape==CYLINDER){
circle("xy",0, yheight/2.0,0,radius);
circle("xy",0,-yheight/2.0,0,radius);
line( radius,yheight/2.0,0, radius,-yheight/2.0,0);
line(-radius,yheight/2.0,0,-radius,-yheight/2.0,0);
line(0,yheight/2.0, radius, 0,-yheight/2.0, radius);
line(0,yheight/2.0,-radius, 0,-yheight/2.0,-radius);
} else if (shape==SPHERE){
circle("xy",0,0,0,radius);
circle("xz",0,0,0,radius);
circle("yz",0,0,0,radius);
} else if (shape == ANY) { /* OFF file */
off_display(offdata);
}
%}
END
|