1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Grating_trans
*
* %Identification
*
* Written by: Erik B Knudsen (erkn@fysik.dtu.dk)
* Date: December 2016
* Version: 1.0
* Release: McXtrace 1.4
* Origin: DTU Physics
*
* Transmission grating
*
* %Description
* Model of a 1D rectangular transmission grating based on the theory developed in Schnopper et. al., Applied Optics, 1977.
* The grating lines are assumed to be vertical. Within each period a fraction gamma is the "open" fraction.
* (I.e. 1 is completely open). At present only absorption in the substrate (modelled by the thickness sdepth)
* is included.
*
* This component is currently undergoing validation.
*
* Example: Grating_trans(
* xwidth=25e-3, yheight=25e-3, gamma=0.4, period=2000e-10, zdepth=5100e-10, max_order=3, material="Au.txt")
*
* %Parameters
* Input parameters:
* period: [m] Distance between grating grooves.
* zdepth: [m] Depth of grooves.
* gamma: [0-1] Ratio between groove and period aka duty cycle. 1 means fully open.
* sdepth: [m] Thickness of substrate. The default is to have no substrate - i.e. rods.
* xwidth: [m] Width of the grating. Defines how many lines there are in total.
* yheight: [m] Height of the grating.
* material: [str] Data file containing the material from which the grating is made.
* substrate: [str] Data file containing material data for the substrate.
* fixed_delta:[0/1] Set delta to the given constant. Useful for debugging.
* max_order: [1] Maximum order to diffract
*
* %End
*******************************************************************************/
DEFINE COMPONENT Grating_trans
SETTING PARAMETERS (xwidth=1e-3, yheight=1e-3, period=1e-6,gamma=0.5,zdepth=1e-6,sdepth=0, string material="Au.txt",
string substrate="",int max_order=2,fixed_delta=0)
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
int Z;
int mu_c;
double Ar;
double rho;
double delta_prefactor;
t_Table table;
double srho;
int smu_c;
t_Table stable;
int order;
%}
INITIALIZE
%{
int status;
if ( xwidth==0 || yheight==0){
fprintf(stderr,"Error (%s): Grating has 0 area.\n",NAME_CURRENT_COMP);
exit(-1);
}
if(zdepth==0){
fprintf(stderr,"Error (%s): Grating has no grooves (zdepth==0).\n",NAME_CURRENT_COMP);
exit(-1);
}
/*check if material datafiles are present - if so load them*/
if ( (status=Table_Read(&(table),material,0))==-1){
fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",material,NAME_CURRENT_COMP);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(table.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if (header_parsed[0]){Z=strtol(header_parsed[0],NULL,10);}
if (header_parsed[1]){Ar=strtod(header_parsed[1],NULL);}
if (header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
else{fprintf(stderr,"Warning(%s): %s not found in header of %s, set to 1\n",NAME_CURRENT_COMP,"rho",material);rho=1;}
/*which columns holds the mus*/
mu_c=5;
if (table.columns==3) mu_c=1;
delta_prefactor= NA*(rho*1e-24)/Ar * 2.0*M_PI*RE;
/*read substrate datafile if present*/
if ( substrate && strlen(substrate)){
if ((status=Table_Read(&(stable),substrate,0))==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\".\n",NAME_CURRENT_COMP,material);
exit(-1);
}
header_parsed=Table_ParseHeader(stable.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if (header_parsed[2]){srho=strtod(header_parsed[2],NULL);}
smu_c=5;
if(stable.columns==3) smu_c=1;
}
%}
TRACE
%{
double e,k,f,delta,beta,mu0,smu0,pmul,order_factor,theta,order_likelihood;
double thx,thy,period_eff,zdepth_eff;
int M;
//order;
PROP_Z0;
if (x<-xwidth*0.5 || x>xwidth*0.5 || y<-yheight*0.5 || y>yheight*0.5){
RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
}else{
/*get the index of refraction*/
k=sqrt(kx*kx+ky*ky+kz*kz);
e=k*K2E;
/*Material's Number Density of Electrons [e/A^3] incl f' scattering length correction*/
/*We have reparametrized e as log(e) for a more practical constant step table.*/
f=Table_Value(table,e,1);
delta = (fixed_delta ? fixed_delta : f/(k*k) * delta_prefactor);
mu0=Table_Value(table,e,mu_c)*rho*1e2;
beta = mu0/(2*k*1e10);
/*pick an order according the relative intensity as given by Schnopper*/
/* correct the period for horizontal angle*/
thx=atan(fabs(kx/kz));
period_eff=cos(thx)*period;
M=xwidth/period_eff;
order = floor(rand01()*(max_order*2+1))-max_order;
/* n_m(q)/N_0(q)=([sin(Mmpi)/Msin(mpi)]^2 [sin( (a/d)mpi)/mpi]^2 [1+exp(-2qzk)-2exp(-qzk)cos(qzdelta)]*/
/* M=number of wires in the grating,
* d grating spacing (period)
* a width of grating opening (duty-cycle)
* z the thickness of grating wire
* k imaginary part of refr index
* n=1-delta real part of refr index
* q wavenumber.
*/
/* correct the period for horizontal angle*/
thx=atan(fabs(kx/kz));
period_eff=cos(thx)*period;
M=xwidth/period_eff;
double tot=0;
int i;
for (i=0;i<max_order;i++){
if (i){
order_factor=pow( sin(gamma*i*M_PI)/(i*M_PI),2.0);
order_likelihood=order_factor*(1+exp(-2.0*k*1e10*zdepth*beta) - 2.0*exp(-k*1e10*zdepth*beta)*cos(k*1e10*zdepth*delta));
}else{
order_likelihood=gamma*gamma + (1-gamma)*(1-gamma)*exp(-2.0*k*1e10*zdepth*beta) - 2.0*gamma*(1-gamma)*exp(-k*1e10*zdepth*beta)*cos(k*1e10*zdepth*delta);
}
tot+=order_likelihood;
}
/* correct zdepth for vertical angle*/
thy=atan(fabs(ky/kz));
zdepth_eff=zdepth/cos(thy);
if (order){
order_factor=pow( sin(gamma*order*M_PI)/(order*M_PI),2.0);
order_likelihood=order_factor*(1+exp(-2.0*k*1e10*zdepth_eff*beta) - 2.0*exp(-k*1e10*zdepth_eff*beta)*cos(k*1e10*zdepth_eff*delta));
}else{
order_likelihood=gamma*gamma + (1-gamma)*(1-gamma)*exp(-2.0*k*1e10*zdepth_eff*beta) - 2.0*gamma*(1-gamma)*exp(-k*1e10*zdepth_eff*beta)*cos(k*1e10*zdepth_eff*delta);
}
double fmc;
fmc=1.0/(max_order*2+1);
pmul=order_likelihood/fmc;
/*Pick an angle centered on the order*/
theta=order*2*M_PI/(k*1e10*period_eff);/*the 1e10 factor because k is in AA^-1 and period is in m*/
/* we should rotate around an axis perpendicular to k and in yz-plane*/
/*i.e. (ay * ky + az*kz ) = 0 && ay>0 => Without loss of gen. ay=1 => az= -ky/kz*/
double az;
az=-ky/kz;
/*change direction*/
rotate(kx,ky,kz, kx,ky,kz, theta, 0,1,az);
/*do absorption according to mean absorption coefficient in the "slab",
remembering we can be at an angle. Just use the angle theta.*/
smu0=Table_Value(stable,e,smu_c)*srho*1e2;
p*=pmul*exp(-smu0*(sdepth)/cos(theta))*exp(-mu0*(zdepth*(1-gamma)));
SCATTER;
}
%}
MCDISPLAY
%{
int i;
rectangle("xy", 0,0,-(sdepth)/2.0, xwidth,yheight);
rectangle("xy", 0,0, (sdepth)/2.0, xwidth,yheight);
for (i=-1;i<2;i++){
box(period/4.0+i*period,0, sdepth/2.0 + zdepth/2.0, period/2.0, yheight, zdepth,0, 0, 1, 0);
box(-3*period/4.0+ i*period,0, sdepth/2.0 + zdepth/2.0, period/2.0, yheight, zdepth,0, 0, 1, 0);
}
%}
END
|