1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*******************************************************************************
*
* McXtrace, x-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Lens_parab
*
* %Identification
* Written by: Jana Baltser and Erik Knudsen
* Date: August 2010, modified July 2011
* Version: 1.0
* Release: McXtrace 0.1
* Origin: NBI
*
* X-ray compound refractive lens (CRL) with a profile of the parabola
*
* %Description
* A simple X-ray compound refractive lens (CRL) with a profile of the parabola in rotation simulates the photons' movement on passing through it. The CRL focuses in 2D
*
* Example: Lens_parab(material_datafile = "Be.txt", r=200e-6, r_ap=0.5e-3, d=50e-6, N=16)
*
* %Parameters
* Input parameters:
* r: [m] Radius of curvature (circular approximation at the tip of the profile).
* r_ap: [m] Radius of circular aperture, which also defines the depth of the lens profile.
* d: [m] Distance between two surfaces of the lens along the propagation axis.
* N: [m] Number of single lenses in a stack.
* rough_xy: [rad] RMS value of random slope error along x and y.
* rough_z: [rad] RMS value of random slope error along z.
* material_datafile: [str] Datafile containing f1 constants
*
* %End
*******************************************************************************/
DEFINE COMPONENT Lens_parab
SETTING PARAMETERS (string material_datafile="Be.txt", r=0.5e-3, r_ap=1.4e-3, d=.1e-3, int N=1, rough_z=0, rough_xy=0)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "read_table-lib"
struct incom_parab {
double coord[3];
double k[3];
};
#pragma acc routine seq
struct incom_parab intersection_lens_parab(struct incom_parab a, double *b, double roughness_xy,double roughness_z){
struct incom_parab result;//={a.coord[0],a.coord[1],a.coord[2],a.k[0],a.k[1],a.k[2]};
int i;
double A,B,C,D,rr;
double t[2],p[3],knorm[3],k[3],pos1_tmp[3],pos_tmp[3];
double nxn,nyn,nzn,Nx,Ny,Nz,NORM,Knorm;
double cos_theta,cos_theta1,Arg,Arg1,s,q;
double k_new[3],k_new1[3],M,Sign,dd;
double yh,xw;
double tx,ty,tz,tnorm,txn,tyn,tzn;
double v,w;
for(i=0;i<=2;i++){
result.k[i]=k[i]=a.k[i];
result.coord[i]=p[i]=a.coord[i];
}
Knorm=sqrt(k[0]*k[0]+k[1]*k[1]+k[2]*k[2]);
knorm[0]=k[0]/Knorm;
knorm[1]=k[1]/Knorm;
knorm[2]=k[2]/Knorm;
rr=b[0];
yh=b[1];
xw=b[2];
dd=b[3];
M=b[4];
Sign=b[5];
A=knorm[0]*knorm[0]+knorm[1]*knorm[1];
B= 2.0*(p[0]*knorm[0]+p[1]*knorm[1] - Sign*rr*knorm[2]);
C=p[0]*p[0]+p[1]*p[1] - Sign*2*rr*p[2] + Sign*rr*2*dd;
D=B*B-4.0*A*C;
if (D<0) { /*ray does not intersect the parabola*/
return result;
}
if (A==0){ /*incident k-vector is parallel (exactly) to the z-axis. Thus, the eq. becomes linear*/
if(B==0){
return result;
}
t[0]=-C/B;
for(i=0;i<=2;i++){
result.coord[i]=p[i]+t[0]*knorm[i];
}
} else {
double qq;
if (B<0){
qq=-0.5*(B-sqrt(D));
}else{
qq=-0.5*(B+sqrt(D));
}
t[0]=qq/A;
t[1]=C/qq;
for(i=0;i<=2;i++){
pos_tmp[i]=p[i]+t[0]*knorm[i];
pos1_tmp[i]=p[i]+t[1]*knorm[i];
}
if ( fabs(pos_tmp[1])<=fabs(yh/2) && fabs(pos_tmp[0])<=fabs(xw/2) ){
for(i=0;i<=2;i++){
result.coord[i]=pos_tmp[i];
}
} else if ( fabs(pos1_tmp[1])<=fabs(yh/2) && fabs(pos1_tmp[0])<=fabs(xw/2) ){
for(i=0;i<=2;i++){
result.coord[i]=pos1_tmp[i];
}
} else return result;
}
/* Calculating tangential vector */
if (result.coord[0]==0 && result.coord[1]==0){ // incoming ray is along the axis, so it does not refract
k_new[0]=k[0];
k_new[1]=k[1];
k_new[2]=k[2];
for(i=0;i<3;i++) {
result.k[i]=k_new[i];
}
return result;
} else if (result.coord[0]!=0 && result.coord[1]!=0){
Nx=-Sign*(result.coord[0]/rr); // surface normal
Ny=-Sign*(result.coord[1]/rr);
Nz=1;
if (roughness_xy) {
//Nx=Nx+roughness_xy*randnorm();
//Ny=Ny+roughness_xy*randnorm();
}
if (roughness_z) {
//Nz=Nz+roughness_z*randnorm();
}
NORM=sqrt(Nx*Nx+Ny*Ny+Nz*Nz);
nxn=Nx/NORM;
nyn=Ny/NORM;
nzn=Nz/NORM;
double cos_chi;
cos_chi=knorm[0]*nxn+knorm[1]*nyn+knorm[2]*nzn;
w=1/(sqrt(1-cos_chi*cos_chi)); // tangential vector
v=-w*cos_chi;
tx=v*nxn+w*knorm[0];
ty=v*nyn+w*knorm[1];
tz=v*nzn+w*knorm[2];
}
else if (result.coord[0]==0){
tx=0;
ty=Sign*(rr/result.coord[1]);
tz=1;
}
else if (result.coord[1]==0){
tx=Sign*(rr/result.coord[0]);
ty=0;
tz=1;
}
tnorm=sqrt(tx*tx+ty*ty+tz*tz);
txn=tx/tnorm;
tyn=ty/tnorm;
tzn=tz/tnorm;
cos_theta=txn*knorm[0]+tyn*knorm[1]+tzn*knorm[2];
cos_theta1=M*cos_theta; /* Snell's law*/
/* new k vector */
if ((1.0-cos_theta*cos_theta)==0) {
return result;
}
Arg=(1.0-cos_theta1*cos_theta1)/(1.0-cos_theta*cos_theta);
s=(1/M)*sqrt(Arg);
q=(Knorm/tnorm)*((1/M)*cos_theta1-s*cos_theta);
k_new[0]=q*tx+s*k[0];
k_new[1]=q*ty+s*k[1];
k_new[2]=q*tz+s*k[2];
for(i=0;i<3;i++) {
result.k[i]=k_new[i];
}
return result;
}
%}
DECLARE
%{
int Z;
double Ar;
double rho;
t_Table matT;
%}
INITIALIZE
%{
int status=0;
if ( (status=Table_Read(&(matT),material_datafile,0))==-1){
fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",material_datafile,NAME_CURRENT_COMP);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(matT.header,"Z","A[r]","rho",NULL);
if (!Z) Z=strtol(header_parsed[0],NULL,10);
if (!Ar) Ar=strtod(header_parsed[1],NULL);
if (!rho) rho=strtod(header_parsed[2],NULL);
%}
TRACE
%{
double parab[6];
double E,mu,f,rhoel,dl,d_total,e,k,delta,beta,Refractive_Index_Re,Refractive_Index_Im,w;
struct incom_parab incid,refr,outg;
int i=0,nr;
parab[0]=r;
parab[1]=r_ap*2;
parab[2]=r_ap*2;
w=(r_ap*r_ap)/(2.0*r);
k=sqrt(kx*kx+ky*ky+kz*kz);
e=K2E*k; /*Energy in KeV, same unit as datafile */
/*Interpolation of Table Values*/
mu=Table_Value(matT,e,5)*rho*1e2;/*mu is now in SI, [m^-1]*/;
f=Table_Value(matT,e,1);
/*Calculation of Refractive Index */
rhoel= f*NA*(rho*1e-24)/Ar; /*Material's Number Density of Electrons [e/A^3] incl f' scattering length correction*/
delta= 2.0*M_PI*RE*rhoel/(k*k);
beta= mu*1e-10/(2.0*k); /*mu and k in A^-1*/
Refractive_Index_Re = 1.0-delta;
Refractive_Index_Im = beta;
incid.k[0]=kx;
incid.k[1]=ky;
incid.k[2]=kz;
incid.coord[0]=x;
incid.coord[1]=y;
incid.coord[2]=z;
d_total=0;
for (nr=0;nr<=(N-1);nr++){
parab[3]=nr*d+nr*2*w; // d constant
parab[4]=1.0/Refractive_Index_Re; // M constant
parab[5]=-1.0; //Sign constant
refr=intersection_lens_parab(incid,parab,rough_xy,rough_z);
if(refr.k[0]==0 && refr.k[1]==0 && refr.k[2]==0) continue;
dl=sqrt( (refr.coord[0]-x)*(refr.coord[0]-x) + (refr.coord[1]-y)*(refr.coord[1]-y) + (refr.coord[2]-z)*(refr.coord[2]-z) );
PROP_DL(dl);
SCATTER;
kx=refr.k[0];
ky=refr.k[1];
kz=refr.k[2];
//alter parabolic input to match second parabola
parab[3]=(nr+1)*d+nr*2*w;
parab[4]=Refractive_Index_Re;
parab[5]=1.0;
outg=intersection_lens_parab(refr,parab,rough_xy,rough_z);
dl=sqrt( (outg.coord[0]-x)*(outg.coord[0]-x) + (outg.coord[1]-y)*(outg.coord[1]-y) + (outg.coord[2]-z)*(outg.coord[2]-z) );
PROP_DL(dl);
d_total+=dl;
SCATTER;
kx=outg.k[0]; ky=outg.k[1]; kz=outg.k[2];
incid=outg;
}
/*Add absorption according to the path length inside the lens material*/
p*=exp(-mu*d_total);
%}
FINALLY
%{
Table_Free(&(matT));
%}
MCDISPLAY
%{
double z_c,zdepth,w;
w=(r_ap*r_ap)/(2*r);
zdepth=N*(2*w+d);
z_c=zdepth/2.0-w;
/*draw individiual lenses*/
/*draw a circle at the maximal aperture and a parabola along x and y*/
int i,j=0;
for (j=0;j<(N<20?N:20);j++){
circle("xy",0,0,-w+j*(d+2*w),r_ap);
circle("xy",0,0,d+w+j*(d+2*w),r_ap);
double zz0,zz1,yy0,yy1,dz,s;
yy0=r_ap;
zz0=zz1=-w;
dz=w/(64.0-1.0);
s=j*(d+2*w);
/*first parabola*/
while (zz1<=0){
zz1+=dz;
yy1=sqrt(2*r*fabs(zz1));
line(0,yy0,s+zz0,0,yy1,s+zz1);
line(0,-yy0,s+zz0,0,-yy1,s+zz1);
line(yy0,0,s+zz0,yy1,0,s+zz1);
line(-yy0,0,s+zz0,-yy1,0,s+zz1);
zz0=zz1;yy0=yy1;
}
zz0=0;zz1=0;yy0=0;
/*2nd parabola*/
while (zz1<=w){
zz1+=dz;
yy1=sqrt(2*r*fabs(zz1));
line(0,yy0,d+s+zz0,0,yy1,d+s+zz1);
line(0,-yy0,d+s+zz0,0,-yy1,d+s+zz1);
line(yy0,0,d+s+zz0,yy1,0,d+s+zz1);
line(-yy0,0,d+s+zz0,-yy1,0,d+s+zz1);
zz0=zz1;yy0=yy1;
}
}
/*draw a circle at the last aperture of the lens*/
circle("xy",0,0,zdepth-w,r_ap);
%}
END
|