File: Lens_parab.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (345 lines) | stat: -rw-r--r-- 9,337 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Lens_parab
*
* %Identification
* Written by: Jana Baltser and Erik Knudsen
* Date: August 2010, modified July 2011
* Version: 1.0
* Release: McXtrace 0.1
* Origin: NBI
*
* X-ray compound refractive lens (CRL) with a profile of the parabola
*
* %Description
* A simple X-ray compound refractive lens (CRL) with a profile of the parabola in rotation simulates the photons' movement on passing through it. The CRL focuses in 2D
*
* Example: Lens_parab(material_datafile = "Be.txt", r=200e-6, r_ap=0.5e-3, d=50e-6, N=16)
*
* %Parameters
* Input parameters:
* r:        [m] Radius of curvature (circular approximation at the tip of the profile).
* r_ap:     [m] Radius of circular aperture, which also defines the depth of the lens profile.
* d:        [m] Distance between two surfaces of the lens along the propagation axis.
* N:        [m] Number of single lenses in a stack.
* rough_xy: [rad] RMS value of random slope error along x and y.
* rough_z:  [rad] RMS value of random slope error along z.
* material_datafile: [str]   Datafile containing f1 constants
*
* %End
*******************************************************************************/

DEFINE COMPONENT Lens_parab

SETTING PARAMETERS (string material_datafile="Be.txt", r=0.5e-3, r_ap=1.4e-3, d=.1e-3, int N=1, rough_z=0, rough_xy=0)

/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */ 

SHARE
%{
  %include "read_table-lib"
  struct incom_parab {
      double coord[3];
      double k[3];
  };

#pragma acc routine seq
  struct incom_parab intersection_lens_parab(struct incom_parab a, double *b, double roughness_xy,double roughness_z){
      struct incom_parab result;//={a.coord[0],a.coord[1],a.coord[2],a.k[0],a.k[1],a.k[2]};
      int i;
      double A,B,C,D,rr;
      double t[2],p[3],knorm[3],k[3],pos1_tmp[3],pos_tmp[3];

      double nxn,nyn,nzn,Nx,Ny,Nz,NORM,Knorm;
      double cos_theta,cos_theta1,Arg,Arg1,s,q;
      double k_new[3],k_new1[3],M,Sign,dd;
      double yh,xw;

      double tx,ty,tz,tnorm,txn,tyn,tzn;
      double v,w;

      for(i=0;i<=2;i++){
        result.k[i]=k[i]=a.k[i];
        result.coord[i]=p[i]=a.coord[i];
      }

      Knorm=sqrt(k[0]*k[0]+k[1]*k[1]+k[2]*k[2]);
      knorm[0]=k[0]/Knorm;
      knorm[1]=k[1]/Knorm;
      knorm[2]=k[2]/Knorm;

      rr=b[0];
      yh=b[1];
      xw=b[2];
      dd=b[3];
      M=b[4];
      Sign=b[5];

      A=knorm[0]*knorm[0]+knorm[1]*knorm[1];
      B= 2.0*(p[0]*knorm[0]+p[1]*knorm[1] - Sign*rr*knorm[2]);
      C=p[0]*p[0]+p[1]*p[1] - Sign*2*rr*p[2] + Sign*rr*2*dd;
      D=B*B-4.0*A*C;
    
    if (D<0) { /*ray does not intersect the parabola*/
        return result;
    }
    if (A==0){ /*incident k-vector is parallel (exactly) to the z-axis. Thus, the eq. becomes linear*/
      if(B==0){
        return result;
      }
      t[0]=-C/B;
      for(i=0;i<=2;i++){
	result.coord[i]=p[i]+t[0]*knorm[i];
      }
    } else {
      double qq;
      if (B<0){
	qq=-0.5*(B-sqrt(D));
      }else{
        qq=-0.5*(B+sqrt(D));
      }
      t[0]=qq/A;
      t[1]=C/qq;

      for(i=0;i<=2;i++){
        pos_tmp[i]=p[i]+t[0]*knorm[i];
        pos1_tmp[i]=p[i]+t[1]*knorm[i];
      }
      if ( fabs(pos_tmp[1])<=fabs(yh/2) && fabs(pos_tmp[0])<=fabs(xw/2) ){
        for(i=0;i<=2;i++){
          result.coord[i]=pos_tmp[i];
        }
      } else if ( fabs(pos1_tmp[1])<=fabs(yh/2) && fabs(pos1_tmp[0])<=fabs(xw/2) ){
        for(i=0;i<=2;i++){
          result.coord[i]=pos1_tmp[i];
        }
      } else return result;
    }
    
    /* Calculating tangential vector  */
    if (result.coord[0]==0 && result.coord[1]==0){ // incoming ray is along the axis, so it does not refract
        k_new[0]=k[0];
        k_new[1]=k[1];
        k_new[2]=k[2];
        for(i=0;i<3;i++) {
            result.k[i]=k_new[i];
        }
        return result;
    } else if (result.coord[0]!=0 && result.coord[1]!=0){
        Nx=-Sign*(result.coord[0]/rr); // surface normal
        Ny=-Sign*(result.coord[1]/rr);
        Nz=1;

        if (roughness_xy) {
            //Nx=Nx+roughness_xy*randnorm();
            //Ny=Ny+roughness_xy*randnorm();
        }
        if (roughness_z) {
            //Nz=Nz+roughness_z*randnorm();
        }

        NORM=sqrt(Nx*Nx+Ny*Ny+Nz*Nz);
        nxn=Nx/NORM;
        nyn=Ny/NORM;
        nzn=Nz/NORM;

        double cos_chi;
        cos_chi=knorm[0]*nxn+knorm[1]*nyn+knorm[2]*nzn;
        w=1/(sqrt(1-cos_chi*cos_chi)); // tangential vector
        v=-w*cos_chi;

        tx=v*nxn+w*knorm[0];
        ty=v*nyn+w*knorm[1];
        tz=v*nzn+w*knorm[2];
    }
    else if (result.coord[0]==0){
        tx=0;
        ty=Sign*(rr/result.coord[1]);
        tz=1;
    }
    else if (result.coord[1]==0){
        tx=Sign*(rr/result.coord[0]);
        ty=0;
        tz=1;
    }
	
    tnorm=sqrt(tx*tx+ty*ty+tz*tz);
    txn=tx/tnorm;
    tyn=ty/tnorm;
    tzn=tz/tnorm;
    
    cos_theta=txn*knorm[0]+tyn*knorm[1]+tzn*knorm[2];
    cos_theta1=M*cos_theta; /* Snell's law*/

    /* new k vector */
    if ((1.0-cos_theta*cos_theta)==0) {
       return result; 
    }
   
    Arg=(1.0-cos_theta1*cos_theta1)/(1.0-cos_theta*cos_theta);
    s=(1/M)*sqrt(Arg);
    q=(Knorm/tnorm)*((1/M)*cos_theta1-s*cos_theta);
    
    k_new[0]=q*tx+s*k[0];
    k_new[1]=q*ty+s*k[1];
    k_new[2]=q*tz+s*k[2];
    
    for(i=0;i<3;i++) { 
      result.k[i]=k_new[i]; 
    }
   return result;
  }
%}

DECLARE
%{
  int Z;
  double Ar;
  double rho;
  t_Table matT;
%}

INITIALIZE
%{
  int status=0;

  if ( (status=Table_Read(&(matT),material_datafile,0))==-1){
    fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",material_datafile,NAME_CURRENT_COMP);
    exit(-1);
  }
  char **header_parsed;
  header_parsed=Table_ParseHeader(matT.header,"Z","A[r]","rho",NULL);
  if (!Z) Z=strtol(header_parsed[0],NULL,10);
  if (!Ar) Ar=strtod(header_parsed[1],NULL);
  if (!rho) rho=strtod(header_parsed[2],NULL);
%}

TRACE
%{
  double parab[6];
  double E,mu,f,rhoel,dl,d_total,e,k,delta,beta,Refractive_Index_Re,Refractive_Index_Im,w;
  struct incom_parab incid,refr,outg;

  int i=0,nr;
  
  parab[0]=r;
  parab[1]=r_ap*2;
  parab[2]=r_ap*2;
  
  w=(r_ap*r_ap)/(2.0*r);
  k=sqrt(kx*kx+ky*ky+kz*kz);
  e=K2E*k;  /*Energy in KeV, same unit as datafile */

  /*Interpolation of Table Values*/
  mu=Table_Value(matT,e,5)*rho*1e2;/*mu is now in SI, [m^-1]*/;

  f=Table_Value(matT,e,1);

  /*Calculation of Refractive Index */
  rhoel= f*NA*(rho*1e-24)/Ar; /*Material's Number Density of Electrons [e/A^3] incl f' scattering length correction*/
  delta= 2.0*M_PI*RE*rhoel/(k*k);
  beta= mu*1e-10/(2.0*k); /*mu and k in  A^-1*/

  Refractive_Index_Re = 1.0-delta; 
  Refractive_Index_Im = beta; 

  incid.k[0]=kx;
  incid.k[1]=ky; 
  incid.k[2]=kz;
  
  incid.coord[0]=x;
  incid.coord[1]=y;
  incid.coord[2]=z;

  d_total=0;
  for (nr=0;nr<=(N-1);nr++){
    parab[3]=nr*d+nr*2*w; // d constant
    parab[4]=1.0/Refractive_Index_Re; // M constant
    parab[5]=-1.0; //Sign constant
    
    refr=intersection_lens_parab(incid,parab,rough_xy,rough_z);
    
    if(refr.k[0]==0 && refr.k[1]==0 && refr.k[2]==0) continue;
    
    dl=sqrt( (refr.coord[0]-x)*(refr.coord[0]-x) + (refr.coord[1]-y)*(refr.coord[1]-y) + (refr.coord[2]-z)*(refr.coord[2]-z) );
    PROP_DL(dl);
    SCATTER;	
    
    kx=refr.k[0]; 
    ky=refr.k[1]; 
    kz=refr.k[2];

    //alter parabolic input to match second parabola
    parab[3]=(nr+1)*d+nr*2*w;
    parab[4]=Refractive_Index_Re;
    parab[5]=1.0; 

    outg=intersection_lens_parab(refr,parab,rough_xy,rough_z);
    
    dl=sqrt( (outg.coord[0]-x)*(outg.coord[0]-x) + (outg.coord[1]-y)*(outg.coord[1]-y) + (outg.coord[2]-z)*(outg.coord[2]-z) );
    PROP_DL(dl);
    d_total+=dl;
    SCATTER;

    kx=outg.k[0]; ky=outg.k[1]; kz=outg.k[2];
    incid=outg;
  }
  /*Add absorption according to the path length inside the lens material*/
  p*=exp(-mu*d_total);

%}

FINALLY
%{
    Table_Free(&(matT));
%}

MCDISPLAY
%{
  double z_c,zdepth,w;
  w=(r_ap*r_ap)/(2*r);
  zdepth=N*(2*w+d);
  z_c=zdepth/2.0-w;
  /*draw individiual lenses*/
  /*draw a circle at the maximal aperture and a parabola along x and y*/
  int i,j=0;
  for (j=0;j<(N<20?N:20);j++){
      circle("xy",0,0,-w+j*(d+2*w),r_ap);
      circle("xy",0,0,d+w+j*(d+2*w),r_ap);
      double zz0,zz1,yy0,yy1,dz,s;
      yy0=r_ap;
      zz0=zz1=-w;
      dz=w/(64.0-1.0);
      s=j*(d+2*w);
      /*first parabola*/
      while (zz1<=0){
          zz1+=dz;
          yy1=sqrt(2*r*fabs(zz1));
          line(0,yy0,s+zz0,0,yy1,s+zz1);
          line(0,-yy0,s+zz0,0,-yy1,s+zz1);
          line(yy0,0,s+zz0,yy1,0,s+zz1);
          line(-yy0,0,s+zz0,-yy1,0,s+zz1);
          zz0=zz1;yy0=yy1;
      }
      zz0=0;zz1=0;yy0=0;
      /*2nd parabola*/
      while (zz1<=w){
          zz1+=dz;
          yy1=sqrt(2*r*fabs(zz1));
          line(0,yy0,d+s+zz0,0,yy1,d+s+zz1);
          line(0,-yy0,d+s+zz0,0,-yy1,d+s+zz1);
          line(yy0,0,d+s+zz0,yy1,0,d+s+zz1);
          line(-yy0,0,d+s+zz0,-yy1,0,d+s+zz1);
          zz0=zz1;yy0=yy1;
      }
  }
  /*draw a circle at the last aperture of the lens*/
  circle("xy",0,0,zdepth-w,r_ap);
%}

END