File: Mirror_parabolic.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (266 lines) | stat: -rw-r--r-- 7,479 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*******************************************************************************
*
* McXtrace, x-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Mirror_parabolic
*
* %Identification
* Written by: Erik Knudsen
* Date: Feb 11, 2010
* Origin: Risoe
*
* Idealized parabolic mirror (in XZ)
* 
* %Description
* Takes a reflectivity as input and reflects rays in a ideal geometry
* parabolic mirror. The mirror is positioned in the zx-plane curving towards positive y.
* I.e. the focal point is (0,0,f(a,b))
* The geometry of the paraboloid is governed by the equation: y = x^2 / a^2 + z^2 / b^2
* Hence, the focal length for the 'x' curve is f=a^2 / 4, and analogous for z.
*
* Example: Mirror_parabolic(R0=1, a=1, b=0, xwidth=0.02, yheight=0, zdepth=0.05)
*
* %Parameters
* INPUT PARAMETERS
* R0:     [1]  Reflectivity of mirror.
* xwidth: [m]  Width of mirror.
* zdepth: [m]  Length of mirror.
* yheight:[m]  Thickness of mirror. If 0 (the default) the mirror is mathemticlly thin. Only has an effect for hitting the mirror from the side.
* focusx: [m]  Transverse focal length along X. Sets a.
* focusz: [m]  Longitudinal focal length along Z. Sets b.
* radius: [m]  Focal length. Sets focusx and focusz.
* a: [sqrt(m)] Transverse curvature scale, if zero - the mirror is flat along x.
* b: [sqrt(m)] Longitudinal curvature scale, if zero, flat along z.
* 
* OUTPUT PARAMETERS
* xmax: [m]     Mirrors' extent along x.
* zmax: [m]     Mirrors' extent along z.
* a2inv: [m^-2] Inverse of a^2.
* b2inv: [m^-2] Inverse of b^2.
* %End
*******************************************************************************/


DEFINE COMPONENT Mirror_parabolic

SETTING PARAMETERS (R0=1, a=1, b=1, xwidth=0.1, zdepth=0.1, yheight=0,
  focusx=0, focusz=0, radius=0)

/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */ 

DECLARE
%{
  double a2inv;
  double b2inv;
%}

INITIALIZE
%{
  if (radius>0) focusx=focusz=radius;
  if (focusx>0) a=2*sqrt(focusx); else focusx=a*a/4.0;
  if (focusz>0) b=2*sqrt(focusz); else focusz=b*b/4.0;
  
  a2inv=(a!=0)?(1.0/(a*a)):0; /* if a==0, it is really infinity */
  b2inv=(b!=0)?(1.0/(b*b)):0; /* if b==0, it is really infinity */
  
  
%}

TRACE
%{
    int status,first;
    double l0,l1,sx,sz;
    double nx,ny,nz,zz,xx, Y0;
    if (b==0 && kx==0 && ky==0){
      /*k || z and mirror invariant in z*/
      zz=x*x*a2inv;
      if(fabs(z-zz)<=yheight){
        ABSORB;
      }
    }
    if (a==0 && ky==0 && kz==0){
      /*k || x and mirror invariant in x*/
      xx=z*z*b2inv;
      if(fabs(x-xx)<=yheight){
        ABSORB;
      }
    }

    /*find plane of entry - i.e. y=sign*x*x*a2inv + sign*z*z*b2inv,
      and propagate the ray there.*/
    Y0=(xwidth*xwidth/4.0*a2inv) + (zdepth*zdepth/4.0*b2inv);
    plane_intersect(&l0,x,y,z,kx,ky,kz, 0,1,0,0,Y0,0);
    if(l0>0){
      PROP_DL(l0);
    }
    /*need a check for mirror limits here*/
    if(a!=0){
      sx= (a*a)/2.0 * ( x*a2inv * sqrt( (2*x*a2inv)*(2*x*a2inv) + 1) + asinh(2*x*a2inv)/2.0 );
    }else{
      sx=fabs(x);
    }
    if(b!=0){
      sz= (b*b)/2.0 * ( z*b2inv * sqrt( (2*z*b2inv)*(2*z*b2inv) + 1) + asinh(2*z*b2inv)/2.0 );
    }else{
      sz=fabs(z);
    }

    if( fabs(sx)>xwidth/2.0 || fabs(sz)>zdepth/2.0 ){
      /*Path length to either x or z coordinate bigger than mirror limits
       * => we have missed the mirror.*/
      RESTORE_XRAY(INDEX_CURRENT_COMP,x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p);
    }else{
      /*The intersect routine assumes a parabola opening towards positive z
        so swap y and z.*/
      first=1;
      status=paraboloid_intersect(&l0,&l1,x,z,y,kx,kz,ky, a,b,0);
      /*if l0==0, assume that we should pick l1 instead (if it is positive).*/
      double ll;
      if (l0>0){
        ll=l0;
      } else if (l1>0) {
        ll=l1;
      } else {
        /*both l0 and l1 <=0*/
        status=0;
      }
      while(status) {
        PROP_DL(ll);
        /*reflect in normal - again swap y and z.*/
        paraboloid_normal(&nx,&nz,&ny, x,z,y, a,b,1);

        double s=scalar_prod(kx,ky,kz,nx,ny,nz);
        if (s!=0){
          kx -= s*2*nx;
          ky -= s*2*ny;
          kz -= s*2*nz;
        }
        SCATTER;

        p*=R0;
        /*update phase - as an approximation turn by 180 deg.*/
        phi+=M_PI;
        first=0;
        status=paraboloid_intersect(&l0,&l1,x,z,y,kx,kz,ky, a,b,0);
        /*need to check if the new reflection point is within mirror limits*/
        if(status){
          if(l0>0){
            ll=l0;
          }else if (l1>0){
            ll=l1;
          }else{
            status=0;break;
          }

          double knx,kny,knz;
          knx=kx;kny=ky;knz=kz;
          NORM(knx,kny,knz);

          double xx=x+knx*ll;
          if(a!=0){
            sx= (a*a)/2.0 * ( xx*a2inv * sqrt( (2*xx*a2inv)*(2*xx*a2inv) + 1) + asinh(2*xx*a2inv)/2.0 );
          }else{
            sx=fabs(xx);
          }
          double zz=z+knz*ll;
          if(b!=0){
            sz= (b*b)/2.0 * ( zz*b2inv * sqrt( (2*zz*b2inv)*(2*zz*b2inv) + 1) + asinh(2*zz*b2inv)/2.0 );
          }else{
            sz=fabs(zz);
          }
          if(fabs(sx)>xwidth/2.0 || fabs(sz)>zdepth/2.0 ){
            status=0;break;
          }
        }
      }
    }
%}

MCDISPLAY
%{
  const int Ni=25;
  const int Nj=25;


  double dx=xwidth/(Ni);
  double dz=zdepth/(Nj);
  double x0,x1,z0,z1,y[4],xmin,xmax,zmin,zmax;
  int i,j;
  
  magnify("");
               
  line(-xwidth/2.0,0,-zdepth/2.0, xwidth/2.0,0,-zdepth/2.0);
  line(-xwidth/2.0,0, zdepth/2.0, xwidth/2.0,0, zdepth/2.0);
  line(-xwidth/2.0,0,-zdepth/2.0,-xwidth/2.0,0, zdepth/2.0);
  line( xwidth/2.0,0,-zdepth/2.0, xwidth/2.0,0, zdepth/2.0);

  /*find the limits in x and z*/  
  x0=0;x1=xwidth/2.0;
  if(a!=0){
    double xx=(x1+x0)/2.0;
    double sx= (a*a)/2.0 * ( xx*a2inv * sqrt( (2*xx*a2inv)*(2*xx*a2inv) + 1) + asinh(2*xx*a2inv)/2.0 );
    i=0;
    while ( fabs(sx-xwidth/2.0)>1e-4 && i<100){
      if ((sx-xwidth/2.0)>0){
        x1=xx;
      }else{
        x0=xx;
      }
      xx=(x1+x0)/2.0;
      sx= (a*a)/2.0 * ( xx*a2inv * sqrt( (2*xx*a2inv)*(2*xx*a2inv) + 1) + asinh(2*xx*a2inv)/2.0 );
      i++;
    }
    xmax=xx;
  }else{
    xmax=xwidth/2.0;
  }


  z0=0;z1=zdepth/2.0;
  if(b!=0){
    double zz=(z1+z0)/2.0;
    double sz= (b*b)/2.0 * ( zz*b2inv * sqrt( (2*zz*b2inv)*(2*zz*b2inv) + 1) + asinh(2*zz*b2inv)/2.0 );
    j=0;
    while ( fabs(sz-zdepth/2.0)>1e-4 && j<100){
      if ((sz-zdepth/2.0)>0){
        z1=zz;
      }else{
        z0=zz;
      }
      zz=(z1+z0)/2.0;
      sz= (b*b)/2.0 * ( zz*b2inv * sqrt( (2*zz*b2inv)*(2*zz*b2inv) + 1) + asinh(2*zz*b2inv)/2.0 );
      j++;
    }
    zmax=zz;
  }else{
    zmax=zdepth/2.0;
  }

  dx=2.0*xmax/(Ni);
  dz=2.0*zmax/(Nj);
  /*approximate the mirror bounds by width and depth to avoid inverting the sx and sz functions*/
  /*mirror is symmetric around x,z=0,0. so we c an use xmax and zmax.*/
  for (i=0;i<Ni;i++){
    x0=i*dx - xmax;
    x1=(i+1)*dx - xmax;
    for (j=0;j<Nj;j++){
      z0=j*dz - zmax;
      z1=(j+1)*dz - zmax;
      y[0]=x0*x0*a2inv + z0*z0*b2inv;
      y[1]=x1*x1*a2inv + z0*z0*b2inv;
      y[2]=x0*x0*a2inv + z1*z1*b2inv;
      y[3]=x1*x1*a2inv + z1*z1*b2inv;

      line(x0,y[0],z0, x1,y[1],z0);
      line(x0,y[0],z0, x0,y[2],z1);
      if(i==Ni-1) line(x1,y[1],z0, x1,y[3],z1);
      if(j==Nj-1) line(x0,y[2],z1, x1,y[3],z1);
    }
  }

%}

END