1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
* University of Copenhagen, Copenhagen, Denmark
*
* Component: Multilayer_elliptic
*
* %I
*
* Written by: Jana Baltser, Peter Willendrup, Anette Vickery, Andrea Prodi, Erik Knudsen
* Date: February 2011
* Version: 1.0
* Origin: NBI
*
* Elliptic multilayer mirror (in XZ)
*
* %Description
* Reads reflectivity values from a data input file (Ref.dat) for a Si/W multilayer.
* The multilayer code reflects ray in an ideal geometry, does not include surface imperfections
*
* The mirror is positioned such that the long axis of the mirror elliptical surface coincides with
* z-axis
*
* The algorithm:
* Incoming photon's coordinates and direction (k-vector) are transformed into an elliptical reference frame
* (elliptical parameters are calculated according to the mirror's position and its focusing distances and the
* incident angle), the intersection point is then defined. A new, reflected photon is then starting at the
* point of intersection.
*
* Example: Multilayer_elliptic(
* coating = "Ref_W_B4C.txt", theta = 1.2,
* s1 = 1, s2 = 2, length = 0.1, width = 0.1, R0 = 1,
* Emin=7, Emax=10, Estep=0.05)
*
* %Parameters
* Input parameters:
* theta: [deg] Design angle of incidence.
* s1: [m] Design distance from the source to the multilayer.
* s2: [m] Design focusing distance of the multilayer.
* zdepth:[m] Length of the mirror along Z.
* xwidth:[m] Width of the mirror along X-axis.
* Gamma: [ ] High electron density fraction of bilayer (in kinematical appr.).
* Lambda:[m] Thickness of bilayer (in kinematical appr.).
* rho_AB:[ ] Number electron density constrast in bilayer (in kinematical appr.).
* N: [1] Number of bilayers (in kinematical appr.).
* coating: [str] Datafile containing reflectivity values as a function of q and E.
* Emin: [keV] Lower limit of energy interval in datafile. Overrides what's written in the datafile header.
* Emax: [keV] Upper limit of energy interval in datafile. Overrides what's written in the datafile header.
* Estep: [keV] Step between energy sample points in datafile. Overrides what's written in the datafile header.
* R0: [1] Maximal reflectivity
* length: [m] alternate name for zdepth (obsolete)
* width: [m] alternate name for xwidth (obsolete)
* %End
*******************************************************************************/
DEFINE COMPONENT Multilayer_elliptic
SETTING PARAMETERS (string coating="Ref_W_B4C.txt",
theta=1.2,s1=0,s2=0,length=0.5,width=0.2,R0=1,
Emin=-1, Emax=-1, Estep=-1, Gamma=0, Lambda=0, rho_AB=0, int N=0,
xwidth=0, zdepth=0)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
#include <complex.h>
%include "read_table-lib"
%include "reflectivity-lib"
/*something that would be relevant for ALL elliptical mirrors*/
/* coordinate transformation McXtrace-Ellipse (ME) and Ellipse-McXtrace(EM) functions */
#pragma acc routine
void CoordTransME(double *x_el, double *y_el, double *z_el,
double x0, double y0, double z0, double Zmir, double Ymir, double xi_mir)
{
*x_el=x0;
*y_el=cos(xi_mir)*y0+sin(xi_mir)*z0+Ymir;
*z_el=-sin(xi_mir)*y0+cos(xi_mir)*z0+Zmir;
}
#pragma acc routine
void CoordTransEM(double *x_gen, double *y_gen,double *z_gen,
double x0, double y0, double z0, double Zmir, double Ymir,double xi_mir)
{
*x_gen=x0;
*y_gen=cos(xi_mir)*(y0-Ymir)-sin(xi_mir)*(z0-Zmir);
*z_gen=sin(xi_mir)*(y0-Ymir)+cos(xi_mir)*(z0-Zmir);
}
%}
DECLARE
%{
double a;
double b;
double c;
double M;
double Z0;
double Y0;
double xi;
double cost0;
int kinematical;
t_Reflec re;
%}
INITIALIZE
%{
/* calculation of the elliptical parameters according to the input mirror parameters:
ellipse major axis a/2, minor axis b/2, M-magnification factor, Z0&Y0 - position of the mirror centre in the elliptical coordinate system.*/
double Theta=DEG2RAD*theta;
if (xwidth) width=xwidth;
if (zdepth) length=zdepth;
M=s2/s1;
cost0 = (1-M)/sqrt(1-2*M + M*M + 4*M*(cos(Theta)*cos(Theta)));
a = (s1*sqrt(1-cost0*cost0+cos(Theta)*cos(Theta)*cost0*cost0))/(cost0*cos(Theta)+sqrt(1-cost0*cost0+ (cos(Theta)*cos(Theta))*cost0*cost0));
c = a*cos(Theta)/sqrt(1-cost0*cost0+(cos(Theta)*cos(Theta))*cost0*cost0);
b = sqrt(a*a-c*c);
Z0 = a*cost0;
Y0 = b*sin(acos(cost0));
xi = -atan((Z0*b*b)/(Y0*a*a));
int status=0;
if(!Gamma && !Lambda){
/*refrain from using kinematical approximation - instead use reflectivity datafile*/
kinematical = 0;
/* reflectivity datafile parsing COATING_UNDEFINED - means set the type according to what is found in the file*/
status=reflec_Init(&re,COATING_UNDEFINED,coating, NULL);
}else{
kinematical = 1;
re.type=KINEMATIC;
status=reflec_Init_kinematic(&(re), N, Gamma, Lambda, rho_AB);/*number of layers, ratio of high e-density material in layer, thickness of layer, e-density contrast*/
}
%}
TRACE
%{
double K,vink;
double x_el,y_el,z_el; // beginning coordinates transformed into the ellipse system
double kx_el,ky_el,kz_el; // kvector transformed into the ellipse system, hence
double A,B,C,D,t0,t1;
double x_int,y_int,z_int,dist; // intersection with the elliptical surface
double nx,ny,nz;
double kxn,kyn,kzn; // reflected ray's kvector
/* get the photon's coordinates and kvector in the ellipse frame */
K=sqrt(kx*kx+ky*ky+kz*kz);
CoordTransME(&x_el,&y_el,&z_el,x,y,z,Z0,Y0,xi);
CoordTransME(&kx_el,&ky_el,&kz_el,kx,ky,kz,0,0,xi);
NORM(kx_el,ky_el,kz_el);
/*intersection calculation*/
A=b*b*kz_el*kz_el+a*a*ky_el*ky_el;
B=2.0*(z_el*kz_el*b*b+y_el*ky_el*a*a);
C=b*b*z_el*z_el+a*a*y_el*y_el-a*a*b*b;
D=B*B-4*A*C;
if (D>=0){
t0=(-B-sqrt(D))/(2*A);
t1=(-B+sqrt(D))/(2*A);
if (t0<0 && t1>=0) {
double ttmp=t0;
t0=t1; t1=ttmp;
}
/* check whether our intersection lies within the boundaries of the mirror*/
x_int=x_el+kx_el*t0;
y_int=y_el+ky_el*t0;
z_int=z_el+kz_el*t0;
if (y_int>=0 && fabs(x_int)<=width/2){
dist=sqrt((x_el-x_int)*(x_el-x_int)+(y_el-y_int)*(y_el-y_int)+(z_el-z_int)*(z_el-z_int));
PROP_DL(dist);
if (fabs(z)<=length/2) { /*finally in business on the mirror! YAY! */
nx=0;
if (fabs(z_int)==0){
ny=1;
nz=0;
} else {
ny=(a*a*y_int)/(b*b*z_int);
nz=1.0;
}
NORM(nx,ny,nz);
vink=scalar_prod(nx,ny,nz,kx_el,ky_el,kz_el);
kxn=kx_el-2.0*vink*nx;
kyn=ky_el-2.0*vink*ny;
kzn=kz_el-2.0*vink*nz;
NORM(kxn,kyn,kzn);
double kxo,kyo,kzo;
kxo=kx;kyo=ky,kzo=kz;
CoordTransEM(&kx,&ky,&kz,kxn,kyn,kzn,0,0,xi);
kx=K*kx;
ky=K*ky;
kz=K*kz;
double QQ,EE,Ref;
QQ=sqrt((kx-kxo)*(kx-kxo)+(ky-kyo)*(ky-kyo)+(kz-kzo)*(kz-kzo));
EE=K*K2E;
if(kinematical){
/*
* \Lambda: thickness of bilayer - following notation in Als-Nielsen/McMorrow
* \Gamma: \Gamma*\Lambda thickness of high electron density material.
* r1(zeta) = 2 i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta}\right) \frac{\sin\left(\pi\Gamma\zeta\right)}{\pi\Gamma\zeta);
*/
Ref=reflecq(re,QQ,0,0,0);
if (Ref>1){
/*Reflectivity can't be >1*/
Ref=1.0;
}
}else{
/*interpolate in table*/
Ref=reflecq(re,QQ,0,0,0);
}
/* apply reflectivity */
p*=Ref;
SCATTER;
} else {
RESTORE_XRAY(INDEX_CURRENT_COMP, x, y, z, kx, ky, kz, phi, t, Ex, Ey, Ez, p);
}
}
}
%}
MCDISPLAY
%{
/*
rectangle("xz",0,0,0,width,length); */
int i,j,NN=10;
double x0,y0,z0;
double x1,y1,z1,z_el,y_el;
x0=-width/2.0;
for (i=0;i<=NN;i++){
z0=-length/2.0;
z_el=cos(xi)*z0+Z0; //transformation to EL reference frame
y_el=b*sqrt(1.0-((z_el*z_el)/(a*a)));
y0=cos(xi)*(y_el-Y0)-sin(xi)*(z_el-Z0);
line(-width/2,y0,z0,width/2,y0,z0);
for (j=0;j<=NN;j++){
z1=z0+length/NN;
z_el=cos(xi)*z1+Z0;
y_el=b*sqrt(1.0-((z_el*z_el)/(a*a)));
y1=cos(xi)*(y_el-Y0)-sin(xi)*(z_el-Z0);
line(x0,y0,z0,x0,y1,z1);
y0=y1;
z0=z1;
line(-width/2,y1,z1,width/2,y1,z1);
}
x0=x0+width/NN;
}
%}
END
|