File: TwinKB_ML.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (356 lines) | stat: -rw-r--r-- 11,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*         University of Copenhagen, Copenhagen, Denmark
*
* Component: TwinKB_ML
*
* %Identification
*
* Written by: Jana Baltser, Peter Willendrup, Anette Vickery, Andrea Prodi, Erik Knudsen, Jesper Buch Jensen
* Date: May 2012
* Version: 1.0
* Origin: NBI
*
* Montel optic model (aka side-by-side Kirkpatrick Baez)
* 
* %Description
* Models a Montel optic, or Twin Kirkpatrick Baez mirror optic (hence the component name).
* The mirror are fully abutting, i.e. there's is no gap between them, and perfectly elliptic.
*
* Reads reflectivity values from a data input file for a W/B4C multilayer.
* The multilayer code reflects ray in an ideal geometry, the reflectivity datafile accounts for surface roughness, sigma.
*
* The mirror is positioned such that the long axis of the mirror elliptical surface coincides with the z-axis.
* 
* The algorithm:
* Incoming photon's coordinates and direction (k-vector) are transformed into an elliptical reference frame
* (elliptical parameters are calculated according to the mirror's position and its focusing distances and the  * incident angle), the intersection point is then defined. A new, reflected photon is then starting at the  
* point of intersection.
*
* Example: TwinKB_ML( theta=1.2, s1=.045 , s2=.9 , length=0.06 , width=0.2 , R0=0 , reflectivity_datafile="Ref_W_B4C.txt")
*
* %Parameters
* Input parameters:
* theta:  [deg] Incident angle
* s1:     [m]   Distance from the source to the multilayer
* s2:     [m]   Focusing distance of the multilayer
* length: [m]   Length of the mirrors
* width:  [m]   Width of the mirror along x-axis
* R0:     [0-1] Constant reflectivity, R0=1 for an ideal situation. If R0=0, the code reads the reflectivity from the datafile
* reflectivity_datafile: [str] File which contains reflectivities as a function of q.
*
* %End
*******************************************************************************/

DEFINE COMPONENT TwinKB_ML

SETTING PARAMETERS (string reflectivity_datafile="Ref.txt", theta=1.2,s1,s2,length=0.6,width=0.2,R0=0)

//STATE PARAMETERS (x,y,z,kx,ky,kz,phi,Ex,Ey,Ez,p)

SHARE 
%{
   %include "read_table-lib"
  
  struct prms_multilayer_elliptic{
     double *Q;
     double **R;
   };
   
  /*something that would be relevant for ALL elliptical mirrors*/
  /* coordinate transformation McXtrace-Ellipse (ME) and Ellipse-McXtrace(EM) functions */
  void CoordTransME(double *x_el, double *y_el, double *z_el, 
		    double x0, double y0, double z0, double Zmir, double Ymir, double xi_mir)
  {
   *x_el=x0;
   *y_el= cos(xi_mir)*y0+sin(xi_mir)*z0+Ymir;
   *z_el=-sin(xi_mir)*y0+cos(xi_mir)*z0+Zmir;
  }
  
  void CoordTransEM(double *x_gen, double *y_gen,double *z_gen,
		    double x0, double y0, double z0, double Zmir, double Ymir,double xi_mir)
  {
   *x_gen=x0;
   *y_gen= cos(xi_mir)*(y0-Ymir)-sin(xi_mir)*(z0-Zmir);
   *z_gen= sin(xi_mir)*(y0-Ymir)+cos(xi_mir)*(z0-Zmir);
  }

%}

DECLARE
%{
  double a;
  double b;
  double c;
  double M;
  double Z0;
  double Y0;
  double xi;
  double cost0;
  Rotation Q1;
  Rotation Q2;
  t_Table ref_table;
%}

INITIALIZE
%{
  /* calculation of the elliptical parameters according to the input mirror parameters:
  ellipse major axis a/2, minor axis b/2, M-magnification factor, Z0&Y0 - position of the mirror centre in the elliptical coordinate system.*/
  double Theta=DEG2RAD*theta; 

  M=s2/s1;
  cost0 = (1-M)/sqrt(1-2*M + M*M + 4*M*(cos(Theta)*cos(Theta)));
  a = (s1*sqrt(1-cost0*cost0+cos(Theta)*cos(Theta)*cost0*cost0))/(cost0*cos(Theta)+sqrt(1-cost0*cost0+ (cos(Theta)*cos(Theta))*cost0*cost0));
  c = a*cos(Theta)/sqrt(1-cost0*cost0+(cos(Theta)*cos(Theta))*cost0*cost0);
  b = sqrt(a*a-c*c);
  Z0 = a*cost0;
  Y0 = -b*sin(acos(cost0)); 
  xi = -atan((Z0*b*b)/(Y0*a*a)); 
  
  // reflectivity datafile parsing
  int status=0;
   
  if ((status=Table_Read(&ref_table, reflectivity_datafile,0))==-1){
    fprintf(stderr,"Error: Could not parse the file \'%s\' in COMP %s\n",reflectivity_datafile,NAME_CURRENT_COMP);
    exit(-1);
  }
  
%}

TRACE
%{
  double K,vink; 
  double x_e1,y_e1,z_e1,kx_e1,ky_e1,kz_e1;	// beginning coordinates transformed into the ellipse system
  double x_e2,y_e2,z_e2,kx_e2,ky_e2,kz_e2;	// kvector transformed into the ellipse system, hence 
  
  double A,B,C,D,l01,l11,l02,l12;
  double x_test1,y_test1,z_test1,x_test2,y_test2,z_test2,dist;	// intersection with the elliptical surface
  double nx,ny,nz;
  double kxn,kyn,kzn;		// reflected ray's kvector
 
  int status1,status2,bounce; 
  
  /* get the photon's coordinates and kvector in the ellipse frame */
  K=sqrt(kx*kx+ky*ky+kz*kz); 
  
  bounce=CHAR_MAX;
  while (bounce){
    bounce=0;
    /*switch to the ellipsoid frames. Note that the order of x and y has been swapped in the second set of calls*/
    CoordTransME(&x_e1,&y_e1,&z_e1,x,y,z,Z0,Y0,xi);
    CoordTransME(&kx_e1,&ky_e1,&kz_e1,kx,ky,kz,0,0,xi);
    NORM(kx_e1,ky_e1,kz_e1);
    CoordTransME(&y_e2,&x_e2,&z_e2,y,x,z,Z0,Y0,xi);
    CoordTransME(&ky_e2,&kx_e2,&kz_e2,ky,kx,kz,0,0,xi);
    NORM(kx_e2,ky_e2,kz_e2);
#ifdef MCDEBUG
    printf("coord transform1: r=(%g %g %g) k=(%g %g %g) => r=(%g %g %g) k=(%g %g %g) Z0,Y0=(%g,%g)\n",x,y,z,kx,ky,kz,x_e1,y_e1,z_e1,kx_e1,ky_e1,kz_e1,Z0,Y0);
    printf("coord transform2: r=(%g %g %g) k=(%g %g %g) => r=(%g %g %g) k=(%g %g %g)\n",x,y,z,kx,ky,kz,x_e2,y_e2,z_e2,kx_e2,ky_e2,kz_e2);
#endif
    double QQ[3][3]={{1,0,0},{0,1,0},{0,0,1}};
    /*compute intersections with the ellipsoid surfaces that contain the mirror surfaces
      using 1e6 as a half-axis to emulate something flat in that dimension*/
    status1=ellipsoid_intersect(&l01,&l11,x_e1,y_e1,z_e1,kx_e1,ky_e1,kz_e1,1e6,b,a,QQ);
    status2=ellipsoid_intersect(&l02,&l12,x_e2,y_e2,z_e2,kx_e2,ky_e2,kz_e2,b,1e6,a,QQ);
#define SWAP(a,b) \
    do { \
      double tmp=(a); \
      (a)=(b);(b)=tmp;\
    } while(0)\



    if (status1) {
      if (l01>0){
        double dl=l01;
        double xx,yy,zz;
        xx=x_e1+kx_e1*dl; yy=y_e1+ky_e1*dl; zz=z_e1+kz_e1*dl;
        if ((yy)<=0 && xx>0 && xx<width && fabs(zz-Z0)<length/2.0){    
#ifdef MCDEBUG
          printf("hit for intersection 1,0 %g %g (%g %g %g)\n",l01,l11,xx,yy,zz);
#endif
          ABSORB;
        }
      }
      if(l11>0){
        double dl=l11;
        double xx,yy,zz;
        xx=x_e1+kx_e1*dl; yy=y_e1+ky_e1*dl; zz=z_e1+kz_e1*dl;
        if ((yy)<=0 && xx>0 && xx<width && fabs(zz-Z0)<length/2.0){    
          if(bounce!=1){
            bounce|=1;
          }
          x_test1=xx;y_test1=yy;z_test1=zz;
#ifdef MCDEBUG
          printf("hit for intersection 1,1 %g %g (%g %g %g)\n",l01,l11,xx,yy,zz);
#endif
        }
      }
    }
    
    if (status2) {
      if(l02>0){
        double dl=l02;
        double xx,yy,zz;
        xx=x_e2+kx_e2*dl; yy=y_e2+ky_e2*dl; zz=z_e2+kz_e2*dl;
        if ((xx)<=0 && yy>0 && yy<width && fabs(zz-Z0)<length/2.0){
#ifdef MCDEBUG
          printf("hit for intersection 2,0 %g %g (%g %g %g)\n",l02,l12,xx,yy,zz);
          ABSORB;
#endif
        } 
      }
      if (l12>0){
        double dl=l12;
        double xx,yy,zz;
        xx=x_e2+kx_e2*dl; yy=y_e2+ky_e2*dl; zz=z_e2+kz_e2*dl;
        if ((xx)<=0 && yy>0 && yy<width && fabs(zz-Z0)<length/2.0){    
          if (bounce!=2) bounce|=2;
#ifdef MCDEBUG
          printf("hit for intersection 2,1 %g %g (%g %g %g)\n",l02,l12,xx,yy,zz);
#endif
          x_test2=xx;y_test2=yy;z_test2=zz;
        }
      }
    }
    /*if we're about to hit both mirrors - pick the first one*/
    if (bounce==3){
      if (l11<l12){
        bounce=1;
      }else{
        bounce=2;
      }
    } else if (!bounce)
      continue;
  
    /*propagate to the selected mirror and reflect
      first store the old wavevector though*/
    double kxo,kyo,kzo;
    kxo=kx;kyo=ky,kzo=kz;
    if (bounce==1){
      PROP_DL(l11);
      SCATTER;
      nx=0;
      if (fabs(z_test1)<FLT_EPSILON){
        ny=-1;
        nz=0;
      } else {
        ny=(a*a*y_test1)/(b*b*z_test1);
        nz=1.0;
      }
      NORM(nx,ny,nz);
      vink=scalar_prod(nx,ny,nz,kx_e1,ky_e1,kz_e1); 
      kxn=kx_e1-2.0*vink*nx;
      kyn=ky_e1-2.0*vink*ny;
      kzn=kz_e1-2.0*vink*nz;
      NORM(kxn,kyn,kzn); 
#ifdef MCDEBUG
      printf("1: vink=%g k=(%g %g %g), k_e=(%g %g %g), n=(%g %g %g), kn=(%g %g %g) ",vink,kx,ky,kz,kx_e1,ky_e1,kz_e1,nx,ny,nz,kxn,kyn,kzn); 
#endif
      CoordTransEM(&kx,&ky,&kz,kxn,kyn,kzn,0,0,xi);
    }else if (bounce==2){
      PROP_DL(l12);
      SCATTER;
      ny=0;
      if (fabs(z_test2)<FLT_EPSILON){
        nx=1;
        nz=0;
      } else {
        nx=(a*a*x_test2)/(b*b*z_test2);
        nz=1.0;
      }
      NORM(nx,ny,nz);
      vink=scalar_prod(nx,ny,nz,kx_e2,ky_e2,kz_e2); 
      kxn=kx_e2-2.0*vink*nx;
      kyn=ky_e2-2.0*vink*ny;
      kzn=kz_e2-2.0*vink*nz;
      NORM(kxn,kyn,kzn); 
#ifdef MCDEBUG
      printf("2: vink=%g k=(%g %g %g), k_e=(%g %g %g), n=(%g %g %g), kn=(%g %g %g) ",vink,kx,ky,kz,kx_e2,ky_e2,kz_e2,nx,ny,nz,kxn,kyn,kzn); 
#endif
      CoordTransEM(&ky,&kx,&kz,kyn,kxn,kzn,0,0,xi);
    }
    
    kx=K*kx;
    ky=K*ky;
    kz=K*kz;
#ifdef MCDEBUG
      printf("ko=(%g %g %g)\n",kx,ky,kz);
#endif
    PROP_DL(FLT_EPSILON); 
    if (R0){
        p*=R0;
    }else{
        // Implementing the reflectivity.
        double dSingle,lambda;	// dSingle - thickness of one layer of the multilayer, AA
        double Q,Refl;
        double ex1=z+Z0, ex2=-(-b*b*a*a+b*b*ex1*ex1)/(a*a);	// ex1 & ex2 - expressions to simplify the equation dSingle(z).

        lambda=2*M_PI/K;   
        dSingle= (0.5*lambda)/cos( acos(sqrt(ex2)/sqrt(ex2 + c*c + 2*c*ex1 + ex1*ex1) ) - atan((ex1*b*b)/(sqrt(ex2)*a*a)) );
        Q=sqrt((kx-kxo)*(kx-kxo)+(ky-kyo)*(ky-kyo)+(kz-kzo)*(kz-kzo));
#ifdef MCDEBUG 
        printf("ML d-spacing dSingle=%g,z=%g,K=%g,lambda=%g, wave-vector transfer Q=%g\n",dSingle,z,K,lambda,Q);
#endif   
        Refl=Table_Value(ref_table, Q, 1);
        p*=Refl;
    } 
  }
%}

FINALLY
%{
    Table_Free(&ref_table);
%}

MCDISPLAY
%{
  /*
  rectangle("xz",0,0,0,width,length); */
  int i,j,N=10;
  double w_2=width/2.0;
  double l_2=length/2.0;
  const double x_e[]={w_2,0,0,2*w_2,2*w_2};
  double y_e[]={Y0,0,0,0,0};
  double z_e[]={Z0,0,0,0,0};
  if (s1<s2){
    y_e[1]=Y0-l_2*sin(xi);
    y_e[2]=y_e[3]=Y0+l_2*sin(xi);
    y_e[4]=y_e[1];
    z_e[1]=Z0-l_2*cos(xi);
    z_e[2]=z_e[3]=Z0+l_2*cos(xi);
    z_e[4]=z_e[1];
  }else if (s2<=s1){
    y_e[1]=Y0+l_2*sin(xi);
    y_e[2]=y_e[3]=Y0-l_2*sin(xi);
    y_e[4]=y_e[1];
    z_e[1]=Z0-l_2*cos(xi);
    z_e[2]=z_e[3]=Z0+l_2*cos(xi);
    z_e[4]=z_e[1];
  }
  double xx[5],yy[5],zz[5];
  for (i=0;i<5;i++){
    CoordTransEM(xx+i,yy+i,zz+i,x_e[i],y_e[i],z_e[i],Z0,Y0,xi);
    //printf("%d; %g %g %g => %g %g %g\n",i,x_e[i],y_e[i],z_e[i],xx[i],yy[i],zz[i]); 
  }

  multiline(5,xx[1],yy[1],zz[1],xx[2],yy[2],zz[2],xx[3],yy[3],zz[3],xx[4],yy[4],zz[4],xx[1],yy[1],zz[1]);
  multiline(3,xx[1],yy[1],zz[1],xx[0],yy[0],zz[0],xx[3],yy[3],zz[3]);
  multiline(3,xx[2],yy[2],zz[2],xx[0],yy[0],zz[0],xx[4],yy[4],zz[4]);

  for (i=0;i<5;i++){
    CoordTransEM(yy+i,xx+i,zz+i,x_e[i],y_e[i],z_e[i],Z0,Y0,xi);
    //printf("%d; %g %g %g => %g %g %g\n",i,y_e[i],x_e[i],z_e[i],xx[i],yy[i],zz[i]); 
  }

  multiline(5,xx[1],yy[1],zz[1],xx[2],yy[2],zz[2],xx[3],yy[3],zz[3],xx[4],yy[4],zz[4],xx[1],yy[1],zz[1]);
  multiline(3,xx[1],yy[1],zz[1],xx[0],yy[0],zz[0],xx[3],yy[3],zz[3]);
  multiline(3,xx[2],yy[2],zz[2],xx[0],yy[0],zz[0],xx[4],yy[4],zz[4]);
 
%}

END