1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
/*****************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Fluorescence
*
* %Identification
* Written by: E. Farhi
* Date: March 2022
* Origin: Synchrotron SOLEIL
*
* Sample model handling absorption, fluorescence, Compton and Rayleigh scattering.
*
* %Description
* Sample that models many photon-matter interactions:
* - absorption (photon excites an electron and creates a hole)
* - fluorescence (excited electrons emit light while falling into lower states)
* - Compton scattering (inelastic, incoherent)
* - Rayleigh scattering (elastic, coherent)
*
* An important option to enhance statistics is to set 'p_interact' to, say,
* 30 percent (0.3) in order to force a fraction of the beam to scatter. This
* will result on a larger number of scattered events, retaining intensity.
*
* The 'material' specification is given as a chemical formulae, e.g. "LaB6". It
* may also be given as a file name (CIF/LAU/LAZ/FullProf format) in which case
* the formulae is guessed (but may be approximative).
*
* By setting the 'order' to 1, the absorption along the scattered path is handled.
* A higher 'order' will handle multiple scattering events, and final absorption.
* For instance, a value order>=2 handles e.g. fluorescence iterative cascades
* in the material. Leaving 'order=0' handles the single scattering only.
*
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape
* box/plate: xwidth x yheight x zdepth (thickness=0)
* hollow box/plate:xwidth x yheight x zdepth and thickness>0
* cylinder: radius x yheight (thickness=0)
* hollow cylinder: radius x yheight and thickness>0
* sphere: radius (yheight=0 thickness=0)
* hollow sphere: radius and thickness>0 (yheight=0)
* any shape: geometry=OFF file
*
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the photon ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the OFF, PLY and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
* The default size of the object depends of the OFF file data, but its
* bounding box may be resized using xwidth,yheight and zdepth.
*
* <b>Concentric components:</b>
* This component has the ability to contain other components when used in
* hollow cylinder geometry (namely sample environment, e.g. cryostat and
* furnace structure). Such component 'shells' should be split into input and
* output side surrounding the 'inside' components. First part must then use
* 'concentric=1' flag to enter the inside part. The component itself must be
* repeated to mark the end of the concentric zone. The number of concentric
* shells and number of components inside is not limited.
*
* COMPONENT F_in = Fluorescence(material="Al", concentric=1, ...)
* AT (0,0,0) RELATIVE sample_position
*
* COMPONENT something_inside ... // e.g. the sample itself or other materials
*
* COMPONENT F_out = COPY(F_in)(concentric=0)
* AT (0,0,0) RELATIVE sample_position
*
* The computation is made via the XRayLib (apt install libxrl-dev).
*
* Example: Fluorescence(material="LaB6",
* xwidth=0.001,yheight=0.001,zdepth=0.0001, p_interact=0.99,
* target_index=1, focus_xw=0.0005, focus_yh=0.0005)
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT pow = Fluorescence(...)
*
* %Parameters
* material: [str] Chemical formulae, e.g. "LaB6", "Pb2SnO4". If may also be a CIF/LAZ/LAU file.
* weight: [g/mol] Atomic/molecular weight of material.
* density: [g/cm^3] Density of material. V_rho=density/weight/1e24*N_A.
* rho: [AA-3] Density of scattering elements (nb atoms/unit cell V_0).
* packing_factor: [1] How dense is the material compared to bulk 0-1.
* radius: [m] Outer radius of sample in (x,z) plane. cylinder/sphere.
* xwidth: [m] width for a box sample shape.
* yheight: [m] Height of sample in vertical direction for box/cylinder shapes.
* zdepth: [m] depth for a box sample shape.
* thickness: [m] Thickness of hollow sample Negative value extends the hollow volume outside of the box/cylinder.
* concentric: [1] Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere) [1]
* geometry: [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust.
* p_interact: [1] Force a given fraction of the beam to scatter, keeping intensity right, to enhance small signals (-1 unactivate).
* focus_xw: [m] Horiz. dimension of a rectangular area.
* focus_yh: [m] Vert. dimension of a rectangular area.
* focus_aw: [deg] Horiz. angular dimension of a rectangular area.
* focus_ah: [deg] Vert. angular dimension of a rectangular area.
* focus_r: [m] Radius of disk containing target. Use 0 for full space.
* target_index: [1] Relative index of component to focus at, e.g. next is +1.
* target_x: [m] Position of target to focus at, along X.
* target_y: [m] Position of target to focus at, along Y.
* target_z: [m] Position of target to focus at, along Z.
* flag_compton: [1] When 0, the Compton scattering is ignored.
* flag_rayleigh:[1] When 0, the Rayleigh scattering is ignored.
* flag_lorentzian:[1] When 1, the line shapes are assumed to be Lorentzian, else Gaussian
* order: [1] Limit multiple fluorescence up to given order. Last iteration is absorption only.
*
* CALCULATED PARAMETERS:
* type: scattering event type 0=fluorescence, 1=Rayleigh, 2=Compton, 3=transmit
*
* %Link
* The XRayLib https://github.com/tschoonj/xraylib
* %Link
* Fluorescence https://en.wikipedia.org/wiki/Fluorescence
* %Link
* Rayleigh https://en.wikipedia.org/wiki/Rayleigh_scattering
* %Link
* Compton https://en.wikipedia.org/wiki/Compton_scattering
* %Link
* X-ray absorption edges http://skuld.bmsc.washington.edu/scatter/AS_periodic.html
* %Link
* X-ray fluorescence spectra http://www.xrfresearch.com/xrf-spectra/
* %Link
* X-ray edges and fluo lines https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html
*
* %E
***********************************************************/
DEFINE COMPONENT Fluorescence
SETTING PARAMETERS(
string geometry=0,
radius=0, thickness=0,
xwidth=0, yheight=0, zdepth=0,
int concentric=0,
string material="LaB6", packing_factor=0, rho=0, density=0, weight=0,
p_interact=0,
target_x = 0, target_y = 0, target_z = 0, focus_r = 0,
focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, int target_index=0,
int flag_compton=1, int flag_rayleigh=1, int flag_lorentzian=1, int order=1)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
DEPENDENCY " @XRLFLAGS@ -DUSE_OFF "
NOACC
/* ========================================================================== */
SHARE %{
#ifndef XRAYLIB_LINES_MAX
#define XRAYLIB_LINES_MAX 383
#define FLUORESCENCE 0 // Fluo
#define RAYLEIGH 1 // Coherent
#define COMPTON 2 // Incoherent
#define TRANSMISSION 3
#include <xraylib/xraylib.h>
#endif
%include "read_table-lib"
%include "interoff-lib" // for OFF/PLY geometry
/* See XrayLib code (c) T. Schoonjans
* /usr/include/xraylib/xraylib-parser.h for compoundData
* /usr/include/xraylib/xraylib.h for XS
*/
/* inspired from:
* https://github.com/golosio/xrmc src/photon/photon.cpp (c) Bruno Golosio
*/
/* XRMC_CrossSections: Compute interaction cross sections in [barn/atom]
* Return total cross section, given Z and E0:
* total_xs = XRMC_CrossSections(Z, E0, xs[3]);
*/
double XRMC_CrossSections(int Z, double E0, double *xs) {
int i_line;
if (xs == NULL) return 0;
// loop on possible fluorescence lines
for (i_line=0; i_line<XRAYLIB_LINES_MAX; i_line++) {
// cumulative sum of the line cross sections
xs[FLUORESCENCE] += CSb_FluorLine(Z, -i_line, E0, NULL); /* XRayLib */
}
// coherent and incoherent cross sections
xs[RAYLEIGH] = CSb_Rayl( Z, E0, NULL);
xs[COMPTON] = CSb_Compt(Z, E0, NULL);
// total interaction cross section, should converge to CSb_Total(Z, E0, NULL)
return xs[FLUORESCENCE] + xs[RAYLEIGH] + xs[COMPTON];
} // XRMC_CrossSections
/* XRMC_SelectFromDistribution: select a random element from a distribution
* index = XRMC_SelectFromDistribution(cum_sum[N], N);
* index is returned within 0 and N-1
* The x_arr must be a continuously increasing cumulated sum, which last element is the max
*/
int XRMC_SelectFromDistribution(double x_arr[], int N)
{
double x=rand01()*x_arr[N-1];
if (x<x_arr[0]) { // x is smaller than lower limit
return 0;
}
if (x>=x_arr[N-1]) { // x is greater or equal to upper limit
return N-1;
}
int id=0, iu=N-1; // lower and upper index of the subarray to search
while (iu-id>1) { // search until the size of the subarray to search is >1
int im = (id + iu)/2; // use the midpoint for equal partition
// decide which subarray to search
if (x>=x_arr[im]) id=im; // change min index to search upper subarray
else iu=im; // change max index to search lower subarray
}
return id;
} // XRMC_SelectFromDistribution
/* XRMC_SelectInteraction: select interaction type Fluo/Compton/Rayleigh
* Return the interaction type from a random choice within cross sections 'xs'
* type = XRMC_SelectInteraction(xs[3]);
* 'xs' is computed with XRMC_CrossSections.
* type is one of FLUORESCENCE | RAYLEIGH | COMPTON
*/
int XRMC_SelectInteraction(double *xs)
{
double sum_xs, cum_xs[4];
int i;
cum_xs[0]=sum_xs=0;
for (i=0; i< 3; i++) {
sum_xs += xs[i];
cum_xs[i+1]= sum_xs;
}
return XRMC_SelectFromDistribution(cum_xs, 4);
} // XRMC_SelectInteraction
/* XRMC_SelectFluorescenceEnergy: select outgoing fluo photon energy, when incoming with 'E0'
* Ef = XRMC_SelectFluorescenceEnergy(Z, E0, &dE);
*/
double XRMC_SelectFluorescenceEnergy(int Z, double E0, double *dE)
{
int i_line;
double sum_xs, cum_xs_lines[XRAYLIB_LINES_MAX+1];
// compute cumulated XS for all fluo lines
cum_xs_lines[0] = sum_xs = 0;
for (i_line=0; i_line<XRAYLIB_LINES_MAX; i_line++) { // loop on fluorescent lines
double xs = CSb_FluorLine(Z, -i_line, E0, NULL); /* XRayLib */
// when a line is inactive: E=xs=0
sum_xs += xs;
cum_xs_lines[i_line+1] = sum_xs; // cumulative sum of their cross sections
}
// select randomly one of these lines
i_line = XRMC_SelectFromDistribution(cum_xs_lines, XRAYLIB_LINES_MAX); // extract a line
// get the K shell line width as approximation of fluorescence line width
if (dE) *dE = AtomicLevelWidth(Z, K_SHELL, NULL); // keV
return LineEnergy(Z, -i_line, NULL); // fluorescent line energy
} // XRMC_SelectFluorescenceEnergy
// Function removing spaces from string
char * removeSpacesFromStr(char *string)
{
// non_space_count to keep the frequency of non space characters
int non_space_count = 0;
//Traverse a string and if it is non space character then, place it at index non_space_count
for (int i = 0; string[i] != '\0'; i++)
{
if (isalpha(string[i]) || isdigit(string[i]))
{
string[non_space_count] = string[i];
non_space_count++; //non_space_count incremented
}
}
//Finally placing final character at the string end
string[non_space_count] = '\0';
return string;
}
// ok = fluo_get_material(material, formula)
// extracts material atoms from file header
// the result is concatenated into 'formula'
int fluo_get_material(char *filename, char *formula) {
int ret = 0;
char Line[65535];
int flag_found_cif=0;
FILE *file = Open_File(filename, "r", NULL);
if (!file)
exit(fprintf(stderr, "%s: ERROR: can not open file %s\n",
__FILE__, filename));
// Read the file, and search tokens in rows
formula[0]=0;
while (fgets(Line, sizeof(Line), file) != NULL) {
char *token = NULL;
int flag_exit=0;
char *first_non_space=NULL;
char *next_non_space =NULL;
// CIF: _chemical_formula_structural 'chemical_formulae'
// CIF: _chemical_formula_sum 'chemical_formulae'
// LAZ/LAU: # ATOM <at> <trailing>
// LAZ/LAU: # Atom <at> <trailing>
// LAZ/LAU: # TITLE <at> <at> ... [ trailing...]
// CFL: Title <chemical_formulae>
// CFL: Atom <at> <trailing>
// search for CIF token
// single line: search " '\'" delimiter after CIF token, marks reading the formula
if (!strncasecmp(Line, "_chemical_formula_structural", 28)
|| !strncasecmp(Line, "_chemical_formula_sum", 21)
|| !strncasecmp(Line, "_chemical_formula_moiety", 24)
|| flag_found_cif) {
if (flag_found_cif) { flag_found_cif=0; /* can not span on more that 2 lines */}
else flag_found_cif=1;
// search for delimiter after the CIF token
char *first_space_after_token=strpbrk(Line, " \'\n");
if (first_space_after_token) {
// search for the characters that may compose the formula
first_non_space = strpbrk(first_space_after_token, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789()[]");
if (strchr(first_space_after_token,'?')) {
// we have an invalid/unknown formula in the CIF. Skip CIF token/line
flag_found_cif=0;
continue;
}
}
if (first_non_space)
next_non_space = strpbrk(first_non_space+1, "\'\n\r"); // position of formula end
if (next_non_space) {
flag_exit = 1;
token = first_non_space;
}
} else if (!strncasecmp(Line, "# TITLE", 7) && strchr(Line, '['))
token = Line+7;
else if (!strncasecmp(Line, "# Atom", 6))
token = Line+6;
else if (!strncasecmp(Line, "Atom", 4))
token = Line+4;
else if (!strncasecmp(Line, "Title", 5))
token = Line+7;
if (!token) continue;
if (!strncasecmp(Line, "# TITLE", 7)) {
first_non_space = Line+7;
next_non_space = strchr(Line+7, '[');
if (next_non_space) flag_exit = 1;
}
if (!first_non_space) first_non_space = strtok(token, " \t\n");
if (!first_non_space) continue;
if (!next_non_space) next_non_space = strtok(NULL, " \t\n"); // end of formulae
if (!next_non_space) next_non_space = Line+strlen(Line);
// remove spaces
strncat(formula, first_non_space, next_non_space-first_non_space);
ret++;
if (flag_exit) break;
}
fclose(file);
removeSpacesFromStr(formula);
return(ret);
} // fluo_get_material
%}
/* ========================================================================== */
DECLARE %{
struct compoundData *compound;
DArray1d cum_massFractions;
DArray1d cum_xs_fluo;
DArray1d cum_xs_Compton;
DArray1d cum_xs_Rayleigh;
int shape;
off_struct offdata;
int n_fluo;
int n_Compton;
int n_Rayleigh;
double p_fluo;
double p_Compton;
double p_Rayleigh;
// cached values for SPLIT
int reuse_nb;
int reuse_intersect;
double reuse_ki;
double reuse_l0;
double reuse_l1;
double reuse_l2;
double reuse_l3;
double reuse_sigma_barn;
DArray1d reuse_cum_xs_fluo;
DArray1d reuse_cum_xs_Compton;
DArray1d reuse_cum_xs_Rayleigh;
char *filename;
%}
INITIALIZE %{
/* energies en [keV], angles in [radians], XRL CSb cross sections are in [barn/atom] */
double E0, dE;
xrl_error *error = NULL;
int i;
XRayInit();
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
shape=3; thickness=0; concentric=0;
}
#endif
}
else if (xwidth && yheight && zdepth) shape=1; /* box */
else if (radius > 0 && yheight) shape=0; /* cylinder */
else if (radius > 0 && !yheight) shape=2; /* sphere */
if (shape < 0)
exit(fprintf(stderr,"Fluorescence: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
if (!material || !strlen(material) || !strcmp(material, "NULL") || !strcmp(material, "0"))
exit(fprintf(stderr, "Fluorescence: ERROR: %s: Null material specification\n", NAME_CURRENT_COMP));
// test if the material is given as a file
char path[1024];
char formula[65536];
formula[0]='\0';
FILE *file = Open_File(material, "r", path);
if (file != NULL) {
fclose(file);
// open the material structure file (laz/lau/cif...)
// search (case sensitive) along lines
if (!fluo_get_material(material, formula))
exit(fprintf(stderr, "ERROR: %s: file %s does not contain material formulae.\n", NAME_CURRENT_COMP, material));
fprintf(stderr, "Fluorescence: INFO: %s: found material %s from file %s\n", NAME_CURRENT_COMP, formula, material);
strcpy(material, formula);
// CIF: _chemical_formula_structural 'chemical_formulae'
// CIF: _chemical_formula_sum 'chemical_formulae'
// LAZ/LAU: # ATOM <at> <trailing>
// LAZ/LAU: # Atom <at> <trailing>
// LAZ/LAU: # TITLE <at> <at> ... [ trailing...]
// CFL: Title <chemical_formulae>
// CFL: Atom <at> <trailing>
} else filename = NULL;
compound = CompoundParser(material, &error); /* XRayLib */
if (error != NULL) {
exit(fprintf(stderr, "ERROR: %s: Invalid material %s: %s\n",
NAME_CURRENT_COMP, material, error->message));
}
xrl_error_free(error);
/* compute total density for raw material and display information ========= */
if (weight <= 0) weight = compound->molarMass; /* g/mol */
MPI_MASTER(
printf("%s: Material %s mass fractions:\n",
NAME_CURRENT_COMP, material);
)
double mat_density = 0; /* g/cm3 */
double sum_massFractions = 0;
cum_massFractions = create_darr1d(compound->nElements+1);
cum_xs_fluo = create_darr1d(compound->nElements+1);
cum_xs_Compton = create_darr1d(compound->nElements+1);
cum_xs_Rayleigh = create_darr1d(compound->nElements+1);
cum_massFractions[0] = 0;
/* print material information, and check for elements */
for (i=0; i< compound->nElements; i++) {
int Z = compound->Elements[i];
error = NULL;
double Z_dens = ElementDensity(Z, &error);
if (error != NULL)
exit(fprintf(stderr, "ERROR: %s: Z=%i %s\n", NAME_CURRENT_COMP, Z, error->message));
mat_density += compound->massFractions[i]*Z_dens;
sum_massFractions += compound->massFractions[i];
cum_massFractions[i+1] = sum_massFractions;
MPI_MASTER(
printf(" | %6.2g %%: Z=%3i %3s %8.3g [g/mol] %8.3g [g/cm3]\n",
compound->massFractions[i]*100, Z, AtomicNumberToSymbol(Z,NULL), AtomicWeight(Z, NULL),
Z_dens);
)
}
xrl_error_free(error);
if (density <= 0) density = mat_density; /* g/cm3 */
if (packing_factor <= 0) packing_factor = density/mat_density;
/* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
/* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
if (!rho) rho = density/weight/1e24*NA; // atom density [at/Angs-3]
MPI_MASTER(
printf("%s: Material %s M=%g [g/mol] density=%g [g/cm3] rho=%g [at/Angs-3]",
NAME_CURRENT_COMP, material, weight, density, rho);
if (fabs(packing_factor-1) > 1e-2)
printf(" packing_factor=%g", packing_factor);
printf("\n");
)
if (0 < packing_factor && packing_factor < 1) rho *= packing_factor;
/* target for scattering ================================================== */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
MPI_MASTER(
printf("Fluorescence: %s: The target is not defined. Using 4PI.\n",
NAME_CURRENT_COMP);
);
}
n_fluo = n_Compton = n_Rayleigh = 0;
p_fluo = p_Compton = p_Rayleigh = 0;
// cached variables set to 0 (for SPLIT)
reuse_nb=0;
reuse_ki=reuse_l0=reuse_l3=0;
reuse_cum_xs_fluo = create_darr1d(compound->nElements+1);
reuse_cum_xs_Compton = create_darr1d(compound->nElements+1);
reuse_cum_xs_Rayleigh = create_darr1d(compound->nElements+1);
%}
TRACE %{
int intersect=0; /* flag to continue/stop */
int reuse=0;
int type=-1;
double l0, l1, l2, l3; /* times for intersections */
double dl0, dl1, dl2, dl; /* time intervals */
int flag_concentric = 0;
int flag_ishollow = 0;
double sigma_barn=0, xs[4]; /* cross sections [barn/atom] fluo/Compton/Rayleigh */
double aim_x=0, aim_y=0, aim_z=1; /* Position of target relative to scattering point */
int event_counter = 0; /* scattering event counter (multiple fluorescence) */
int force_transmit = 0; /* Flag to handle cross-section weighting in case of finite order */
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
double ki_x,ki_y,ki_z,ki,Ei, pi;
double kf_x,kf_y,kf_z,kf,Ef;
/* Store Initial photon state */
ki_x = kx;
ki_y = ky;
ki_z = kz;
ki = sqrt(kx*kx+ky*ky+kz*kz); // Angs-1
kf = ki;
Ei = K2E*ki; // keV
pi = p; // used to test for multiple fluo weighting and order cutoff
do { /* while (intersect) Loop over multiple scattering events */
// test for a SPLIT event (same particle comes in)
if (!event_counter && fabs(reuse_ki - ki) < 1e-15) {
reuse = 1;
reuse_nb++;
// use cached values and skip actual computation
intersect = reuse_intersect;
l0 = reuse_l0;
l1 = reuse_l1;
l2 = reuse_l2;
l3 = reuse_l3;
} else {
// we have a different event: compute intersection lengths
/* ========================================================================== */
/* GEOMETRY */
/* ========================================================================== */
/* Intersection photon trajectory / sample (sample surface) */
if (thickness >= 0) {
if (shape==0)
intersect=cylinder_intersect(&l0,&l3, x,y,z,kx,ky,kz, radius,yheight);
else if (shape==1)
intersect=box_intersect (&l0,&l3, x,y,z,kx,ky,kz, xwidth,yheight,zdepth);
else if (shape==2)
intersect=sphere_intersect (&l0,&l3, x,y,z,kx,ky,kz, radius);
#ifdef USE_OFF
else if (shape == 3)
intersect=off_x_intersect(&l0, &l3, NULL, NULL, x, y, z, kx,ky,kz, thread_offdata );
#endif
} else {
if (shape==0)
intersect=cylinder_intersect(&l0,&l3, x,y,z,kx,ky,kz, radius-thickness,
yheight-2*thickness > 0 ? yheight-2*thickness : yheight);
else if (shape==1)
intersect=box_intersect (&l0,&l3, x,y,z,kx,ky,kz,
xwidth-2*thickness > 0 ? xwidth-2*thickness : xwidth,
yheight-2*thickness > 0 ? yheight-2*thickness : yheight,
zdepth-2*thickness > 0 ? zdepth-2*thickness : zdepth);
else if (shape==2)
intersect=sphere_intersect (&l0,&l3, x,y,z,kx,ky,kz, radius-thickness);
#ifdef USE_OFF
else if (shape == 3)
intersect=off_x_intersect(&l0, &l3, NULL, NULL, x, y, z, kx,ky,kz, thread_offdata );
#endif
}
/* Computing the intermediate lengths */
if (intersect && p_interact >= 0) {
flag_ishollow = 0;
if (thickness > 0) {
if (shape==0 && cylinder_intersect(&l1,&l2, x,y,z,kx,ky,kz, radius-thickness,
yheight-2*thickness > 0 ? yheight-2*thickness : yheight))
flag_ishollow=1;
else if (shape==2 && sphere_intersect (&l1,&l2, x,y,z,kx,ky,kz, radius-thickness))
flag_ishollow=1;
else if (shape==1 && box_intersect(&l1,&l2, x,y,z,kx,ky,kz,
xwidth-2*thickness > 0 ? xwidth-2*thickness : xwidth,
yheight-2*thickness > 0 ? yheight-2*thickness : yheight,
zdepth-2*thickness > 0 ? zdepth-2*thickness : zdepth))
flag_ishollow=1;
} else if (thickness<0) {
if (shape==0 && cylinder_intersect(&l1,&l2, x,y,z,kx,ky,kz, radius,yheight))
flag_ishollow=1;
else if (shape==2 && sphere_intersect (&l1,&l2, x,y,z,kx,ky,kz, radius))
flag_ishollow=1;
else if (shape==1 && box_intersect(&l1,&l2, x,y,z,kx,ky,kz, xwidth, yheight, zdepth))
flag_ishollow=1;
}
if (!flag_ishollow) l1 = l2 = l3; /* no empty space inside */
} /* if intersect */
// store values for potential next SPLIT
reuse = 0;
reuse_intersect = intersect;
reuse_l0 = l0;
reuse_l1 = l1;
reuse_l2 = l2;
reuse_l3 = l3;
reuse_ki = ki;
} // if !reuse (SPLIT)
if (intersect) { /* the photon hits the sample */
if (l0 > 0) { /* we are before the sample */
PROP_DL(l0); /* propagates photon to the entry of the sample */
} else if (l1 > 0 && l1 > l0) { /* we are inside first part of the sample */
/* no propagation, stay inside */
} else if (l2 > 0 && l2 > l1) { /* we are in the hole */
PROP_DL(l2); /* propagate to inner surface of 2nd part of sample */
} else if (l3 > 0 && l3 > l2) { /* we are in the 2nd part of sample */
/* no propagation, stay inside */
}
dl0=l1-(l0 > 0 ? l0 : 0); /* Time in first part of hollow/cylinder/box */
dl1=l2-(l1 > 0 ? l1 : 0); /* Time in hole */
dl2=l3-(l2 > 0 ? l2 : 0); /* Time in 2nd part of hollow cylinder */
if (dl0 < 0) dl0 = 0;
if (dl1 < 0) dl1 = 0;
if (dl2 < 0) dl2 = 0;
/* initialize concentric mode */
if (concentric && !flag_concentric && l0 >= 0
&& shape==0 && thickness) {
flag_concentric=1;
}
if (flag_concentric == 1) {
dl1=dl2=0; /* force exit when reaching hole/2nd part */
}
if (!dl0 && !dl2) {
intersect = 0; /* the sample was passed entirely */
}
} // if intersect (geometry)
/* ========================================================================== */
/* INTERACTION PROCESS */
/* ========================================================================== */
if (intersect) {
double my_s;
int i_Z,i;
int flag=0;
double d_path, p_trans, p_scatt, mc_trans, mc_scatt;
/* actual fluorescence calculation */
/* compute total scattering cross section for incoming photon energy Ei */
/* compute each contribution XS */
xs[FLUORESCENCE]=xs[COMPTON]=xs[RAYLEIGH]=xs[TRANSMISSION]=sigma_barn=0;
cum_xs_fluo[0] = cum_xs_Compton[0] = cum_xs_Rayleigh[0] = 0;
if (!reuse) {
for (i_Z=0; i_Z< compound->nElements; i_Z++) {
int Z = compound->Elements[i_Z];
double frac= compound->massFractions[i_Z];
double xs_Z[3];
// get Fluorescence xs
XRMC_CrossSections(Z, Ei, xs_Z); // [barn/atom]
sigma_barn += frac*CSb_Total(Z, Ei, NULL); // Photo+Compton+Rayleigh
cum_xs_fluo[i_Z+1] = cum_xs_fluo[i_Z] +frac*xs_Z[FLUORESCENCE];
cum_xs_Compton[i_Z+1] = cum_xs_Compton[i_Z] +frac*xs_Z[COMPTON];
cum_xs_Rayleigh[i_Z+1] = cum_xs_Rayleigh[i_Z]+frac*xs_Z[RAYLEIGH];
for (i=0; i<3; i++) { xs[i] += frac*xs_Z[i]; }
} // for Z in compound
// store values into cache for SPLIT
for (i_Z=0; i_Z< compound->nElements; i_Z++) {
reuse_cum_xs_fluo[i_Z+1] = cum_xs_fluo[i_Z+1];
reuse_cum_xs_Compton[i_Z+1] = cum_xs_Compton[i_Z+1];
reuse_cum_xs_Rayleigh[i_Z+1] = cum_xs_Rayleigh[i_Z+1];
}
reuse_sigma_barn = sigma_barn;
} else {
// reuse cached values (SPLIT)
for (i_Z=0; i_Z< compound->nElements; i_Z++) {
cum_xs_fluo[i_Z+1] = reuse_cum_xs_fluo[i_Z+1];
cum_xs_Compton[i_Z+1] = reuse_cum_xs_Compton[i_Z+1];
cum_xs_Rayleigh[i_Z+1] = reuse_cum_xs_Rayleigh[i_Z+1];
xs[FLUORESCENCE] += reuse_cum_xs_fluo[i_Z+1];
xs[COMPTON] += reuse_cum_xs_Compton[i_Z+1];
xs[RAYLEIGH] += reuse_cum_xs_Rayleigh[i_Z+1];
}
sigma_barn = reuse_sigma_barn;
}
/* probability to absorb/scatter */
my_s = rho*100*sigma_barn; /* mu, 100: convert from barns to fm^2. my_s in [1/m] */
d_path = ( dl0 +dl2 ); /* total path lenght in sample */
/* Proba of transmission/interaction along length d_path */
p_trans = exp(-my_s*d_path); /* probability to not-interact (transmit) */
//printf("sigma_barn=%g p_trans=%g\n", sigma_barn, p_trans);
p_scatt = 1 - p_trans; /* portion of beam which scatters */
/* force a given fraction of the beam to scatter */
if (p_interact>0 && p_interact<=1) {
/* we force a portion of the beam to interact */
/* This is used to improve statistics */
mc_trans = 1-p_interact;
} else {
mc_trans = p_trans; /* 1 - p_scatt */
}
mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
if (mc_scatt <= 0) ABSORB;
if (!force_transmit && mc_scatt > 0 && (mc_scatt >= 1 || rand01() < mc_scatt)) {
/* we "scatter" with one of the interaction processes */
dl = -log(1 - rand0max((1 - exp(-my_s*d_path)))) / my_s; /* length */
/* If t0 is in hole, propagate to next part of the hollow cylinder */
if (dl1 > 0 && dl0 > 0 && dl > dl0) dl += dl1;
/* photon propagation to the scattering point */
PROP_DL(dl);
p *= fabs(p_scatt/mc_scatt); /* account for p_interact, lower than 1 */
} else { // force_transmit
/* we go through the material without interaction, and exit */
if (type <0) type = TRANSMISSION; // 3 transmission
intersect = 0;
PROP_DL(dl0+dl2);
/* attenuate beam by portion which is scattered (and left along) */
p *= p_trans;
if (p_interact>0 && p_interact<=1) p /= mc_trans;
break; // end while (intersect)
}
} /* if intersect (propagate) */
if (intersect) { /* scattering event */
int i_Z, Z;
double solid_angle;
double theta, dsigma;
double Ef, dE;
/* correct for XS total(photo+Compton+Rayleigh) > sum(fluo+Compton+Rayleigh) */
dsigma = (xs[FLUORESCENCE]+xs[RAYLEIGH]+xs[COMPTON])/sigma_barn;
if (dsigma < 1) p *= dsigma; // < 1
/* MC choose process from cross sections 'xs': fluo, Compton, Rayleigh */
type = XRMC_SelectInteraction(xs);
/* choose Z (element) on associated XS, taking into account mass-fractions */
switch (type) {
case FLUORESCENCE:
i_Z = XRMC_SelectFromDistribution(cum_xs_fluo, compound->nElements+1);
break;
case RAYLEIGH:
if (!flag_rayleigh) ABSORB;
i_Z = XRMC_SelectFromDistribution(cum_xs_Rayleigh, compound->nElements+1);
break;
case COMPTON:
if (!flag_compton) ABSORB;
i_Z = XRMC_SelectFromDistribution(cum_xs_Compton, compound->nElements+1);
break;
default:
printf("%s: WARNING: process %i unknown. Absorb.\n", NAME_CURRENT_COMP, type);
ABSORB;
}
Z = compound->Elements[i_Z];
/* select outgoing vector */
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kf_x, &kf_y, &kf_z, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kf_x, &kf_y, &kf_z, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kf_x, &kf_y, &kf_z, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
p *= solid_angle/(4*PI); // correct for selected solid-angle
NORM(kf_x, kf_y, kf_z); // normalize the outout direction |kf|=1
// determine final energy
switch (type) {
case FLUORESCENCE: /* 0 Fluo: choose line */
n_fluo++;
p_fluo += p;
Ef = XRMC_SelectFluorescenceEnergy(Z, Ei, &dE); // dE in keV
if (dE) {
if (flag_lorentzian) dE *= tan(PI/2*randpm1()); // Lorentzian distribution
else dE *= randnorm(); // Gaussian distribution
Ef = Ef + dE;
}
kf = Ef*E2K;
break;
case RAYLEIGH: /* 1 Rayleigh: Coherent, elastic */
n_Rayleigh++;
p_Rayleigh += p;
theta = acos(scalar_prod(kf_x,kf_y, kf_z,ki_x, ki_y,ki_z)/ki);
dsigma = DCSb_Rayl(Z, Ei, theta, NULL); // [barn/at/st]
p *= 4*PI*dsigma/xs[RAYLEIGH];
break;
case COMPTON: /* 2 Compton: Incoherent: choose final energy */
n_Compton++;
p_Compton += p;
theta = acos(scalar_prod(kf_x,kf_y, kf_z,ki_x, ki_y,ki_z)/ki);
dsigma = DCS_Compt(Z, Ei, theta, NULL); // [barn/at/st]
kf = ComptonEnergy(Ei, theta, NULL)*E2K; /* XRayLib */
p *= 4*PI*dsigma/xs[COMPTON];
break;
}
Ef = K2E*kf;
kx = kf*kf_x;
ky = kf*kf_y;
kz = kf*kf_z;
SCATTER;
event_counter++;
/* exit if multiple scattering order has been reached */
if (!order) break; // skip final absorption
// stop when order has been reached, or weighting is very low
if (order && (event_counter >= order || p/pi < 1e-7)) { force_transmit=1; }
} // if intersect (scatter)
} while(intersect); /* end do (intersect) (multiple scattering loop) */
%}
FINALLY %{
FreeCompoundData(compound);
if (filename && filename != material)
unlink(filename);
printf("%s: scattered intensity: fluo=%g Compton=%g Rayleigh=%g\n",
NAME_CURRENT_COMP, p_fluo, p_Compton, p_Rayleigh);
%}
END
|