File: Fluorescence.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (895 lines) | stat: -rw-r--r-- 35,160 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*****************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Fluorescence
*
* %Identification
* Written by: E. Farhi
* Date:       March 2022
* Origin:     Synchrotron SOLEIL
*
* Sample model handling absorption, fluorescence, Compton and Rayleigh scattering.
*
* %Description
* Sample that models many photon-matter interactions:
* - absorption (photon excites an electron and creates a hole)
* - fluorescence (excited electrons emit light while falling into lower states)
* - Compton scattering  (inelastic, incoherent)
* - Rayleigh scattering (elastic,   coherent)
*
* An important option to enhance statistics is to set 'p_interact' to, say,
* 30 percent (0.3) in order to force a fraction of the beam to scatter. This
* will result on a larger number of scattered events, retaining intensity.
*
* The 'material' specification is given as a chemical formulae, e.g. "LaB6". It
* may also be given as a file name (CIF/LAU/LAZ/FullProf format) in which case 
* the formulae is guessed (but may be approximative).
*
* By setting the 'order' to 1, the absorption along the scattered path is handled.
* A higher 'order' will handle multiple scattering events, and final absorption.
* For instance, a value order>=2 handles e.g. fluorescence iterative cascades 
* in the material. Leaving 'order=0' handles the single scattering only.
*
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape
*   box/plate:       xwidth x yheight x zdepth (thickness=0)
*   hollow box/plate:xwidth x yheight x zdepth and thickness>0
*   cylinder:        radius x yheight (thickness=0)
*   hollow cylinder: radius x yheight and thickness>0
*   sphere:          radius (yheight=0 thickness=0)
*   hollow sphere:   radius and thickness>0 (yheight=0)
*   any shape:       geometry=OFF file
*
*   The complex geometry option handles any closed non-convex polyhedra.
*   It computes the intersection points of the photon ray with the object
*   transparently, so that it can be used like a regular sample object.
*   It supports the OFF, PLY and NOFF file format but not COFF (colored faces).
*   Such files may be generated from XYZ data using:
*     qhull < coordinates.xyz Qx Qv Tv o > geomview.off
*   or
*     powercrust coordinates.xyz
*   and viewed with geomview or java -jar jroff.jar (see below).
*   The default size of the object depends of the OFF file data, but its
*   bounding box may be resized using xwidth,yheight and zdepth.
*
* <b>Concentric components:</b>
* This component has the ability to contain other components when used in
* hollow cylinder geometry (namely sample environment, e.g. cryostat and
* furnace structure). Such component 'shells' should be split into input and
* output side surrounding the 'inside' components. First part must then use
* 'concentric=1' flag to enter the inside part. The component itself must be
* repeated to mark the end of the concentric zone. The number of concentric
* shells and number of components inside is not limited.
*
* COMPONENT F_in = Fluorescence(material="Al", concentric=1, ...)
* AT (0,0,0) RELATIVE sample_position
*
* COMPONENT something_inside ... // e.g. the sample itself or other materials
*
* COMPONENT F_out = COPY(F_in)(concentric=0)
* AT (0,0,0) RELATIVE sample_position
*
* The computation is made via the XRayLib (apt install libxrl-dev).
*
* Example: Fluorescence(material="LaB6",
*  xwidth=0.001,yheight=0.001,zdepth=0.0001, p_interact=0.99,
*  target_index=1, focus_xw=0.0005, focus_yh=0.0005)
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT pow = Fluorescence(...)
*
* %Parameters
* material:  [str]    Chemical formulae, e.g. "LaB6", "Pb2SnO4". If may also be a CIF/LAZ/LAU file.
* weight:    [g/mol]  Atomic/molecular weight of material.
* density:   [g/cm^3] Density of material. V_rho=density/weight/1e24*N_A.
* rho:       [AA-3]   Density of scattering elements (nb atoms/unit cell V_0).
* packing_factor: [1] How dense is the material compared to bulk 0-1.
* radius:    [m]      Outer radius of sample in (x,z) plane. cylinder/sphere.
* xwidth:    [m]      width for a box sample shape.
* yheight:   [m]      Height of sample in vertical direction for box/cylinder shapes.
* zdepth:    [m]      depth for a box sample shape.
* thickness: [m]      Thickness of hollow sample Negative value extends the hollow volume outside of the box/cylinder.
* concentric: [1]     Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere) [1]
* geometry:  [str]    Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust.
* p_interact: [1]     Force a given fraction of the beam to scatter, keeping intensity right, to enhance small signals (-1 unactivate).
* focus_xw:  [m]      Horiz. dimension of a rectangular area.
* focus_yh:  [m]      Vert.  dimension of a rectangular area.
* focus_aw:  [deg]    Horiz. angular dimension of a rectangular area.
* focus_ah:  [deg]    Vert.  angular dimension of a rectangular area.
* focus_r:   [m]      Radius of disk containing target. Use 0 for full space.
* target_index: [1]   Relative index of component to focus at, e.g. next is +1.
* target_x:  [m]      Position of target to focus at, along X.
* target_y:  [m]      Position of target to focus at, along Y.
* target_z:  [m]      Position of target to focus at, along Z.
* flag_compton: [1]   When 0, the Compton  scattering is ignored.
* flag_rayleigh:[1]   When 0, the Rayleigh scattering is ignored.
* flag_lorentzian:[1] When 1, the line shapes are assumed to be Lorentzian, else Gaussian
* order:     [1]      Limit multiple fluorescence up to given order. Last iteration is absorption only.
*
* CALCULATED PARAMETERS:
* type: scattering event type 0=fluorescence, 1=Rayleigh, 2=Compton, 3=transmit
*
* %Link
* The XRayLib https://github.com/tschoonj/xraylib
* %Link
* Fluorescence https://en.wikipedia.org/wiki/Fluorescence
* %Link
* Rayleigh https://en.wikipedia.org/wiki/Rayleigh_scattering
* %Link
* Compton https://en.wikipedia.org/wiki/Compton_scattering
* %Link
* X-ray absorption edges http://skuld.bmsc.washington.edu/scatter/AS_periodic.html
* %Link
* X-ray fluorescence spectra http://www.xrfresearch.com/xrf-spectra/
* %Link
* X-ray edges and fluo lines https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html
*
* %E
***********************************************************/

DEFINE COMPONENT Fluorescence
SETTING PARAMETERS(
  string geometry=0,
  radius=0, thickness=0,
  xwidth=0, yheight=0, zdepth=0,
  int concentric=0,
  string material="LaB6", packing_factor=0, rho=0, density=0, weight=0, 
  p_interact=0, 
  target_x = 0, target_y = 0, target_z = 0, focus_r = 0,
  focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, int target_index=0,
  int flag_compton=1, int flag_rayleigh=1, int flag_lorentzian=1, int order=1)

/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
DEPENDENCY " @XRLFLAGS@ -DUSE_OFF "
NOACC

/* ========================================================================== */

SHARE %{
  #ifndef XRAYLIB_LINES_MAX
  #define XRAYLIB_LINES_MAX 383
  #define FLUORESCENCE 0  // Fluo
  #define RAYLEIGH     1  // Coherent
  #define COMPTON      2  // Incoherent
  #define TRANSMISSION 3
  #include <xraylib/xraylib.h>
  #endif
  %include "read_table-lib"
  %include "interoff-lib" // for OFF/PLY geometry
  
/* See XrayLib code (c) T. Schoonjans
 * /usr/include/xraylib/xraylib-parser.h      for compoundData
 * /usr/include/xraylib/xraylib.h             for XS
 */

/* inspired from:
 * https://github.com/golosio/xrmc src/photon/photon.cpp (c) Bruno Golosio    
 */
  
/* XRMC_CrossSections: Compute interaction cross sections in [barn/atom]
 * Return total cross section, given Z and E0:
 *   total_xs = XRMC_CrossSections(Z, E0, xs[3]);
 */
double XRMC_CrossSections(int Z, double E0, double *xs) {
  int    i_line;
  
  if (xs == NULL) return 0;
  
  // loop on possible fluorescence lines
  for (i_line=0; i_line<XRAYLIB_LINES_MAX; i_line++) { 
    // cumulative sum of the line cross sections
    xs[FLUORESCENCE] += CSb_FluorLine(Z, -i_line, E0, NULL); /* XRayLib */
  }

  // coherent and incoherent cross sections
  xs[RAYLEIGH] = CSb_Rayl( Z, E0, NULL);
  xs[COMPTON]  = CSb_Compt(Z, E0, NULL);
  
  // total interaction cross section, should converge to CSb_Total(Z, E0, NULL)
  return xs[FLUORESCENCE] + xs[RAYLEIGH] + xs[COMPTON];
} // XRMC_CrossSections

/* XRMC_SelectFromDistribution: select a random element from a distribution
 *   index = XRMC_SelectFromDistribution(cum_sum[N], N);
 * index is returned within 0 and N-1
 * The x_arr must be a continuously increasing cumulated sum, which last element is the max
 */
int XRMC_SelectFromDistribution(double x_arr[], int N)
{
  double x=rand01()*x_arr[N-1];
  if (x<x_arr[0]) {    // x is smaller than lower limit
    return 0;
  }
  if (x>=x_arr[N-1]) { // x is greater or equal to upper limit
    return N-1;
  }
  int id=0, iu=N-1; // lower and upper index of the subarray to search
  while (iu-id>1) { // search until the size of the subarray to search is >1
    int im = (id + iu)/2; // use the midpoint for equal partition
    // decide which subarray to search
    if (x>=x_arr[im]) id=im; // change min index to search upper subarray
    else iu=im; // change max index to search lower subarray
  }

  return id;
} // XRMC_SelectFromDistribution

/* XRMC_SelectInteraction: select interaction type Fluo/Compton/Rayleigh
 * Return the interaction type from a random choice within cross sections 'xs'
 *   type = XRMC_SelectInteraction(xs[3]);
 * 'xs' is computed with XRMC_CrossSections.
 * type is one of FLUORESCENCE | RAYLEIGH | COMPTON
 */
int XRMC_SelectInteraction(double *xs)
{
  double sum_xs, cum_xs[4];
  int    i;
  
  cum_xs[0]=sum_xs=0;
  for (i=0; i< 3; i++) {
    sum_xs += xs[i];
    cum_xs[i+1]= sum_xs;
  }
  return XRMC_SelectFromDistribution(cum_xs, 4);
} // XRMC_SelectInteraction

/* XRMC_SelectFluorescenceEnergy: select outgoing fluo photon energy, when incoming with 'E0'
 *   Ef = XRMC_SelectFluorescenceEnergy(Z, E0, &dE);
 */
double XRMC_SelectFluorescenceEnergy(int Z, double E0, double *dE)
{
  int i_line;
  double sum_xs, cum_xs_lines[XRAYLIB_LINES_MAX+1];

  // compute cumulated XS for all fluo lines
  cum_xs_lines[0] = sum_xs = 0;
  for (i_line=0; i_line<XRAYLIB_LINES_MAX; i_line++) { // loop on fluorescent lines
    double xs = CSb_FluorLine(Z, -i_line, E0, NULL); /* XRayLib */
    // when a line is inactive: E=xs=0
    sum_xs += xs;
    cum_xs_lines[i_line+1] = sum_xs; // cumulative sum of their cross sections
  }
  // select randomly one of these lines
  i_line = XRMC_SelectFromDistribution(cum_xs_lines, XRAYLIB_LINES_MAX); // extract a line
  // get the K shell line width as approximation of fluorescence line width
  if (dE) *dE = AtomicLevelWidth(Z, K_SHELL, NULL); // keV

  return LineEnergy(Z, -i_line, NULL); // fluorescent line energy
} // XRMC_SelectFluorescenceEnergy

  // Function removing spaces from string
  char * removeSpacesFromStr(char *string)
  {
      // non_space_count to keep the frequency of non space characters
      int non_space_count = 0;
   
      //Traverse a string and if it is non space character then, place it at index non_space_count
      for (int i = 0; string[i] != '\0'; i++)
      {
          if (isalpha(string[i]) || isdigit(string[i]))
          {
              string[non_space_count] = string[i];
              non_space_count++; //non_space_count incremented
          }    
      }
      
      //Finally placing final character at the string end
      string[non_space_count] = '\0';
      return string;
  }

  // ok = fluo_get_material(material, formula)
  // extracts material atoms from file header
  // the result is concatenated into 'formula'
  int fluo_get_material(char *filename, char *formula) {
  
    int  ret = 0;
    char Line[65535];
    int flag_found_cif=0;
    FILE *file = Open_File(filename, "r", NULL);
    if (!file)
      exit(fprintf(stderr, "%s: ERROR: can not open file %s\n", 
      __FILE__, filename));
    
    // Read the file, and search tokens in rows
    formula[0]=0;
    while (fgets(Line, sizeof(Line), file) != NULL) {
      char *token = NULL;
      int   flag_exit=0;
      char *first_non_space=NULL;
      char *next_non_space =NULL;
      // CIF: _chemical_formula_structural 'chemical_formulae'
      // CIF: _chemical_formula_sum 'chemical_formulae'
      // LAZ/LAU: # ATOM <at> <trailing>
      // LAZ/LAU: # Atom <at> <trailing>
      // LAZ/LAU: # TITLE <at> <at> ... [ trailing...]
      // CFL: Title <chemical_formulae>
      // CFL: Atom <at> <trailing>
      
      // search for CIF token
      // single line: search " '\'" delimiter after CIF token, marks reading the formula
      if (!strncasecmp(Line, "_chemical_formula_structural", 28) 
       || !strncasecmp(Line, "_chemical_formula_sum", 21) 
       || !strncasecmp(Line, "_chemical_formula_moiety", 24)
       || flag_found_cif) {
        if  (flag_found_cif) { flag_found_cif=0; /* can not span on more that 2 lines */} 
        else flag_found_cif=1;
        // search for delimiter after the CIF token
        char *first_space_after_token=strpbrk(Line, " \'\n");
        if (first_space_after_token) {
          // search for the characters that may compose the formula
          first_non_space = strpbrk(first_space_after_token, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789()[]");
          if (strchr(first_space_after_token,'?')) {
            // we have an invalid/unknown formula in the CIF. Skip CIF token/line
            flag_found_cif=0;
            continue;
          }
        }
        if (first_non_space) 
          next_non_space  = strpbrk(first_non_space+1, "\'\n\r"); // position of formula end
        if (next_non_space) { 
          flag_exit = 1;
          token = first_non_space;
        }
      } else if (!strncasecmp(Line, "# TITLE", 7) && strchr(Line, '['))
        token = Line+7;
      else if (!strncasecmp(Line, "# Atom", 6))
        token = Line+6;
      else if (!strncasecmp(Line, "Atom", 4))
        token = Line+4;
      else if (!strncasecmp(Line, "Title", 5))
        token = Line+7;
      if (!token) continue;
      if (!strncasecmp(Line, "# TITLE", 7)) {
        first_non_space = Line+7;
        next_non_space  = strchr(Line+7, '[');
        if (next_non_space) flag_exit = 1;
      }
      if (!first_non_space) first_non_space = strtok(token, " \t\n");
      if (!first_non_space) continue;
      if (!next_non_space)  next_non_space  = strtok(NULL,  " \t\n"); // end of formulae
      if (!next_non_space)  next_non_space = Line+strlen(Line);
      // remove spaces
      strncat(formula, first_non_space, next_non_space-first_non_space);
      ret++;
      if (flag_exit) break;
    }
    fclose(file);
    removeSpacesFromStr(formula);
    return(ret);
  } // fluo_get_material
%}

/* ========================================================================== */

DECLARE %{
  struct   compoundData *compound;
  DArray1d cum_massFractions;
  DArray1d cum_xs_fluo;
  DArray1d cum_xs_Compton;
  DArray1d cum_xs_Rayleigh;
  int  shape;
  off_struct offdata;
  int  n_fluo;
  int  n_Compton;
  int  n_Rayleigh;
  double p_fluo;
  double p_Compton;
  double p_Rayleigh;
  
  // cached values for SPLIT
  int    reuse_nb;
  int    reuse_intersect;
  double reuse_ki;
  double reuse_l0;
  double reuse_l1;
  double reuse_l2;
  double reuse_l3;
  double reuse_sigma_barn;
  DArray1d reuse_cum_xs_fluo;
  DArray1d reuse_cum_xs_Compton;
  DArray1d reuse_cum_xs_Rayleigh;
  char *filename;
%}

INITIALIZE %{

  /* energies en [keV], angles in [radians], XRL CSb cross sections are in [barn/atom] */
  double     E0, dE;
  xrl_error *error = NULL;
  int        i;
  
  XRayInit();
  
  shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape  */
  if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
    #ifndef USE_OFF
    fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
    exit(-1);
    #else
    if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
      shape=3; thickness=0; concentric=0;
    }
    #endif
  }
  else if (xwidth && yheight && zdepth)  shape=1; /* box */
  else if (radius > 0 &&  yheight)       shape=0; /* cylinder */
  else if (radius > 0 && !yheight)       shape=2; /* sphere */

  if (shape < 0)
    exit(fprintf(stderr,"Fluorescence: %s: sample has invalid dimensions.\n"
                        "ERROR       Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
  
  if (!material || !strlen(material) || !strcmp(material, "NULL") || !strcmp(material, "0")) 
    exit(fprintf(stderr, "Fluorescence: ERROR: %s: Null material specification\n", NAME_CURRENT_COMP));
    
  // test if the material is given as a file
  char path[1024];
  char formula[65536];
  formula[0]='\0';
  FILE *file = Open_File(material, "r", path);
  if (file != NULL) {
    fclose(file);
    // open the material structure file (laz/lau/cif...)
    // search (case sensitive) along lines
    if (!fluo_get_material(material, formula))
      exit(fprintf(stderr, "ERROR: %s: file %s does not contain material formulae.\n", NAME_CURRENT_COMP, material));
    
    fprintf(stderr, "Fluorescence: INFO: %s: found material %s from file %s\n", NAME_CURRENT_COMP, formula, material);
    strcpy(material, formula);
    // CIF: _chemical_formula_structural 'chemical_formulae'
    // CIF: _chemical_formula_sum 'chemical_formulae'
    // LAZ/LAU: # ATOM <at> <trailing>
    // LAZ/LAU: # Atom <at> <trailing>
    // LAZ/LAU: # TITLE <at> <at> ... [ trailing...]
    // CFL: Title <chemical_formulae>
    // CFL: Atom <at> <trailing>
    
  } else filename = NULL;
    
  compound = CompoundParser(material, &error); /* XRayLib */
  if (error != NULL) {
    exit(fprintf(stderr, "ERROR: %s: Invalid material %s: %s\n",
      NAME_CURRENT_COMP, material, error->message));
  }
  xrl_error_free(error);
  
  /* compute total density for raw material and display information ========= */  
  if (weight <= 0) weight = compound->molarMass; /* g/mol */
  MPI_MASTER(
    printf("%s: Material %s mass fractions:\n", 
      NAME_CURRENT_COMP, material);
  )
  
  double mat_density       = 0; /* g/cm3 */
  double sum_massFractions = 0;
  cum_massFractions        = create_darr1d(compound->nElements+1);
  cum_xs_fluo              = create_darr1d(compound->nElements+1);
  cum_xs_Compton           = create_darr1d(compound->nElements+1);
  cum_xs_Rayleigh          = create_darr1d(compound->nElements+1);
  cum_massFractions[0]     = 0;
  
  /* print material information, and check for elements */
  for (i=0; i< compound->nElements; i++) {
    int    Z      = compound->Elements[i];
    error = NULL;
    double Z_dens = ElementDensity(Z, &error);
    if (error != NULL)
      exit(fprintf(stderr, "ERROR: %s: Z=%i %s\n", NAME_CURRENT_COMP, Z, error->message));
    mat_density           += compound->massFractions[i]*Z_dens;
    sum_massFractions     += compound->massFractions[i];
    cum_massFractions[i+1] = sum_massFractions;
    MPI_MASTER(
      printf("  | %6.2g %%: Z=%3i %3s %8.3g [g/mol] %8.3g [g/cm3]\n",
        compound->massFractions[i]*100, Z, AtomicNumberToSymbol(Z,NULL), AtomicWeight(Z, NULL),
        Z_dens);
    )
  }
  xrl_error_free(error);
  if (density <= 0)        density        = mat_density;   /* g/cm3 */
  if (packing_factor <= 0) packing_factor = density/mat_density;
  
  /* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
  /* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
  if (!rho) rho = density/weight/1e24*NA; // atom density [at/Angs-3]
  MPI_MASTER(
    printf("%s: Material %s M=%g [g/mol] density=%g [g/cm3] rho=%g [at/Angs-3]",
      NAME_CURRENT_COMP, material, weight, density, rho);
    if (fabs(packing_factor-1) > 1e-2)
      printf(" packing_factor=%g", packing_factor);
    printf("\n");
  )
  if (0 < packing_factor && packing_factor < 1) rho *= packing_factor;
  
  /* target for scattering ================================================== */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }
  if (!(target_x || target_y || target_z)) {
    MPI_MASTER(
    printf("Fluorescence: %s: The target is not defined. Using 4PI.\n",
      NAME_CURRENT_COMP);
    );
  }
  
  n_fluo = n_Compton = n_Rayleigh = 0;
  p_fluo = p_Compton = p_Rayleigh = 0;
  
  // cached variables set to 0 (for SPLIT)
  reuse_nb=0;
  reuse_ki=reuse_l0=reuse_l3=0;
  reuse_cum_xs_fluo              = create_darr1d(compound->nElements+1);
  reuse_cum_xs_Compton           = create_darr1d(compound->nElements+1);
  reuse_cum_xs_Rayleigh          = create_darr1d(compound->nElements+1);
%}

TRACE %{

int    intersect=0;       /* flag to continue/stop */
int    reuse=0;
int    type=-1;
double l0,  l1,  l2,  l3; /* times for intersections */
double dl0, dl1, dl2, dl; /* time intervals */
int    flag_concentric = 0;
int    flag_ishollow   = 0;
double sigma_barn=0, xs[4]; /* cross sections [barn/atom] fluo/Compton/Rayleigh */
double aim_x=0, aim_y=0, aim_z=1;   /* Position of target relative to scattering point */
int    event_counter   = 0;         /* scattering event counter (multiple fluorescence) */
int    force_transmit  = 0;         /* Flag to handle cross-section weighting in case of finite order */

#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif

double ki_x,ki_y,ki_z,ki,Ei, pi;
double kf_x,kf_y,kf_z,kf,Ef;

/* Store Initial photon state */

ki_x = kx;
ki_y = ky;
ki_z = kz;
ki   = sqrt(kx*kx+ky*ky+kz*kz); //  Angs-1
kf   = ki;
Ei   = K2E*ki; // keV
pi   = p;      // used to test for multiple fluo weighting and order cutoff

do { /* while (intersect) Loop over multiple scattering events */

  // test for a SPLIT event (same particle comes in)
  if (!event_counter && fabs(reuse_ki - ki) < 1e-15) {
    reuse     = 1;
    reuse_nb++;
    // use cached values and skip actual computation
    intersect = reuse_intersect;
    l0        = reuse_l0;
    l1        = reuse_l1;
    l2        = reuse_l2;
    l3        = reuse_l3;
  } else {
    // we have a different event: compute intersection lengths
    
    /* ========================================================================== */
    /*                                   GEOMETRY                                 */
    /* ========================================================================== */

    /* Intersection photon trajectory / sample (sample surface) */
    if (thickness >= 0) {
      if (shape==0)
        intersect=cylinder_intersect(&l0,&l3, x,y,z,kx,ky,kz, radius,yheight);
      else if (shape==1)
        intersect=box_intersect     (&l0,&l3, x,y,z,kx,ky,kz, xwidth,yheight,zdepth);
      else if (shape==2)
        intersect=sphere_intersect  (&l0,&l3, x,y,z,kx,ky,kz, radius);
      #ifdef USE_OFF
      else if (shape == 3)
        intersect=off_x_intersect(&l0, &l3, NULL, NULL, x, y, z, kx,ky,kz, thread_offdata );
      #endif
    } else {
      if (shape==0)
        intersect=cylinder_intersect(&l0,&l3, x,y,z,kx,ky,kz, radius-thickness,
          yheight-2*thickness > 0 ? yheight-2*thickness : yheight);
      else if (shape==1)
        intersect=box_intersect     (&l0,&l3, x,y,z,kx,ky,kz,
          xwidth-2*thickness > 0 ?  xwidth-2*thickness : xwidth,
          yheight-2*thickness > 0 ? yheight-2*thickness : yheight,
          zdepth-2*thickness > 0 ?  zdepth-2*thickness : zdepth);
      else if (shape==2)
        intersect=sphere_intersect  (&l0,&l3, x,y,z,kx,ky,kz, radius-thickness);
      #ifdef USE_OFF
      else if (shape == 3)
        intersect=off_x_intersect(&l0, &l3, NULL, NULL, x, y, z, kx,ky,kz, thread_offdata );
      #endif
    }


    /* Computing the intermediate lengths */
    if (intersect && p_interact >= 0) {
      flag_ishollow = 0;
      if (thickness > 0) {
        if (shape==0 && cylinder_intersect(&l1,&l2, x,y,z,kx,ky,kz, radius-thickness,
          yheight-2*thickness > 0 ? yheight-2*thickness : yheight))
          flag_ishollow=1;
        else if (shape==2 && sphere_intersect   (&l1,&l2, x,y,z,kx,ky,kz, radius-thickness))
          flag_ishollow=1;
        else if (shape==1 && box_intersect(&l1,&l2, x,y,z,kx,ky,kz,
          xwidth-2*thickness > 0 ? xwidth-2*thickness : xwidth,
          yheight-2*thickness > 0 ? yheight-2*thickness : yheight,
          zdepth-2*thickness > 0 ? zdepth-2*thickness : zdepth))
          flag_ishollow=1;
      } else if (thickness<0) {
        if (shape==0 && cylinder_intersect(&l1,&l2, x,y,z,kx,ky,kz, radius,yheight))
          flag_ishollow=1;
        else if (shape==2 && sphere_intersect   (&l1,&l2, x,y,z,kx,ky,kz, radius))
          flag_ishollow=1;
        else if (shape==1 && box_intersect(&l1,&l2, x,y,z,kx,ky,kz, xwidth, yheight, zdepth))
          flag_ishollow=1;
      }
      if (!flag_ishollow) l1 = l2 = l3; /* no empty space inside */
    } /* if intersect */


    // store values for potential next SPLIT
    reuse           = 0;
    reuse_intersect = intersect;
    reuse_l0        = l0;
    reuse_l1        = l1;
    reuse_l2        = l2;
    reuse_l3        = l3;
    reuse_ki        = ki;
  } // if !reuse (SPLIT)

  if (intersect) { /* the photon hits the sample */

    if (l0 > 0) {  /* we are before the sample */
      PROP_DL(l0); /* propagates photon to the entry of the sample */
    } else if (l1 > 0 && l1 > l0) { /* we are inside first part of the sample */
      /* no propagation, stay inside */
    } else if (l2 > 0 && l2 > l1) { /* we are in the hole */
      PROP_DL(l2); /* propagate to inner surface of 2nd part of sample */
    } else if (l3 > 0 && l3 > l2) { /* we are in the 2nd part of sample */
      /* no propagation, stay inside */
    }

    dl0=l1-(l0 > 0 ? l0 : 0); /* Time in first part of hollow/cylinder/box */
    dl1=l2-(l1 > 0 ? l1 : 0); /* Time in hole */
    dl2=l3-(l2 > 0 ? l2 : 0); /* Time in 2nd part of hollow cylinder */

    if (dl0 < 0) dl0 = 0;
    if (dl1 < 0) dl1 = 0;
    if (dl2 < 0) dl2 = 0;

    /* initialize concentric mode */
    if (concentric && !flag_concentric && l0 >= 0
     && shape==0 && thickness) {
      flag_concentric=1;
    }

    if (flag_concentric == 1) {
      dl1=dl2=0; /* force exit when reaching hole/2nd part */
    }

    if (!dl0 && !dl2) {
      intersect = 0; /* the sample was passed entirely */
    }
  } // if intersect (geometry)
    
  /* ========================================================================== */
  /*                             INTERACTION PROCESS                            */
  /* ========================================================================== */

  if (intersect) {
    double my_s;
    int    i_Z,i;
    int    flag=0;
    double d_path, p_trans, p_scatt, mc_trans, mc_scatt;
    
    /* actual fluorescence calculation */
    
    /* compute total scattering cross section for incoming photon energy Ei */
    /* compute each contribution XS */
    xs[FLUORESCENCE]=xs[COMPTON]=xs[RAYLEIGH]=xs[TRANSMISSION]=sigma_barn=0;
    cum_xs_fluo[0] = cum_xs_Compton[0] = cum_xs_Rayleigh[0] = 0;
    if (!reuse) {
      for (i_Z=0; i_Z< compound->nElements; i_Z++) {
        int    Z   = compound->Elements[i_Z];
        double frac= compound->massFractions[i_Z];
        double xs_Z[3];

        // get Fluorescence xs
        XRMC_CrossSections(Z, Ei, xs_Z); // [barn/atom]
        sigma_barn            += frac*CSb_Total(Z, Ei, NULL); // Photo+Compton+Rayleigh
        cum_xs_fluo[i_Z+1]     = cum_xs_fluo[i_Z]    +frac*xs_Z[FLUORESCENCE];
        cum_xs_Compton[i_Z+1]  = cum_xs_Compton[i_Z] +frac*xs_Z[COMPTON];
        cum_xs_Rayleigh[i_Z+1] = cum_xs_Rayleigh[i_Z]+frac*xs_Z[RAYLEIGH];
        for (i=0; i<3; i++) { xs[i] += frac*xs_Z[i]; }
      } // for Z in compound
      
      // store values into cache for SPLIT
      for (i_Z=0; i_Z< compound->nElements; i_Z++) {
        reuse_cum_xs_fluo[i_Z+1]     = cum_xs_fluo[i_Z+1];
        reuse_cum_xs_Compton[i_Z+1]  = cum_xs_Compton[i_Z+1];
        reuse_cum_xs_Rayleigh[i_Z+1] = cum_xs_Rayleigh[i_Z+1];
      }
      reuse_sigma_barn = sigma_barn;
    } else {
      // reuse cached values (SPLIT)
      for (i_Z=0; i_Z< compound->nElements; i_Z++) {
        cum_xs_fluo[i_Z+1]     = reuse_cum_xs_fluo[i_Z+1];
        cum_xs_Compton[i_Z+1]  = reuse_cum_xs_Compton[i_Z+1];
        cum_xs_Rayleigh[i_Z+1] = reuse_cum_xs_Rayleigh[i_Z+1];
        xs[FLUORESCENCE]      += reuse_cum_xs_fluo[i_Z+1];
        xs[COMPTON]           += reuse_cum_xs_Compton[i_Z+1];
        xs[RAYLEIGH]          += reuse_cum_xs_Rayleigh[i_Z+1];
      }
      
      sigma_barn = reuse_sigma_barn;
    }
    
    /* probability to absorb/scatter */
    my_s   = rho*100*sigma_barn; /* mu, 100: convert from barns to fm^2. my_s in [1/m] */
    d_path = ( dl0 +dl2 );  /* total path lenght in sample */
    
    /* Proba of transmission/interaction along length d_path */    
    p_trans = exp(-my_s*d_path); /* probability to not-interact (transmit) */
    //printf("sigma_barn=%g p_trans=%g\n", sigma_barn, p_trans);
    p_scatt = 1 - p_trans;       /* portion of beam which scatters */
    
    /* force a given fraction of the beam to scatter */
    if (p_interact>0 && p_interact<=1) {
      /* we force a portion of the beam to interact */
      /* This is used to improve statistics */
      mc_trans = 1-p_interact;
    } else {
      mc_trans = p_trans; /* 1 - p_scatt */
    }
    mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
    if (mc_scatt <= 0) ABSORB;
    
    if (!force_transmit && mc_scatt > 0 && (mc_scatt >= 1 || rand01() < mc_scatt)) { 
      /* we "scatter" with one of the interaction processes */
        
      dl = -log(1 - rand0max((1 - exp(-my_s*d_path)))) / my_s; /* length */

      /* If t0 is in hole, propagate to next part of the hollow cylinder */
      if (dl1 > 0 && dl0 > 0 && dl > dl0) dl += dl1;

      /* photon propagation to the scattering point */
      PROP_DL(dl);
      p *= fabs(p_scatt/mc_scatt); /* account for p_interact, lower than 1 */
      
    } else { // force_transmit
      /* we go through the material without interaction, and exit */
      if (type <0) type = TRANSMISSION; // 3 transmission
      intersect = 0;
      PROP_DL(dl0+dl2);
      /* attenuate beam by portion which is scattered (and left along) */
      p *= p_trans;
      if (p_interact>0 && p_interact<=1) p /= mc_trans;
      break; // end while (intersect)
    }
    
  } /* if intersect (propagate) */

  if (intersect) { /* scattering event */
    int    i_Z, Z;
    double solid_angle;
    double theta, dsigma;
    double Ef, dE;
    
    /* correct for XS total(photo+Compton+Rayleigh) > sum(fluo+Compton+Rayleigh) */
    dsigma = (xs[FLUORESCENCE]+xs[RAYLEIGH]+xs[COMPTON])/sigma_barn;
    if (dsigma < 1) p *= dsigma; // < 1

    /* MC choose process from cross sections 'xs': fluo, Compton, Rayleigh */
    type = XRMC_SelectInteraction(xs);
    
    /* choose Z (element) on associated XS, taking into account mass-fractions */
    switch (type) {
      case FLUORESCENCE:
        i_Z = XRMC_SelectFromDistribution(cum_xs_fluo,     compound->nElements+1);
        break;
      case RAYLEIGH:
        if (!flag_rayleigh) ABSORB;
        i_Z = XRMC_SelectFromDistribution(cum_xs_Rayleigh, compound->nElements+1);
        break;
      case COMPTON:
        if (!flag_compton) ABSORB;
        i_Z = XRMC_SelectFromDistribution(cum_xs_Compton,  compound->nElements+1);
        break;
      default:
        printf("%s: WARNING: process %i unknown. Absorb.\n", NAME_CURRENT_COMP, type);
        ABSORB;
    }
    Z   = compound->Elements[i_Z];
    
    /* select outgoing vector */
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;       /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&kf_x, &kf_y, &kf_z, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&kf_x, &kf_y, &kf_z, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&kf_x, &kf_y, &kf_z, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    p *= solid_angle/(4*PI); // correct for selected solid-angle
    NORM(kf_x, kf_y, kf_z);  // normalize the outout direction |kf|=1
    
    // determine final energy
    switch (type) {
      case FLUORESCENCE: /* 0 Fluo: choose line */
        n_fluo++;
        p_fluo += p;
        Ef      = XRMC_SelectFluorescenceEnergy(Z, Ei, &dE);      // dE in keV
        if (dE) {
          if (flag_lorentzian) dE  *= tan(PI/2*randpm1()); // Lorentzian distribution
          else                 dE  *= randnorm();          // Gaussian distribution
          Ef = Ef + dE;
        }
        kf      = Ef*E2K;
        break;
        
      case RAYLEIGH:     /* 1 Rayleigh: Coherent, elastic    */
        n_Rayleigh++;
        p_Rayleigh += p;
        theta      = acos(scalar_prod(kf_x,kf_y, kf_z,ki_x, ki_y,ki_z)/ki);
        dsigma     = DCSb_Rayl(Z,  Ei, theta, NULL); // [barn/at/st]
        p         *= 4*PI*dsigma/xs[RAYLEIGH];
        break;
      
      case COMPTON:      /* 2 Compton: Incoherent: choose final energy */
        n_Compton++;
        p_Compton += p;
        theta      = acos(scalar_prod(kf_x,kf_y, kf_z,ki_x, ki_y,ki_z)/ki);
        dsigma     = DCS_Compt(Z,  Ei, theta, NULL); // [barn/at/st]
        kf         = ComptonEnergy(Ei, theta, NULL)*E2K; /* XRayLib */
        p         *= 4*PI*dsigma/xs[COMPTON];
        break;
    }
    Ef = K2E*kf;
    
    kx = kf*kf_x;
    ky = kf*kf_y;
    kz = kf*kf_z;
    SCATTER;
    event_counter++;
    
    /* exit if multiple scattering order has been reached */
    if (!order) break; // skip final absorption
    // stop when order has been reached, or weighting is very low
    if (order && (event_counter >= order || p/pi < 1e-7)) { force_transmit=1; }
 
  } // if intersect (scatter)
} while(intersect); /* end do (intersect) (multiple scattering loop) */

%}

FINALLY %{
  FreeCompoundData(compound);
  if (filename && filename != material)
    unlink(filename);
  printf("%s: scattered intensity: fluo=%g Compton=%g Rayleigh=%g\n", 
    NAME_CURRENT_COMP, p_fluo, p_Compton, p_Rayleigh);
%}

END