1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Molecule_2state
*
* %Identification
*
* Written by: Erik B Knudsen
* Date: October 2012
* Version: 1.0
* Release: McXtrace 1.1
* Origin: DTU Physics
*
* Disordered optical-excitable molecule sample.
*
* %Description
* A sample model for pump probe experiments which models disordered molecules in a volume (rectangular,
* cylindrical, or spherical). Molecules can be in one of two states (0 and 1).
* Scattering is either specified through F vs. q scattering curves or as a set of atom positions from which
* F vs. q is computed.
* At t=-delta_t, a fraction of the molecules are put in state 1, from which they decay exponentially,
* with time constant t_relax, into state 0. For t<-delta_t
* all of the molecules are in the state specified by <i>initial_state</i>.
* To improve statistics, scattering may be limited to a "forward" cone with opening angle in [psimin, psimax].
* Furthermore, scattering may be restricted to the azimuthal segment between [etamin,etamax].
*
* Example: Molecule_2state(
* nq=512,state_0_file="Fe_bpy_GS_DFT.txt",state_1_file="Fe_bpy_ES_DFT.txt",radius=0.01,
* psimin=0, psimax=15*DEG2RAD, etamin=-1*DEG2RAD,etamax=1*DEG2RAD,
* t_relax=600e-12, delta_t=100e-9, excitation_yield=0.2)
*
* %Parameters
* Input parameters:
* initial_state: [0/1] Which state is Molecule_2state in for t<delta_t? Useful for modelling something that changes state slowly.
* form_factors: [str] File from which to read atomic form factors. Defualt amounts to use the one shipped with McXtrace.
* state_0_file: [str] Isotropic scattering factors (parameterized by q), or atom positions are specified for state 0.
* state_1_file: [str] Isotropic scattering factors (parameterized by q), or atom positions are specified for state 1.
* nq: [1] Number of q-bins if F is to be computed from atom positions (Debye formalism).
* material_datafile: [str] Where to read f1 and f2 factors from in order to handle absorption.
* delta_t: [s] Delay between the exciting event t=0. delay is negative, i.e. delta_t>0 means the exciting event happens before t=0.
* excitation_yield: [1] Mean fraction of molecules that get excited.
* t_relax: [s] Mean relaxation time (into state 0) of excited molecules.
* psimin: [rad] Minimum scattering angle off the optical axis.
* psimax: [rad] Maximum scattering angle off the optical axis.
* etamin: [rad] Minimum scattering angle around the optical axis.
* etamax: [rad] Maximum scattering angle around the optical axis.
* radius: [m] Radius of cylindrical of spherical sample.
* xwidth: [m] Width of rectangular sample.
* yheight: [m] Height of rectangular or cylindrical sample.
* zdepth: [m] Depth (thickness) of rectangular sample.
* concentration: [m] Concentration or packing factor of sample.
* p_transmit: [m] Fraction of statistics devoted to sample direct (unscattered) beam.
* q_parametric: [0/1] When 0: Assume that datafiles contains atom positions. 1: datafiles contains F vs. q data.
* Emax: [keV] Maximal energy for which scattering factors are computed. Must be larger than the maximal impinging energy.
*
* %End
*******************************************************************************/
DEFINE COMPONENT Molecule_2state
SETTING PARAMETERS (delta_t=100e-9,excitation_yield=0.2,t_relax=100e-9,initial_state=0,
psimin=0,psimax=M_PI_2, etamin=-M_PI, etamax=M_PI,radius=0, yheight=0, xwidth=0, zdepth=0,
concentration=1,p_transmit=0.1,string form_factors="FormFactors.txt",string state_0_file=NULL,string state_1_file=NULL, nq=512,
string material_datafile="Be.txt",q_parametric=0, Emax=80)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "read_table-lib"
%include "form_factor-lib"
#ifndef MXMOLECULE_2STATE
#define MXMOLECULE_2STATE
enum SHAPES {NONE,CYLINDER,SPHERE,BOX};
#endif
%}
DECLARE
%{
double *q[2];
double *f2[2];
int lines[2];
double f2sum[2];
double f2mcsum[2];
double qnmin[2];
double qnmax[2];
int Z;
double At;
double rho;
DArray1d E;
DArray1d Mu;
t_Table matT;
int shape;
%}
INITIALIZE
%{
t_Table T[2],f0;
int status;
if( psimin>psimax || psimin<0 || psimax>2*M_PI ||etamin>etamax || etamin<-M_PI ||etamax>M_PI ){
fprintf(stderr,"Error (%s): Nonsensical angle defs psi=[%g,%g] eta=[%g,%g]\n",NAME_CURRENT_COMP,psimin,psimax,etamin,etamax);
exit(-1);
}
if ( state_0_file && (status=Table_Read(&(T[0]),state_0_file,0))==-1){
fprintf(stderr,"Error (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP, state_0_file);
exit(-1);
}
if ( state_1_file && (status=Table_Read(&(T[1]),state_1_file,0))==-1){
fprintf(stderr,"Error (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,state_1_file);
fprintf(stderr,"Proceeding as a single state sample\n");
T[1]=T[0];
}
if(form_factors){
if (status=Table_Read(&(f0),form_factors,0)==-1){
fprintf(stderr,"Error(%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,form_factors);
exit(-1);
}
}
if (!q_parametric){
/*input files are atom positions - use that to compute f2s*/
f2[0]=malloc(sizeof(double)*nq);/*could be done by read_table-lib*/
q[0]=malloc(sizeof(double)*nq);
f2[1]=malloc(sizeof(double)*nq);
q[1]=malloc(sizeof(double)*nq);
if (!psimax) psimax=M_PI;
/*compute q-limits*/;
if (psimin!=0) qnmin[0]=qnmin[1]=Emax*E2K*M_SQRT2*sqrt(1-cos(psimin));
qnmax[0]=qnmax[1]=Emax*E2K*M_SQRT2*sqrt(1-cos(psimax));
printf("%s: Computing F2(q) for two states:\n", NAME_CURRENT_COMP);
int r,n,m,states;/*do this for two states*/
double dq= qnmax[0]/(nq-1);
for (states=0;states<2;states++){
for (r=0;r<nq;r++){
double f2_single=0;
double q_single=qnmin[states] + r*dq;//Table_Index(f0,r,0);
for (n=0;n<T[states].rows;n++){
int Zn=(int) Table_Index(T[states],n,0);
/*figure out Z_n*/
double f0n=atomic_form_factor(Zn,0,q_single);//Table_Index(f0,r,Zn);
double nx,ny,nz;
nx=Table_Index(T[states],n,1);
ny=Table_Index(T[states],n,2);
nz=Table_Index(T[states],n,3);
f2_single+=fabs(f0n*f0n);
//printf("debug %d %g\n",Zn,f2_single);
for (m=n+1;m<T[states].rows;m++){
int Zm=(int) Table_Index(T[states],m,0);
double f0m=atomic_form_factor(Zm,0,q_single);//Table_Index(f0,r,Zm);
double mx,my,mz,dr;
mx=Table_Index(T[states],m,1);
my=Table_Index(T[states],m,2);
mz=Table_Index(T[states],m,3);
dr=sqrt((nx-mx)*(nx-mx)+(ny-my)*(ny-my)+(nz-mz)*(nz-mz));
if (q_single){
f2_single+=2 * f0m*f0n*sin(q_single*dr)/(q_single*dr);
}else{
f2_single+=2* f0m*f0n;
}
}
}
f2[states][r]=f2_single;
q[states][r]=q_single;
if (r>0){
//double dq=q-Table_Index(f0,r-1,0);
/*integrate using linear interpolation*/
f2sum[states]+=0.5*(f2[states][r-1]+f2_single)*dq;
if (q_single>qnmin[states] && q_single<qnmax[states]){
double q1,q2,alpha;
q1=(qnmin[states]>q_single-dq?qnmin[states]:q_single-dq);
q2=(qnmax[states]<q_single?qnmax[states]:q_single);
alpha=((q1+q2)*0.5-(q_single-dq))/q_single;
f2mcsum[states]+=(q2-q1)*(alpha*f2[states][r-1]+ (1-alpha)*f2_single);
}
}
}
lines[states]=T[states].rows;
printf("Integrated f2 for state %d= %g, Mu_s=%g\n",states,f2sum[states],RE*RE*f2sum[states]);
}
}else{
/*input files contain f^2 parametrized by q*/
double dq=0.1;
int r,states;/*do this for two states*/
f2[0]=malloc(sizeof(double)*(T[0].rows+1));/*could be done by read_table-lib*/
q[0]=malloc(sizeof(double)*(T[0].rows+1));
f2[1]=malloc(sizeof(double)*(T[1].rows+1));
q[1]=malloc(sizeof(double)*(T[1].rows+1));
if (!psimax) psimax=M_PI;
/*compute q-limits*/;
qnmin[0]=qnmin[1]=M_SQRT2*sqrt(1-cos(psimin));
qnmax[0]=qnmax[1]=M_SQRT2*sqrt(1-cos(psimax));
printf("%s: Computing F2(q) for two states:\n", NAME_CURRENT_COMP);
for (states=0;states<2;states++){
for (r=0;r<T[states].rows;r++){
q[states][r]=T[states].data[r*2];
f2[states][r]=T[states].data[r*2+1];
//printf("%d %d %g %g\n",states,r,q[states][r], f2[states][r]);
f2sum[states]+=f2[states][r]*dq;
}
lines[states]=T[states].rows;
printf("Integrated f2 for state %d= %g, Mu_s=%g\n",states,f2sum[states],RE*RE*f2sum[states]);
f2[states][r]=f2[states][r-1];
q[states][r]=FLT_MAX;
}
}
if (radius){
if (yheight) shape=CYLINDER;
else shape=SPHERE;
}else if (xwidth && yheight && zdepth){
shape=BOX;
}
if (shape==NONE){
fprintf(stderr,"Error (%s): could not understand which shape the thing is\n",NAME_CURRENT_COMP);exit(1);
}
t_Table A;
/*Read absorption table*/
if ( (status=Table_Read(&A,material_datafile,0))==-1){
fprintf(stderr,"Error: Could not parse file \"%s\" in COMP %s\n",material_datafile,NAME_CURRENT_COMP);
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(A.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
//Prms=calloc(1,sizeof(struct mat_prms));
E=malloc(sizeof(double)*(A.rows+1));
Mu=malloc(sizeof(double)*(A.rows+1));
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
else{fprintf(stderr,"Warning(%s): %s not found in header of %s, set to 1\n",NAME_CURRENT_COMP,"rho",material_datafile);rho=1;}
/*which columns holds the mus*/
int mu_c=5;
if (A.columns==3){
/*three column format*/
mu_c=1;
}
int i;
for (i=0;i<A.rows;i++){
E[i]=A.data[i*A.columns];
Mu[i]=A.data[mu_c+i*A.columns]*rho*1e2; /*mu is now in SI, [m^-1]*/
}
E[A.rows]=-1.0;
Mu[A.rows]=-FLT_MAX;
Table_Free(&A);
%}
TRACE
%{
int hit,state;
double alpha,e,k,mu;
double l0,l1;
int i;
if (shape==CYLINDER){
hit=cylinder_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius,yheight);
/*sample is a cylinder*/
}else if (shape==SPHERE){
/*sample is a sphere - unlikely*/
hit=sphere_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius);
}else if (shape==BOX){
/*sample is a box*/
hit=box_intersect(&l0,&l1,x,y,z,kx,ky,kz,xwidth,yheight,zdepth);
}
if (hit){
/*if we've intersected with the sample, propagate to intersection*/
PROP_DL(l0);
/*Absorption table interpolation*/
k=sqrt(kx*kx+ky*ky+kz*kz);
e=k*K2E;
i=0;
while (e>E[i]){
i++;
if (E[i]==-1){
fprintf(stderr,"Photon energy (%g keV) is outside the filter's material data\n",e); ABSORB;
}
}
alpha=(e-E[i-1])/(E[i]-E[i-1]);
mu=(1-alpha)*Mu[i-1]+alpha*Mu[i];
/*which state is the molecule in?*/
/*delta_T is positive for optical pulse coming before x-ray pulse (t). Assuming the optical pulse to be
*short, relaxation has progressed since t+delta_t. Then the probability
*the molecule is in an excited state is: excitation_yield* t_relax * exp(-t_relax *(t+delta_t)*/
if(delta_t<t){
/*photon arrives before pump pulse - molecule cannot be excited*/
state=initial_state;
}else {
double r=rand01();
if( r< excitation_yield * exp(-(t+delta_t)/t_relax) ){
/*excited state*/
//printf("I'm excited %g %g %e\n",r, excitation_yield * exp(-(t+delta_t)/t_relax),t);
state=1;
}else{
//printf("I'm bored %g %g %e\n",r, excitation_yield * exp(-(t+delta_t)/t_relax),t);
state=0;
}
}
/*now figure out if we scatter at all*/
double dl=l1-l0;
double mu_s=RE*RE*f2sum[state];
double l_conc=pow(concentration,0.3333333333333333333333333333333333333);
double pmul=1,p_s;
double pr;
p_s=1-exp(-mu_s*dl);
pr=rand01();
if (p_transmit<pr){
/*scattering branch*/
/*find scattering pt*/
dl=rand01()*dl;
PROP_DL(dl);
SCATTER;
/*Absorption before scattering*/
p*=exp(-mu*dl);
double qq,alpha,ff2,rr;
/*choose a random scattering direction*/
double kfx,kfy,kfz,solid_angle;
randvec_target_circle(&kfx, &kfy, &kfz, &solid_angle, 0, 0, 1, tan(psimax) );
if( (etamax-etamin)!=2*M_PI){
kfx=sqrt(kfx*kfx+kfy*kfy);
kfy=0;
double eta=rand01()*(etamax-etamin)+etamin;
/*rotate kf round 0,0,1 by eta, and reassign to kf*/
rotate(kfx,kfy,kfz, kfx,kfy,kfz,eta,0,0,1);
/*downweight since we're not using the full eta range*/
p*=(etamax-etamin)/(2*M_PI);
}
NORM(kfx,kfy,kfz);
kfx*=k;kfy*=k;kfz*=k;
qq=sqrt( scalar_prod(kx-kfx,ky-kfy,kz-kfz,kx-kfx,ky-kfy,kz-kfz));
/*apply new vector*/
kx=kfx;ky=kfy;kz=kfz;
/*find f2 for this q by interpolation*/
int r;
if (!q_parametric){
for(r=1;r<nq-1;r++){
if (q[state][r]>qq) break;
}
}else{
for(r=1;r<lines[state]-1;r++){
if (q[state][r]>qq) break;
}
}
alpha=(qq-q[state][r-1])/(q[state][r]-q[state][r-1]);
ff2=(1-alpha)*f2[state][r-1] + alpha*f2[state][r];
if (ff2<0) ff2=0;
/*using the new kf-vector, recompute the intersections to find length to go to correct for multiple scattering and absorption*/
if (shape==CYLINDER){
hit=cylinder_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius,yheight);
/*sample is a cylinder*/
}else if (shape==SPHERE){
/*sample is a sphere - unlikely*/
hit=sphere_intersect(&l0,&l1,x,y,z,kx,ky,kz,radius);
}else if (shape==BOX){
/*sample is a box*/
hit=box_intersect(&l0,&l1,x,y,z,kx,ky,kz,xwidth,yheight,zdepth);
}
/*scale p according to F2 and \int_0_inf F2*/
//p*=(ff2/f2sum[state]) * (psimax-psimin)/M_PI * (etamax-etamin)/(2*M_PI) * p_s/(1-p_transmit);
p*=(ff2/f2sum[state]) * solid_angle * p_s/(1-p_transmit);
//p*=f2mcsum[state]/f2sum[state] * (etamax-etamin)/(2*M_PI) * p_s/(1-p_transmit);
/*Absorption after scattering*/
p*=exp(-mu*l1);
//printf("ATT: %g %g %g\n",l1,mu,exp(-mu*l1));
}else{
/*tunneling branch*/
/*downscale p by the total amount of scattering while going straight through ,weighted */
p*=(1-p_s)/(p_transmit);
/*also downscale for absorption effects*/
l1-=l0;
p*=exp(-mu*l1);
/*here we should also take into account flourescence*/
}
}
%}
MCDISPLAY
%{
if (shape==CYLINDER){
/*sample is a cylinder*/
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}else if (shape==SPHERE){
/*sample is a sphere*/
circle("xy",0,0,0,radius);
circle("xz",0,0,0,radius);
circle("yz",0,0,0,radius);
}else if (shape==BOX){
/*sample is a box*/
box(0,0,0,xwidth,yheight,zdepth,0, 0, 1, 0);
}
line(0,0,0,0.2,0,0);
line(0,0,0,0,0.2,0);
line(0,0,0,0,0,0.2);
%}
END
|