1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Single_crystal
*
* %Identification
* Written by: Kristian Nielsen
* Date: December 1999
* Origin: Risoe
* Modified by: EF, 22nd Apr 2003 : now uses Read_Table library
* Modified by: EBK 2010: adapted for x-rays:
* Modified by: M. Schulz, March 2012 : allow to curve the crystal planes
* Modified by: EF, PW, May 2014: code efficiency improvement when SPLIT is used
* Modified by: EF, PW, 2015: powder and texture mode
* Modified by: PW, May 2017: Remove statement about being under validation
* Modified by: PW, June 2017: Doc updates
* Modified by: PW, Feb 2018: GPU edits
* Modified by: EF, May 2023: (re)port from n to X
* Modified by: EF, June 2023: can now read CIF files, via cif2hkl
*
* Mosaic single crystal with multiple scattering vectors, optimised for speed
* with large crystals and many reflections.
*
* %Description
* Single crystal with mosaic. Delta-D/D option for finite-size effects.
* Rectangular geometry. Multiple scattering and secondary extinction included.
* The mosaic may EITHER be specified isotropic by setting the mosaic input
* parameter, OR anisotropic by setting the mosaic_a, mosaic_b, and mosaic_c
* parameters.
* The crystal lattice can be bent locally, keeping the external geometry unchanged.
* Curvature is spherical along vertical and horizontal axes.
*
* <b>Speed/stat optimisation using SPLIT</b>
* In order to dramatically improve the simulation efficiency, we recommend to
* use a SPLIT keyword on this component (or prior to it), as well as to disable
* the multiple scattering handling by setting order=1. This is especially powerful
* for large reflection lists such as with macromolecular proteins. When an incoming
* particle is identical to the preceeding, reciprocal space initialisation is
* skipped, and a Monte Carlo choice is done on available reflections from the last
* repciprocal space calculation! To assist the user in choosing a "relevant" value
* of the SPLIT, a rolling average of the number of available reflections is
* calculated and presented in the component output.
*
* <b>Mosacitiy modes</b>
* The component features three independent ways of parametrising mosaicity:
* a) The original algorithm where mosaicity is implemented by extending each
* reflection by a Gaussian "cigar" in reciprocal space, characterised by
* the parameters mosaic and delta_d_d.
* (Also known as "isotropic mosaicity").
* b) A similar mode where mosaicities can be non-isotropic and given as the
* parameters mosaic_a, mosaic_b and mosaic_c, around the unit cell axes.
* (Also known as "anisotropic mosaicity").
* c) Given two "macroscopically"/experimentally measured width/mosaicities
* of two independent reflections, parametrised by the list
* mosaic_AB = {mos_a, mos_b, a_h, a_k, a_l, b_h, b_k, b_l}, a set of
* microscopic mosaicities as in b) are estimated (internally) and applied.
* (Also known as "phenomenological mosaicity").
*
* <b>Powder-mode</b>
* When these two modes are used (powder=1 ), a randomised transformation
* of the particle direction is made before and after scattering, thereby letting
* the single crystal behave as a crystallite of either a powder (crystallite
* orientation fully randomised).
*
* <b>Curved crystal mode</b>
* The component features a method to curve the lattice planes slightly with respect
* to the outer geometry of the crystal. The method is implemented as a transformation
* on the particle direction vector, and should be used only in cases where:
* a) The reflection lattice vector is ~ orthogonal to the crystal surface.
* b) The modelled curvarture is "small" with respect to the crystal surface.
*
* <b>Sample shape</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape:
* box/plate: xwidth x yheight x zdepth
* cylinder: radius x yheight
* sphere: radius (yheight=0)
* any shape: geometry=OFF/PLY file
*
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the photon ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
* The default size of the object depends on the OFF/PLY file data, but its
* bounding box may be resized using xwidth,yheight and zdepth.
*
* <b>Crystal definition file format</b>
* Crystal structure is specified with an ascii data file. Each line contains
* 4 or more numbers, separated by white spaces:
*
* h k l ... F2
*
* The first three numbers are the (h,k,l) indices of the reciprocal lattice
* point, and the 7-th number is the value of the structure factor |F|**2, in
* barns. The rest of the numbers are not used; the file is in the format
* output by the Crystallographica program.
* The reflection list should be ordered by decreasing d-spacing values.
* Lines begining by '#' are read as comments (ignored). Most sample parameters
* may be defined from the data file header, following the same mechanism as
* PowderN.
*
* Current data file header keywords include, for data format specification:
* #column_h <index of the Bragg Qh column>
* #column_k <index of the Bragg Qk column>
* #column_l <index of the Bragg Ql column>
* #column_F2 <index of the squared str. factor '|F|^2' column [b]>
* #column_F <index of the structure factor norm '|F|' column>
* and for material specification:
* #sigma_inc <value of incoherent cross section [barns]>
* #Delta_d/d <value of Delta_d/d width for all lines>
* #lattice_a <value of the a lattice parameter [Angs]>
* #lattice_b <value of the b lattice parameter [Angs]>
* #lattice_c <value of the c lattice parameter [Angs]>
* #lattice_aa <value of the alpha lattice angle [deg]>
* #lattice_bb <value of the beta lattice angle [deg]>
* #lattice_cc <value of the gamma lattice angle [deg]>
*
* Last, CIF, FullProf and ShelX files can be read, and converted to F2(hkl) lists
* when 'cif2hkl' is installed. The CIF2HKL env variable can be used to point to a
* proper executable, else the McCode or the system installed versions are used.
*
* <b>Satellite Bragg peaks - surface crystal truncation rods (CTR)</b>
* It is known that scattering from a finite crystal introduces a broadening of
* Bragg peaks, seen in surface diffraction at grazing angle [Robinson and Tweet,
* Rep. Prog. Phys. 55 (1992) 599)]. The CTR is specified as two vectors, which
* hold the squared Fourier transform of the crystal geometry, for instance:
* bulk: Dirac peak (FT of infinity)
* half-bulk: Dirac+1/k^2 (FT of half plane, k in rlu)
* layer: sinc(PI*k*d)^2 (FT of a top-hat, thickness 'd')
* These vectors are given as 'surf_k' [in 1/Angs] and 'surf_FT2', both of length
* 'surf_size'. The CTR is to be applied along vector 'surf_dir' which indicates
* the surface normal {nx,ny,nz} in real space. When surf_size=-1, the component
* sets the proper truncation function (only for thin box and disk shapes).
* This feature is an approximation of the real surface scattering, and does not
* handle complex geometries (clusters, wetting, multi-layers, ...). It may be
* used as well to describe over-structure satellite peaks.
*
* Example: Single_crystal(xwidth=0.01, yheight=0.01, zdepth=0.01, mosaic = 5,
* reflections="Si.lau")
*
* A diamond crystal plate, cut for (002) reflections
* Single_crystal(xwidth = 0.002, yheight = 0.1, zdepth = 0.1,
* mosaic = 30, reflections = "C-diamond.lau",
* ax=0, ay=2.14, az=-1.24,
* bx = 0, by = 0, bz = 2.47,
* cx = 6.71, cy = 0, cz = 0)
*
* A adrenaline protein
* Single_crystal(xwidth=0.005, yheight=0.005, zdepth=0.005,
* mosaic = 5, reflections="adrenaline.lau")
*
* Also, always use a non-zero value of delta_d_d.
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT sx = Single_crystal(...)
*
* %Parameters
* INPUT PARAMETERS
* radius: [m] Outer radius of sample in (x,z) plane
* xwidth: [m] Width of crystal
* yheight: [m] Height of crystal
* zdepth: [m] Depth of crystal (no extinction simulated)
* geometry: [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust
* delta_d_d: [1] Lattice spacing variance, gaussian RMS
* mosaic: [arc minutes] Crystal mosaic (isotropic), gaussian RMS. Puts the crystal in the isotropic mosaic model state, thus disregarding other mosaicity parameters.
* mosaic_a: [arc minutes] Horizontal (rotation around lattice vector a) mosaic (anisotropic), gaussian RMS. Put the crystal in the anisotropic crystal vector state. I.e. model mosaicity through rotation around the crystal lattice vectors. Has precedence over in-plane mosaic model.
* mosaic_b: [arc minutes] Vertical (rotation around lattice vector b) mosaic (anisotropic), gaussian RMS.
* mosaic_c: [arc minutes] Out-of-plane (Rotation around lattice vector c) mosaic (anisotropic), gaussian RMS
* mosaic_AB: [arc_minutes, arc_minutes,1, 1, 1, 1, 1, 1] In Plane mosaic rotation and plane vectors (anisotropic), mosaic_A, mosaic_B, A_h,A_k,A_l, B_h,B_k,B_l. Puts the crystal in the in-plane mosaic state. Vectors A and B define plane in which the crystal roation is defined, and mosaic_A, mosaic_B, denotes the resp. mosaicities (gaussian RMS) with respect to the two reflections chosen by A and B (Miller indices).
*
* recip_cell: [1] Choice of direct/reciprocal (0/1) unit cell definition
* ax: [AA or AA^-1] Coordinates of first (direct/recip) unit cell vector
* ay: [AA or AA^-1] a on y axis
* az: [AA or AA^-1] a on z axis
* bx: [AA or AA^-1] Coordinates of second (direct/recip) unit cell vector
* by: [AA or AA^-1] b on y axis
* bz: [AA or AA^-1] b on z axis
* cx: [AA or AA^-1] Coordinates of third (direct/recip) unit cell vector
* cy: [AA or AA^-1] c on y axis
* cz: [AA or AA^-1] c on z axis
* reflections: [string] File name containing structure factors of reflections (LAZ LAU CIF, FullProf, ShelX). Use empty ("") or NULL for incoherent scattering only
* order: [1] Limit multiple scattering up to given order (0: all, 1: first, 2: second, ...)
* extra_order: [1] When using order, allow additional multiple scattering without coherent scattering, sensible with very large unit cells (0: disable, 1: one extra, 2: two extra, ...)
*
* Optional input parameters
*
* p_transmit: [1] Monte Carlo probability for photons to be transmitted without any scattering. Used to improve statistics from weak reflections
* sigma_inc: [barns] Incoherent scattering cross-section per unit cell (uniform). Fully isotropic and constant. Use -1 to unactivate
* aa: [deg] Unit cell angles alpha, beta and gamma. Then uses norms of vectors a,b and c as lattice parameters
* bb: [deg] Beta angle
* cc: [deg] Gamma angle
* barns: [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2. barns=1 for laz and isotropic constant elastic scattering (reflections=NULL), barns=0 for lau type files
* RX: [m] Radius of horizontal along X lattice curvature. flat for 0
* RY: [m] Radius of vertical along Y lattice curvature. flat for 0
* powder: [1] Flag to indicate powder mode, for simulation of Debye-Scherrer cones via random crystallite orientation. A powder texture can be approximated with powder within 0-1
* deltak: [AA-1] Equality-threshold for use in SPLIT settings. If difference between all ki_{x,y,z} are less than deltak from previous particle, the two are considered alike enough to jump directly to the MC choice between 'active' reflections
* material_datafile: [Be.txt] File where the material parameters for the absorption may be found. Format is similar to what may be found off the NIST website.
* surf_size: [1] Length of the surf_k and surf_FT vectors. When set as -1, CTR is automatically set for the box/thin disk geometry.
* surf_k: [1/Angs] Momentum 'k' distribution around 0 for the CTR, length 'surf_size'.
* surf_FT2: [1] Intensity |FT(real space)|^2 distribution as CTR of a single Bragg peak, length 'surf_size'.
* surf_dir: [nx,ny,nz] Normal vector in real space for the truncation rod spread direction. {1,0,0} is for an YZ surface, with normal along X.
*
* CALCULATED PARAMETERS:
*
* hkl_info: [structure] Internal
* hkl_info.type: interaction type of event 't'=Transmit, 'i'=Incoherent, 'c'=Coherent [char]
* hkl_info.h:
* hkl_info.k: wavevector indices of last coherent scattering event [Angs-1]
* hkl_info.l:
*
* %Link
* See <a href="http://icsd.ill.fr">ICSD</a> Inorganic Crystal Structure Database
* %Link
* <a href="http://www.webelements.com/">Web Elements</a>
* %Link
* <a href="http://www.ill.eu/sites/fullprof/index.html">Fullprof</a> powder refinement
* %Link
* <a href="http://www.crystallographica.com/">Crystallographica</a> software
* %Link
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %Link
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %Link
* <a href="http://qhull.org">qhull</a>
* %Link
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %Link
* cif2hkl https://gitlab.com/soleil-data-treatment/soleil-software-projects/cif2hkl
*
* %End
****************************************************************************/
/*
Overview of algorithm:
(1). The photon intersects the crystal at (x,y,z) with given
incoming wavevector ki=(kix,kiy,kiz).
(2). Every reciprocal lattice point tau of magnitude less than 2*ki
is considered for scattering. The scattering probability is the
area of the intersection of the Ewald sphere (approximated by
the tangential plane) with the 3-D Gaussian mosaic of the point
tau.
(3). The total coherent scattering cross section is computed as the
sum over all tau. Together with the absorption and incoherent
scattering cross sections and known potential flight-length
l_full through the sample, we can compute the probability of
the four events absorption, coherent scattering, incoherent
scattering, and transmission.
(4). absorption is never simulated explicitly, just incorporated in
the photon weight.
(5). Transmission in the first event is selected with the Monte
Carlo probability p_transmit, which defaults to the actual
transmission probability. After the first event, transmission
is selected with the correct Monte Carlo probability.
(6). Incoherent scattering is done simply by selecting a random
direction for the outgoing wave vector kf.
(7). For coherent scattering, a reciprocal lattice point is selected
using the relative probabilities computed in (2), and the
weight is adjusted with the contribution from the structure
factors (this way all reflections will get equally good
statistics in the detector).
(8). The outgoing wave vector direction is picked at random using
the intersecting 2-D Gauss computed in (2). The vector is
normalized to the length of ki (elastic scattering) to account
for the error caused by the planar approximation of the Ewald
sphere.
(9). The process is repeated from (2) with kf as new initial wave
vector ki.
*/
DEFINE COMPONENT Single_crystal
SETTING PARAMETERS(string reflections=0, string geometry=0, vector mosaic_AB={0,0, 0,0,0, 0,0,0},
xwidth=0, yheight=0, zdepth=0, radius=0, delta_d_d=1e-4,
mosaic = -1, mosaic_a = -1, mosaic_b = -1, mosaic_c = -1,
recip_cell=0, barns=0,
ax = 0, ay = 0, az = 0,
bx = 0, by = 0, bz = 0,
cx = 0, cy = 0, cz = 0,
p_transmit = 0.001, sigma_inc = 0,
aa=0, bb=0, cc=0, order=1, extra_order=0, RX=0, RY=0, powder=0,
deltak=1e-6, string material_datafile="Si.txt",
int surf_size=0, vector surf_k=NULL, vector surf_FT2=NULL, vector surf_dir={0,0,0})
/* photon parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef SINGLE_CRYSTAL_DECL
#define SINGLE_CRYSTAL_DECL
#ifndef Mosaic_AB_Undefined
#define Mosaic_AB_Undefined {0,0, 0,0,0, 0,0,0}
#endif
#ifndef MCSX_REFL_SLIST_SIZE
#define MCSX_REFL_SLIST_SIZE 128
#endif
struct hkl_data
{
int h,k,l; /* Indices for this reflection */
double F2; /* Value of structure factor */
double tau_x, tau_y, tau_z; /* Coordinates in reciprocal space */
double tau; /* Length of (tau_x, tau_y, tau_z) */
double u1x, u1y, u1z; /* First axis of local coordinate system */
double u2x, u2y, u2z; /* Second axis of local coordinate system */
double u3x, u3y, u3z; /* Third axis of local coordinate system */
double sig123; /* The product sig1*sig2*sig3 = volume of spot */
double m1, m2, m3; /* Diagonal matrix representation of Gauss */
double cutoff; /* Cutoff value for Gaussian tails */
};
struct tau_data
{
int index; /* Index into reflection table */
double refl;
double xsect;
/* The following vectors are in local koordinates. */
double rho_x, rho_y, rho_z; /* The vector ki - tau */
double rho; /* Length of rho vector */
double ox, oy, oz; /* Origin of Ewald sphere tangent plane */
double b1x, b1y, b1z; /* Spanning vectors of Ewald sphere tangent */
double b2x, b2y, b2z;
double l11, l12, l22; /* Cholesky decomposition L of 2D Gauss */
double y0x, y0y; /* 2D Gauss center in tangent plane */
};
struct hkl_info_struct
{
int count; /* Number of reflections */
double m_delta_d_d; /* Delta-d/d FWHM */
double m_ax,m_ay,m_az; /* First unit cell axis (direct space, AA) */
double m_bx,m_by,m_bz; /* Second unit cell axis */
double m_cx,m_cy,m_cz; /* Third unit cell axis */
double asx,asy,asz; /* First reciprocal lattice axis (1/AA) */
double bsx,bsy,bsz; /* Second reciprocal lattice axis */
double csx,csy,csz; /* Third reciprocal lattice axis */
double m_a, m_b, m_c; /* length of lattice parameter lengths */
double m_aa, m_bb, m_cc; /* lattice angles */
double sigma_i; /* inc X sect */
double rho; /* density [at/Angs^3] */
double mat_weight; /* material atomic weight [g/mol] */
double mat_density; /* material atomic density [g/cm3] */
double V0; /* Unit cell volume (AA**3) */
int column_order[5]; /* column signification [h,k,l,F,F2] */
int recip; /* Flag to indicate if recip or direct cell axes given */
int shape; /* 0:cylinder, 1:box, 2:sphere 3:any shape*/
int flag_warning; /* number of warnings */
char type; /* type of last event: t=transmit,c=coherent or i=incoherent */
int h,k,l; /* last coherent scattering momentum transfer indices */
int tau_count; /* Number of reflections within cutoff */
double coh_refl, coh_xsect; /* cross section computed with last tau_list */
double kix, kiy, kiz; /* last incoming photon ki */
int nb_reuses, nb_refl, nb_refl_count;
int max_tau_count;
int ctr_size;
double *ctr_k;
double *ctr_FT2;
double *ctr_dir;
};
#pragma acc routine
// sign = SX_list_compare(a,b)
// used for qsort, to sort reflections
// input: a,b: two 'line_data' reflection pointers.
// output: -1,0,1 for a<b, a=b, a>b
int SX_list_compare (void const *a, void const *b)
{
struct hkl_data const *pa = a;
struct hkl_data const *pb = b;
double s = pa->tau - pb->tau;
if (!s) return 0;
else return (s < 0 ? -1 : 1);
} /* SX_list_compare */
#ifndef CIF2HKL
#define CIF2HKL
// hkl_filename = cif2hkl(file, options)
// used to convert CIF/CFL/INS file into F2(hkl)
// the CIF2HKL env var can point to a cif2hkl executable
// else the McCode binary is attempted, then the system.
char *cif2hkl(const char *infile, const char *options) {
char cmd[1024];
int ret = 0;
int found = 0;
char *OUTFILE;
// get filename extension
const char *ext = strrchr(infile, '.');
if(!ext || ext == infile) return infile;
else ext++;
// return input when no extension or not a CIF/FullProf/ShelX file
if ( strcasecmp(ext, "cif")
&& strcasecmp(ext, "pcr")
&& strcasecmp(ext, "cfl")
&& strcasecmp(ext, "shx")
&& strcasecmp(ext, "ins")
&& strcasecmp(ext, "res")) return infile;
OUTFILE = malloc(1024);
if (!OUTFILE) return infile;
strncpy(OUTFILE, tmpnam(NULL), 1024); // create an output temporary file name
// try in order the CIF2HKL env var, then the system cif2hkl, then the McCode one
if (!found && getenv("CIF2HKL")) {
snprintf(cmd, 1024, "%s -o %s %s %s",
getenv("CIF2HKL"),
OUTFILE, options, infile);
ret = system(cmd);
if (ret != -1 && ret != 127) found = 1;
}
if (!found) {
// try with cif2hkl command from the system PATH
snprintf(cmd, 1024, "%s -o %s %s %s",
"cif2hkl", OUTFILE, options, infile);
ret = system(cmd);
if (ret != -1 && ret != 127) found = 1;
}
if (!found) {
// As a last resort, attempt with cif2hkl from $MCXTRACE/bin
snprintf(cmd, 1024, "%s%c%s%c%s -o %s %s %s",
getenv(FLAVOR_UPPER) ? getenv(FLAVOR_UPPER) : MCXTRACE,
MC_PATHSEP_C, "bin", MC_PATHSEP_C, "cif2hkl",
OUTFILE, options, infile);
ret = system(cmd);
}
// ret = -1: child process could not be created
// ret = 127: shell could not be executed in the child process
if (ret == -1 || ret == 127) {
free(OUTFILE);
return(NULL);
}
// test if the result file has been created
FILE *file = Open_File(OUTFILE,"r", NULL);
if (!file) return(NULL);
MPI_MASTER(
printf("%s: INFO: Converting %s into F2(HKL) list %s\n",
__FILE__, infile, OUTFILE);
printf ("%s\n",cmd);
);
fflush(NULL);
return(OUTFILE);
} // cif2hkl
#endif
/* ------------------------------------------------------------------------ */
// count = read_hkl_data(filename, &info)
// read the given file to store F2(HKL) reflections and metadata.
int
read_hkl_data(char *SC_file, struct hkl_info_struct *info, struct hkl_data **hkl_list,
double SC_mosaic, double SC_mosaic_a, double SC_mosaic_b, double SC_mosaic_c, double *SC_mosaic_AB,
int surf_size, double *surf_k, double *surf_FT2, double *surf_dir)
{
struct hkl_data *list = NULL;
int size = 0;
t_Table sTable; /* sample data table structure from SC_file */
int i=0, j=0, J=0;
double tmp_x, tmp_y, tmp_z;
char **parsing;
char flag=0;
double nb_atoms=1;
double sum_F2=0;
char *filename=NULL;
if (!SC_file || !strlen(SC_file) || !strcmp(SC_file,"NULL") || !strcmp(SC_file,"0"))
return(0);
filename = cif2hkl(SC_file, "--xtal --mode XRA");
if (!filename || Table_Read(&sTable, filename, 1) < 0) return(0);
if (sTable.columns < 4) {
MPI_MASTER(
fprintf(stderr, "Single_crystal: %s: ERROR: The number of columns in %s should be at least %d for [h,k,l,F2]\n", __FILE__, SC_file, 4);
);
return(0);
}
if (!sTable.rows) {
MPI_MASTER(
fprintf(stderr, "Single_crystal: %s: ERROR: The number of rows in %s should be at least %d\n", __FILE__, SC_file, 1);
);
return(0);
} else size = sTable.rows;
/* parsing of header */
parsing = Table_ParseHeader(sTable.header,
"sigma_abs","sigma_a ", // 0-1
"sigma_inc","sigma_i ",
"column_h",
"column_k",
"column_l",
"column_F ",
"column_F2",
"Delta_d/d", // 9
"lattice_a ",
"lattice_b ",
"lattice_c ",
"lattice_aa",
"lattice_bb",
"lattice_cc",
"nb_atoms","multiplicity", // 17
"Vc","V_0","V_rho","density","weight",
NULL);
if (parsing) {
//if (parsing[0] && !info->sigma_a) info->sigma_a=atof(parsing[0]);
//if (parsing[1] && !info->sigma_a) info->sigma_a=atof(parsing[1]);
if (parsing[2] && !info->sigma_i) info->sigma_i=atof(parsing[2]);
if (parsing[3] && !info->sigma_i) info->sigma_i=atof(parsing[3]);
if (parsing[4]) info->column_order[0]=atoi(parsing[4]);
if (parsing[5]) info->column_order[1]=atoi(parsing[5]);
if (parsing[6]) info->column_order[2]=atoi(parsing[6]);
if (parsing[7]) info->column_order[3]=atoi(parsing[7]);
if (parsing[8]) info->column_order[4]=atoi(parsing[8]);
if (parsing[9] && info->m_delta_d_d <0) info->m_delta_d_d=atof(parsing[9]);
if (parsing[10] && !info->m_a) info->m_a =atof(parsing[10]);
if (parsing[11] && !info->m_b) info->m_b =atof(parsing[11]);
if (parsing[12] && !info->m_c) info->m_c =atof(parsing[12]);
if (parsing[13] && !info->m_aa) info->m_aa=atof(parsing[13]);
if (parsing[14] && !info->m_bb) info->m_bb=atof(parsing[14]);
if (parsing[15] && !info->m_cc) info->m_cc=atof(parsing[15]);
if (parsing[16]) nb_atoms=atof(parsing[16]);
if (parsing[17]) nb_atoms=atof(parsing[17]);
if (parsing[18] && !info->rho) info->rho =1/atof(parsing[18]);
if (parsing[19] && !info->rho) info->rho =1/atof(parsing[19]);
if (parsing[20] && !info->rho) info->rho =atof(parsing[20]);
if (parsing[21] && !info->mat_density) info->mat_density=atof(parsing[21]);
if (parsing[22] && !info->mat_weight) info->mat_weight =atof(parsing[22]);
for (i=0; i<=22; i++) if (parsing[i]) free(parsing[i]);
free(parsing);
}
if (!info->rho && info->mat_density > 0 && info->mat_weight > 0 && nb_atoms > 0) {
/* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
/* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
info->rho = info->mat_density/(info->mat_weight*nb_atoms)/1e24*NA;
}
if (nb_atoms > 1) { info->sigma_i *= nb_atoms; }
/* special cases for the structure definition */
if (info->m_ax || info->m_ay || info->m_az) {info->m_a=0; info->m_aa=0;} /* means we specify by hand the vectors */
if (info->m_bx || info->m_by || info->m_bz) {info->m_b=0; info->m_bb=0;}
if (info->m_cx || info->m_cy || info->m_cz) {info->m_c=0; info->m_cc=0;};
/* compute the norm from vector a if missing */
if (info->m_ax || info->m_ay || info->m_az) {
double as=sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (!info->m_bx && !info->m_by && !info->m_bz) info->m_a=info->m_b=as;
if (!info->m_cx && !info->m_cy && !info->m_cz) info->m_a=info->m_c=as;
}
if (info->m_a && !info->m_b) info->m_b=info->m_a;
if (info->m_b && !info->m_c) info->m_c=info->m_b;
/* compute the lattive angles if not set from data file. Not used when in vector mode. */
if (info->m_a && !info->m_aa) info->m_aa=90;
if (info->m_aa && !info->m_bb) info->m_bb=info->m_aa;
if (info->m_bb && !info->m_cc) info->m_cc=info->m_bb;
/* parameters consistency checks */
if (!info->m_ax && !info->m_ay && !info->m_az && !info->m_a) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Wrong a lattice vector definition\n", __FILE__);
);
return(0);
}
if (!info->m_bx && !info->m_by && !info->m_bz && !info->m_b) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Wrong b lattice vector definition\n", __FILE__);
);
return(0);
}
if (!info->m_cx && !info->m_cy && !info->m_cz && !info->m_c) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Wrong c lattice vector definition\n", __FILE__);
);
return(0);
}
if (info->m_aa && info->m_bb && info->m_cc && info->recip) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Selecting reciprocal cell and angles is unmeaningful.\n", __FILE__);
);
return(0);
}
/* when lengths a,b,c + angles are given (instead of vectors a,b,c) */
if (info->m_aa && info->m_bb && info->m_cc)
{
double as,bs,cs;
if (info->m_a) as = info->m_a;
else as = sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
if (info->m_b) bs = info->m_b;
else bs = sqrt(info->m_bx*info->m_bx+info->m_by*info->m_by+info->m_bz*info->m_bz);
if (info->m_c) cs = info->m_c;
else cs = sqrt(info->m_cx*info->m_cx+info->m_cy*info->m_cy+info->m_cz*info->m_cz);
info->m_bz = as; info->m_by = 0; info->m_bx = 0;
info->m_az = bs*cos(info->m_cc*DEG2RAD);
info->m_ay = bs*sin(info->m_cc*DEG2RAD);
info->m_ax = 0;
info->m_cz = cs*cos(info->m_bb*DEG2RAD);
info->m_cy = cs*(cos(info->m_aa*DEG2RAD)-cos(info->m_cc*DEG2RAD)*cos(info->m_bb*DEG2RAD))
/sin(info->m_cc*DEG2RAD);
info->m_cx = sqrt(cs*cs - info->m_cz*info->m_cz - info->m_cy*info->m_cy);
MPI_MASTER(
printf("Single_crystal: %s structure a=%g b=%g c=%g aa=%g bb=%g cc=%g ",
SC_file, as, bs, cs, info->m_aa, info->m_bb, info->m_cc);
);
} else {
MPI_MASTER(
if (!info->recip) {
printf("Single_crystal: %s structure a=[%g,%g,%g] b=[%g,%g,%g] c=[%g,%g,%g] ",
SC_file, info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
} else {
printf("Single_crystal: %s structure a*=[%g,%g,%g] b*=[%g,%g,%g] c*=[%g,%g,%g] ",
SC_file, info->m_ax ,info->m_ay ,info->m_az,
info->m_bx ,info->m_by ,info->m_bz,
info->m_cx ,info->m_cy ,info->m_cz);
}
);
}
/* Compute reciprocal or direct lattice vectors. */
if (!info->recip) {
vec_prod(tmp_x, tmp_y, tmp_z,
info->m_bx, info->m_by, info->m_bz,
info->m_cx, info->m_cy, info->m_cz);
info->V0 = fabs(scalar_prod(info->m_ax, info->m_ay, info->m_az, tmp_x, tmp_y, tmp_z));
if (!info->V0 || isnan(info->V0)) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Lattice cell volume is found invalid V0=%g. Check crystal cell parameters.\n", __FILE__, info->V0));
}
info->asx = 2*PI/info->V0*tmp_x;
info->asy = 2*PI/info->V0*tmp_y;
info->asz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_cx, info->m_cy, info->m_cz, info->m_ax, info->m_ay, info->m_az);
info->bsx = 2*PI/info->V0*tmp_x;
info->bsy = 2*PI/info->V0*tmp_y;
info->bsz = 2*PI/info->V0*tmp_z;
vec_prod(tmp_x, tmp_y, tmp_z, info->m_ax, info->m_ay, info->m_az, info->m_bx, info->m_by, info->m_bz);
info->csx = 2*PI/info->V0*tmp_x;
info->csy = 2*PI/info->V0*tmp_y;
info->csz = 2*PI/info->V0*tmp_z;
} else {
info->asx = info->m_ax;
info->asy = info->m_ay;
info->asz = info->m_az;
info->bsx = info->m_bx;
info->bsy = info->m_by;
info->bsz = info->m_bz;
info->csx = info->m_cx;
info->csy = info->m_cy;
info->csz = info->m_cz;
vec_prod(tmp_x, tmp_y, tmp_z,
info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI),
info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI));
info->V0 = scalar_prod(info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI), tmp_x, tmp_y, tmp_z);
if (!info->V0 || isnan(info->V0)) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Lattice reciprocal cell volume is found invalid V0=%g. Check crystal cell parameters.\n", __FILE__, info->V0));
}
info->V0 = 1/fabs(info->V0);
/*compute the direct cell parameters, for completeness*/
info->m_ax = tmp_x*info->V0;
info->m_ay = tmp_y*info->V0;
info->m_az = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI),info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI));
info->m_bx = tmp_x*info->V0;
info->m_by = tmp_y*info->V0;
info->m_bz = tmp_z*info->V0;
vec_prod(tmp_x, tmp_y, tmp_z,info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI),info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI));
info->m_cx = tmp_x*info->V0;
info->m_cy = tmp_y*info->V0;
info->m_cz = tmp_z*info->V0;
}
MPI_MASTER(printf("V0=%g\n", info->V0););
if (!info->column_order[0] || !info->column_order[1] || !info->column_order[2]) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Wrong h,k,l column definition\n", SC_file);
);
return(0);
}
if (!info->column_order[3] && !info->column_order[4]) {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: Wrong F,F2 column definition\n", SC_file);
);
return(0);
}
/* allocate hkl_data array */
if (surf_size <= 0 || !surf_k || !surf_FT2 || !surf_dir) surf_size = 1;
list = (struct hkl_data*) malloc(size*surf_size*sizeof(struct hkl_data));
for (i=0; i<size; i++)
for (j=0; j<surf_size; j++)
{
double h=0, k=0, l=0, F2=0;
double b1[3], b2[3];
double sig1, sig2, sig3;
/* get data from table */
h = Table_Index(sTable, i, info->column_order[0]-1);
k = Table_Index(sTable, i, info->column_order[1]-1);
l = Table_Index(sTable, i, info->column_order[2]-1);
if (info->column_order[3])
{ F2= Table_Index(sTable, i, info->column_order[3]-1); F2 *= F2; }
else if (info->column_order[4])
F2= Table_Index(sTable, i, info->column_order[4]-1);
list[J].h = h;
list[J].k = k;
list[J].l = l;
list[J].F2 = F2;
sum_F2 += F2;
/* Precompute some values */
list[J].tau_x = h*info->asx + k*info->bsx + l*info->csx;
list[J].tau_y = h*info->asy + k*info->bsy + l*info->csy;
list[J].tau_z = h*info->asz + k*info->bsz + l*info->csz;
// create satellite peaks from e.g. surface truncation (CTR)
if (surf_size > 1 && surf_FT2 && surf_k && surf_FT2[j] > 0 && surf_k[j]) {
list[J].tau_x += surf_dir[0]*surf_k[j];
list[J].tau_y += surf_dir[1]*surf_k[j];
list[J].tau_z += surf_dir[2]*surf_k[j];
list[J].F2 *= surf_FT2[j];
}
list[J].tau = sqrt(list[J].tau_x*list[J].tau_x +
list[J].tau_y*list[J].tau_y +
list[J].tau_z*list[J].tau_z);
list[J].u1x = list[J].tau_x/list[J].tau;
list[J].u1y = list[J].tau_y/list[J].tau;
list[J].u1z = list[J].tau_z/list[J].tau;
sig1 = FWHM2RMS*info->m_delta_d_d*list[J].tau;
/* Find two arbitrary axes perpendicular to tau and each other. */
normal_vec(&b1[0], &b1[1], &b1[2],
list[J].u1x, list[J].u1y, list[J].u1z);
vec_prod(b2[0], b2[1], b2[2],
list[J].u1x, list[J].u1y, list[J].u1z,
b1[0], b1[1], b1[2]);
/* Find the two mosaic axes perpendicular to tau. */
if(SC_mosaic > 0) {
/* Use isotropic mosaic. */
list[J].u2x = b1[0];
list[J].u2y = b1[1];
list[J].u2z = b1[2];
sig2 = FWHM2RMS*list[J].tau*MIN2RAD*SC_mosaic;
list[J].u3x = b2[0];
list[J].u3y = b2[1];
list[J].u3z = b2[2];
sig3 = FWHM2RMS*list[J].tau*MIN2RAD*SC_mosaic;
} else if(SC_mosaic_a > 0 && SC_mosaic_b > 0 && SC_mosaic_c > 0) {
/* Use anisotropic mosaic. */
MPI_MASTER(
fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature:\n"
" anistropic mosaicity. Please examine your data carefully.\n");
);
/* compute the jacobian of (tau_v,tau_n) from rotations around the unit cell vectors. */
struct hkl_data *l =&(list[J]);
double xia_x,xia_y,xia_z,xib_x,xib_y,xib_z,xic_x,xic_y,xic_z;
/*input parameters are in arc minutes*/
double sig_fi_a=SC_mosaic_a*MIN2RAD;
double sig_fi_b=SC_mosaic_b*MIN2RAD;
double sig_fi_c=SC_mosaic_c*MIN2RAD;
if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
l->u2x = b1[0];
l->u2y = b1[1];
l->u2z = b1[2];
l->u3x = b2[0];
l->u3y = b2[1];
l->u3z = b2[2];
xia_x=l->tau_x-(M_2_PI*h/info->m_a)*info->asx;
xia_y=l->tau_y-(M_2_PI*h/info->m_a)*info->asy;
xia_z=l->tau_z-(M_2_PI*h/info->m_a)*info->asz;
xib_x=l->tau_x-(M_2_PI*h/info->m_b)*info->bsx;
xib_y=l->tau_y-(M_2_PI*h/info->m_b)*info->bsy;
xib_z=l->tau_z-(M_2_PI*h/info->m_b)*info->bsz;
xic_x=l->tau_x-(M_2_PI*h/info->m_c)*info->csx;
xic_y=l->tau_y-(M_2_PI*h/info->m_c)*info->csy;
xic_z=l->tau_z-(M_2_PI*h/info->m_c)*info->csz;
double xia=sqrt(xia_x*xia_x + xia_y*xia_y + xia_z*xia_z);
double xib=sqrt(xib_x*xib_x + xib_y*xib_y + xib_z*xib_z);
double xic=sqrt(xic_x*xic_x + xic_y*xic_y + xic_z*xic_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
double J_n_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
double J_v_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);
/*with the jacobian we can compute the sigmas in terms of the orthogonal vectors u2 and u3*/
sig2=sig_fi_a*fabs(J_v_fia) + sig_fi_b*fabs(J_v_fib) + sig_fi_c*fabs(J_v_fic);
sig3=sig_fi_a*fabs(J_n_fia) + sig_fi_b*fabs(J_n_fib) + sig_fi_c*fabs(J_n_fic);
} else if (SC_mosaic_AB[0]!=0 && SC_mosaic_AB[1]!=0){
if ( (SC_mosaic_AB[2]==0 && SC_mosaic_AB[3]==0 && SC_mosaic_AB[4]==0) || (SC_mosaic_AB[5]==0 && SC_mosaic_AB[6]==0 && SC_mosaic_AB[7]==0) ){
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: ERROR: in-plane mosaics are specified but one (or both)\n"
" in-plane reciprocal vector is the zero vector.\n", __FILE__);
);
return(0);
}
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: Warning: you are using an experimental feature: \n"
" \"in-plane\" anistropic mosaicity. Please examine your data carefully.\n", __FILE__);
);
/*for given reflection in list - compute linear comb of tau_a and tau_b*/
/*check for not in plane - f.i. check if (tau_a X tau_b).tau_i)==0*/
struct hkl_data *l =&(list[J]);
double det,c1,c2,sig_tau_c;
double em_x,em_y,em_z, tmp_x,tmp_y,tmp_z;
double tau_a[3],tau_b[3];
/*convert Miller indices to taus*/
if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
tau_a[0]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asx + (SC_mosaic_AB[3]/info->m_b)*info->bsx + (SC_mosaic_AB[4]/info->m_c)*info->csx );
tau_a[1]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asy + (SC_mosaic_AB[3]/info->m_b)*info->bsy + (SC_mosaic_AB[4]/info->m_c)*info->csy );
tau_a[2]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asz + (SC_mosaic_AB[3]/info->m_b)*info->bsz + (SC_mosaic_AB[4]/info->m_c)*info->csz );
tau_b[0]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asx + (SC_mosaic_AB[6]/info->m_b)*info->bsx + (SC_mosaic_AB[7]/info->m_c)*info->csx );
tau_b[1]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asy + (SC_mosaic_AB[6]/info->m_b)*info->bsy + (SC_mosaic_AB[7]/info->m_c)*info->csy );
tau_b[2]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asz + (SC_mosaic_AB[6]/info->m_b)*info->bsz + (SC_mosaic_AB[7]/info->m_c)*info->csz );
/*check determinants to see how we should compute the linear combination of a and b (to match c)*/
if ((det=tau_a[0]*tau_b[1]-tau_a[1]*tau_b[0])!=0){
c1= (l->tau_x*tau_b[1] - l->tau_y*tau_b[0])/det;
c2= (tau_a[0]*l->tau_y - tau_a[1]*l->tau_x)/det;
}else if ((det=tau_a[1]*tau_b[2]-tau_a[2]*tau_b[1])!=0){
c1= (l->tau_y*tau_b[2] - l->tau_z*tau_b[1])/det;
c2= (tau_a[1]*l->tau_z - tau_a[2]*l->tau_y)/det;
}else if ((det=tau_a[0]*tau_b[2]-tau_a[2]*tau_b[0])!=0){
c1= (l->tau_x*tau_b[2] - l->tau_z*tau_b[0])/det;
c2= (tau_a[0]*l->tau_z - tau_a[2]*l->tau_x)/det;
}
if ((c1==0) && (c2==0)){
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: Warning: reflection tau[%i]=(%g %g %g) "
"has no component in defined mosaic plane\n", __FILE__,
i, l->tau_x,l->tau_y,l->tau_z);
);
}
/*compute linear combination => sig_tau_i = | c1*sig_tau_a + c2*sig_tau_b | - also add in the minute to radian scaling factor*/;
sig_tau_c = MIN2RAD*sqrt(c1*SC_mosaic_AB[0]*c1*SC_mosaic_AB[0] + c2*SC_mosaic_AB[1]*c2*SC_mosaic_AB[1]);
l->u2x = b1[0]; l->u2y = b1[1]; l->u2z = b1[2];
l->u3x = b2[0]; l->u3y = b2[1]; l->u3z = b2[2];
/*so now let's compute the rotation around planenormal tau_a X tau_b*/
/*g_bar (unit normal of rotation plane) = tau_a X tau_b / norm(tau_a X tau_b)*/
vec_prod(tmp_x,tmp_y,tmp_z, tau_a[0],tau_a[1],tau_a[2],tau_b[0],tau_b[1],tau_b[2]);
vec_prod(em_x,em_y,em_z, l->tau_x, l->tau_y, l->tau_z, tmp_x,tmp_y,tmp_z);
NORM(em_x,em_y,em_z);
sig2 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u2x,l->u2y,l->u2z));
sig3 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u3x,l->u3y,l->u3z));
/*protect against collapsing gaussians. These seem to be sensible values.*/
if (sig2<1e-5) sig2=1e-5;
if (sig3<1e-5) sig3=1e-5;
}
else {
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: ERROR: EITHER mosaic OR (mosaic_a, mosaic_b, mosaic_c)\n"
" must be given and be >0.\n", __FILE__);
);
return(0);
}
list[J].sig123 = sig1*sig2*sig3;
list[J].m1 = 1/(2*sig1*sig1);
list[J].m2 = 1/(2*sig2*sig2);
list[J].m3 = 1/(2*sig3*sig3);
/* Set Gauss cutoff to 5 times the maximal sigma. */
if(sig1 > sig2)
if(sig1 > sig3)
list[J].cutoff = 5*sig1;
else
list[J].cutoff = 5*sig3;
else
if(sig2 > sig3)
list[J].cutoff = 5*sig2;
else
list[J].cutoff = 5*sig3;
if (!isnan(list[J].F2) && !isnan(list[J].cutoff) && !isnan(list[J].tau))
J++; // switch to next HKL Bragg element in hkl_data
} // for i, j
Table_Free(&sTable);
if (!sum_F2) {
MPI_MASTER(
exit(fprintf(stderr, "Single_crystal: %s: ERROR: all %i structure factors in file '%s' are null. Check the reflection list.\n",
__FILE__, i, SC_file));
);
}
// remove temporary F2(hkl) file when giving CFL/CIF/ShelX file
if (filename != SC_file)
unlink(filename);
/* sort the list with increasing tau */
qsort(list, J, sizeof(struct hkl_data), SX_list_compare);
*hkl_list = list;
info->count = J;
return(info->count);
} /* read_hkl_data */
/* ------------------------------------------------------------------------ */
/* hkl_search
search the HKL reflections which are on the Ewald sphere
input:
L,T,count,V0: constants for all calls
kix,kiy,kiz: may be different for each call
this function returns:
tau_count (return), coh_refl, coh_xsect, T (updated elements in the array up to [j])
*/
#pragma acc routine
int hkl_search(struct hkl_data *L, void *TT, int count, double V0,
double kix, double kiy, double kiz, double tau_max,
double *coh_refl, double *coh_xsect)
{
double rho, rho_x, rho_y, rho_z;
double diff;
int i,j;
double ox,oy,oz;
double b1x,b1y,b1z, b2x,b2y,b2z, kx, ky, kz, nx, ny, nz;
double n11, n22, n12, det_N, inv_n11, inv_n22, inv_n12, l11, l22, l12, det_L;
double Bt_D_O_x, Bt_D_O_y, y0x, y0y, alpha;
double ki = sqrt(kix*kix+kiy*kiy+kiz*kiz);
int jglobal=-1;
double coherent_refl,coherent_xsect;
struct tau_data *T=(struct tau_data *)TT;
//coherent_refl = *coh_refl;
//coherent_xsect = *coh_xsect;
coherent_refl = 0;
coherent_xsect = 0;
/* Common factor in coherent cross-section */
double xsect_factor = pow(2*PI, 5.0/2.0)/(V0*ki*ki);
j=0;
for(i = 0; i < count; i++)
{
/* Assuming reflections are sorted, stop search when max tau exceeded. */
if(L[i].tau > tau_max)
break;
/* Check if this reciprocal lattice point is close enough to the
Ewald sphere to make scattering possible. */
rho_x = kix - L[i].tau_x; /* rho = |ki - tau| = |kf| = |ki| within cutoff on the Ewald sphere */
rho_y = kiy - L[i].tau_y;
rho_z = kiz - L[i].tau_z;
rho = sqrt(rho_x*rho_x + rho_y*rho_y + rho_z*rho_z);
diff = fabs(rho - ki);
/* Check if scattering is possible (cutoff of Gaussian tails). */
if(diff <= L[i].cutoff)
{
/* Store reflection. */
T[j].index = i;
/* Get ki vector in local coordinates. */
kx = kix*L[i].u1x + kiy*L[i].u1y + kiz*L[i].u1z;
ky = kix*L[i].u2x + kiy*L[i].u2y + kiz*L[i].u2z;
kz = kix*L[i].u3x + kiy*L[i].u3y + kiz*L[i].u3z;
T[j].rho_x = kx - L[i].tau;
T[j].rho_y = ky;
T[j].rho_z = kz;
T[j].rho = rho;
/* Compute the tangent plane of the Ewald sphere. */
nx = T[j].rho_x/T[j].rho;
ny = T[j].rho_y/T[j].rho;
nz = T[j].rho_z/T[j].rho;
ox = (ki - T[j].rho)*nx;
oy = (ki - T[j].rho)*ny;
oz = (ki - T[j].rho)*nz;
T[j].ox = ox;
T[j].oy = oy;
T[j].oz = oz;
/* Compute unit vectors b1 and b2 that span the tangent plane. */
normal_vec(&b1x, &b1y, &b1z, nx, ny, nz);
vec_prod(b2x, b2y, b2z, nx, ny, nz, b1x, b1y, b1z);
T[j].b1x = b1x;
T[j].b1y = b1y;
T[j].b1z = b1z;
T[j].b2x = b2x;
T[j].b2y = b2y;
T[j].b2z = b2z;
/* Compute the 2D projection of the 3D Gauss of the reflection. */
/* The symmetric 2x2 matrix N describing the 2D gauss. */
n11 = L[i].m1*b1x*b1x + L[i].m2*b1y*b1y + L[i].m3*b1z*b1z;
n12 = L[i].m1*b1x*b2x + L[i].m2*b1y*b2y + L[i].m3*b1z*b2z;
n22 = L[i].m1*b2x*b2x + L[i].m2*b2y*b2y + L[i].m3*b2z*b2z;
/* The (symmetric) inverse matrix of N. */
det_N = n11*n22 - n12*n12;
inv_n11 = n22/det_N;
inv_n12 = -n12/det_N;
inv_n22 = n11/det_N;
/* The Cholesky decomposition of 1/2*inv_n (lower triangular L). */
l11 = sqrt(inv_n11/2);
l12 = inv_n12/(2*l11);
l22 = sqrt(inv_n22/2 - l12*l12);
T[j].l11 = l11;
T[j].l12 = l12;
T[j].l22 = l22;
det_L = l11*l22;
/* The product B^T D o. */
Bt_D_O_x = b1x*L[i].m1*ox + b1y*L[i].m2*oy + b1z*L[i].m3*oz;
Bt_D_O_y = b2x*L[i].m1*ox + b2y*L[i].m2*oy + b2z*L[i].m3*oz;
/* Center of 2D Gauss in plane coordinates. */
y0x = -(Bt_D_O_x*inv_n11 + Bt_D_O_y*inv_n12);
y0y = -(Bt_D_O_x*inv_n12 + Bt_D_O_y*inv_n22);
T[j].y0x = y0x;
T[j].y0y = y0y;
/* Factor alpha for the distance of the 2D Gauss from the origin. */
alpha = L[i].m1*ox*ox + L[i].m2*oy*oy + L[i].m3*oz*oz -
(y0x*y0x*n11 + y0y*y0y*n22 + 2*y0x*y0y*n12);
T[j].refl = xsect_factor*det_L*exp(-alpha)/L[i].sig123; /* intensity of that Bragg */
if (isnan(T[j].refl)) continue;
*coh_refl += T[j].refl; /* total scatterable intensity */
T[j].xsect = T[j].refl*L[i].F2;
*coh_xsect += T[j].xsect;
j++;
}
/*protect against tau shortlist buffer overrrun*/
if (j==MCSX_REFL_SLIST_SIZE){
break;
}
} /* end for */
return (j); // this is 'tau_count', i.e. number of reachable reflections
} /* end hkl_search */
#pragma acc routine
int hkl_select(struct tau_data *T, int tau_count, double coh_refl, double *sum,_class_particle *_particle) {
int j;
double r = rand0max(coh_refl);
*sum = 0;
for(j = 0; j < tau_count; j++)
{
*sum += T[j].refl;
if(*sum > r) break;
}
return j;
}
/* Functions for "reorientation", powder mode */
/* Powder, forward */
#pragma acc routine
void randrotate(double *nx, double *ny, double *nz, double a, double b, double c) {
double x1, y1, z1, x2, y2, z2;
rotate(x1, y1, z1, *nx,*ny,*nz, a, 1, 0, 0); /* <1> = rot(<n>,a) */
rotate(x2, y2, z2, x1, y1, z1, b, 0, 1, 0); /* <2> = rot(<1>,b) */
rotate(*nx,*ny,*nz, x2, y2, z2, c, 0, 0, 1); /* <n> = rot(<2>,c) */
}
/* Powder, back */
#pragma acc routine
void randderotate(double *nx, double *ny, double *nz, double a, double b, double c) {
double x1, y1, z1, x2, y2, z2;
rotate(x1, y1, z1, *nx,*ny,*nz, -c, 0,0,1);
rotate(x2, y2, z2, x1, y1, z1, -b, 0,1,0);
rotate(*nx,*ny,*nz, x2, y2, z2, -a, 1,0,0);
}
#pragma acc routine
/* rotate vector counterclockwise */
void vec_rotate_2d(double* x, double* y, double angle) {
double c, s;
double newx, newy;
c = cos(angle);
s = sin(angle);
newx = *x*c - *y*s;
newy = *x*s + *y*c;
*x = newx;
*y = newy;
}
struct sx_abs_data
{
int muc; // column where mu is to be found
double atomic_weight;
double delta_prefactor;
t_Table table;
};
int sx_read_abs_data(char *ABS_file, struct sx_abs_data *abs, struct hkl_info_struct info ){
int status;
char **parsing;
double Z;
if (ABS_file && strlen(ABS_file) && strcmp(ABS_file, "NULL") && strcmp(ABS_file, "0")) {
if ( (status=Table_Read(&(abs->table),ABS_file,0))==-1){
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: ERROR: Could not parse file \"%s\"\n", __FILE__, ABS_file);
);
exit(-1);
}
abs->muc = (abs->table.columns==3 ? 1 : 5);
parsing=Table_ParseHeader(abs->table.header,"Z","A[r]","rho",NULL);
if (parsing) {
if (parsing[0]) Z =strtol(parsing[0],NULL,10);
if (parsing[1] && !info.mat_weight) info.mat_weight =strtod(parsing[1],NULL); // aka A[r] in g/mol
if (parsing[2] && !info.rho) info.rho =strtod(parsing[2],NULL);
}
if (info.rho && info.mat_weight)
abs->delta_prefactor= NA*(info.rho*1e-24)/info.mat_weight * 2.0*M_PI*RE;
abs->atomic_weight=info.mat_weight;
return 1;
} else {
// init an empty table with absorption 0
Table_Init(&(abs->table),2,2);
abs->table.data[0]=0;abs->table.data[1]=0;
abs->table.data[2]=FLT_MAX;abs->table.data[3]=0;
fprintf(stderr,"Single_crystal: %s: Warning: material file %s not found. Absorption set to 0\n",
__FILE__, ABS_file);
return 0;
}
} // sx_read_abs_data
#endif /* !SINGLE_CRYSTAL_DECL */
%}
DECLARE
%{
struct hkl_info_struct hkl_info;
off_struct offdata;
struct hkl_data *hkl_list;
struct tau_data tau_list[MCSX_REFL_SLIST_SIZE];
struct sx_abs_data abs_info;
%}
INITIALIZE
%{
double as, bs, cs;
int i=0;
/* transfer input parameters */
hkl_info.m_delta_d_d = delta_d_d;
hkl_info.m_a = 0;
hkl_info.m_b = 0;
hkl_info.m_c = 0;
hkl_info.m_aa = aa;
hkl_info.m_bb = bb;
hkl_info.m_cc = cc;
hkl_info.m_ax = ax;
hkl_info.m_ay = ay;
hkl_info.m_az = az;
hkl_info.m_bx = bx;
hkl_info.m_by = by;
hkl_info.m_bz = bz;
hkl_info.m_cx = cx;
hkl_info.m_cy = cy;
hkl_info.m_cz = cz;
hkl_info.sigma_i = sigma_inc;
hkl_info.recip = recip_cell;
/* default format h,k,l,F,F2 */
hkl_info.column_order[0]=1;
hkl_info.column_order[1]=2;
hkl_info.column_order[2]=3;
hkl_info.column_order[3]=0;
hkl_info.column_order[4]=7;
hkl_info.kix = hkl_info.kiy = hkl_info.kiz = 0;
hkl_info.nb_reuses = hkl_info.nb_refl = hkl_info.nb_refl_count = 0;
hkl_info.tau_count = 0;
/*this should not be in hkl_info*/
hkl_info.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
#ifndef USE_OFF
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: ERROR: You are attempting to use an OFF/PLY geometry without -DUSE_OFF. You will need to recompile with that define set!\n", NAME_CURRENT_COMP);
);
exit(-1);
#else
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
hkl_info.shape=3;
}
#endif
}
else if (xwidth && yheight && zdepth) hkl_info.shape=1; /* box */
else if (radius > 0 && yheight) hkl_info.shape=0; /* cylinder */
else if (radius > 0 && !yheight) hkl_info.shape=2; /* sphere */
if (hkl_info.shape < 0)
exit(fprintf(stderr,"Single_crystal: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
/* determine if we have a surface broadening/truncation rods (CTR) */
hkl_info.ctr_size=surf_size;
hkl_info.ctr_k =surf_k;
hkl_info.ctr_FT2 =surf_FT2;
hkl_info.ctr_dir =surf_dir;
if (hkl_info.ctr_size < 0) { /* CTR automatic mode */
double surf_dir_sum =0;
double surf_thickness=0;
for (i=0; i<3; hkl_info.ctr_dir[i++]=0);
if (hkl_info.shape == 1) {
if (xwidth <= yheight && xwidth <= zdepth) { hkl_info.ctr_dir[0]=1; surf_thickness=xwidth; }
else if (yheight<= xwidth && yheight<= zdepth) { hkl_info.ctr_dir[1]=1; surf_thickness=yheight; }
else { hkl_info.ctr_dir[2]=1; surf_thickness=zdepth; }
} else if (hkl_info.shape == 0 && yheight <= radius) { hkl_info.ctr_dir[1]=1; surf_thickness=yheight; }
// surf_size=-1: set automatically the k and FT2 vectors
if (0 < surf_thickness) {
hkl_info.ctr_size=21; // nb of satellite peaks
double range_k = 1.0; // k range [1/Angs], k=[-range/2 : +range/2]
double dk = range_k/(hkl_info.ctr_size-1); // delta-k for btw satellites
DArray1d s_k = create_darr1d(hkl_info.ctr_size);
DArray1d s_F = create_darr1d(hkl_info.ctr_size);
hkl_info.ctr_k = (double *)s_k;
hkl_info.ctr_FT2 = (double *)s_F;
for (i=0; i<hkl_info.ctr_size; i++) {
hkl_info.ctr_k[i] = -range_k/2+i*dk; // 1/Angs, symmetric around 0 [1/Angs]
if (surf_thickness < 1e-7) { // thin layer thickness < 0.1 um -> sinc^2
double x=PI*hkl_info.ctr_k[i]*surf_thickness*1e10; // 1e10 [m -> Angs]
hkl_info.ctr_FT2[i] = hkl_info.ctr_k[i] ? sin(x)/x : 1;
} else { // assume a half-bulk -> 1/k^2 [in rlu]
hkl_info.ctr_FT2[i] = hkl_info.ctr_k[i] ? 1/(hkl_info.ctr_k[i]*2*PI) : 4*PI; // we assume a=2PI
}
hkl_info.ctr_FT2[i]*= hkl_info.ctr_FT2[i]; // squared
}
MPI_MASTER(
printf("Single_crystal: %s: Info: Setting CTR surface normal XYZ=[%g,%g,%g], as a %s.\n",
NAME_CURRENT_COMP,
hkl_info.ctr_dir[0],hkl_info.ctr_dir[1],hkl_info.ctr_dir[2],
surf_thickness < 1e-7 ? "thin layer (sinc^2)" : "half-bulk (1/k^2)");
);
}
}
if (hkl_info.ctr_size > 1 && (!hkl_info.ctr_dir || !hkl_info.ctr_dir[0] && !hkl_info.ctr_dir[1] && !hkl_info.ctr_dir[2])) { // no CTR normal ?
MPI_MASTER(
printf("Single_crystal: %s: Warning: No surf_dir surface normal set. Ignoring CTR.\n", i, NAME_CURRENT_COMP);
);
hkl_info.ctr_size = 1;
}
if (hkl_info.ctr_size > 1 && hkl_info.ctr_FT2 && hkl_info.ctr_k) { // do some CTR tests
double sum_FT2=0, min_k=FLT_MAX, max_k=-FLT_MAX;
for (i=0; i<hkl_info.ctr_size; i++) {
if (hkl_info.ctr_FT2[i] < 0) {
MPI_MASTER(
printf("Single_crystal: %s: Warning: surf_FT2[%i] < 0. Must all be >= 0. Ignoring CTR.\n", i, NAME_CURRENT_COMP);
);
hkl_info.ctr_size=1;
break;
}
sum_FT2 += hkl_info.ctr_FT2[i];
if (hkl_info.ctr_k[i] < min_k) min_k = hkl_info.ctr_k[i];
if (max_k < hkl_info.ctr_k[i]) max_k = hkl_info.ctr_k[i];
}
if (hkl_info.ctr_size>1 && min_k*max_k >= 0) { // k vector not around 0 ?
MPI_MASTER(
printf("Single_crystal: %s: Warning: surf_k = [%g:%g]. Must be around 0. Ignoring CTR.\n", min_k, max_k, NAME_CURRENT_COMP);
);
hkl_info.ctr_size=1;
}
if (hkl_info.ctr_size>1 && sum_FT2 <= 0) { // no positive FT2 value ?
MPI_MASTER(
printf("Single_crystal: %s: Warning: sum(surf_FT2) <= 0. Must be > 0. Ignoring CTR.\n", min_k, max_k, NAME_CURRENT_COMP);
);
hkl_info.ctr_size=1;
}
if (hkl_info.ctr_size>1 && sum_FT2) { // all is fine. Normalize CTR.
NORM(hkl_info.ctr_dir[0],hkl_info.ctr_dir[1],hkl_info.ctr_dir[2]); // normal vector |u|=1
// normalize surf_FT2 (distribute Bragg scattering along all satellites)
for (i=0; i<hkl_info.ctr_size; hkl_info.ctr_FT2[i++] /= sum_FT2);
}
} // if (CTR)
/* ought to be cleaned up as mosaic_AB now is a proper vector/array and not a define */
double* mosaic_ABin = mosaic_AB;
/* Read in structure factors, and do some pre-calculations. */
if (!read_hkl_data(reflections, &hkl_info, &hkl_list, mosaic, mosaic_a, mosaic_b, mosaic_c, mosaic_ABin,
hkl_info.ctr_size,hkl_info.ctr_k,hkl_info.ctr_FT2,hkl_info.ctr_dir)) {
MPI_MASTER(
printf("Single_crystal: %s: ERROR: can not set crystal structure. Check file and mosaic. Aborting.\n", NAME_CURRENT_COMP);
);
exit(-1);
}
if (hkl_info.sigma_i<0) hkl_info.sigma_i=0;
if (hkl_info.count)
printf("Single_crystal: %s: Read %d reflections from file '%s'\n",
NAME_CURRENT_COMP, hkl_info.count, reflections);
else printf("Single_crystal: %s: Using uniform incoherent elastic scattering only sigma=%g.\n",
NAME_CURRENT_COMP, hkl_info.sigma_i);
if (!sx_read_abs_data(material_datafile, &abs_info, hkl_info )) abs_info.muc=0;
MPI_MASTER(
printf("Single_crystal: %s: Vc=%g [Angs] sigma_inc=%g [barn] reflections=%s\n",
NAME_CURRENT_COMP, hkl_info.V0, hkl_info.sigma_i,
reflections && strlen(reflections) ? reflections : "NULL");
);
if (powder && !(order==1)) {
MPI_MASTER(
fprintf(stderr,"Single_crystal: %s: powder mode means implicit choice of no multiple scattering!\n"
"WARNING setting order=1\n", NAME_CURRENT_COMP);
);
order=1;
}
if (powder && (RX || RY)) {
exit(fprintf(stderr,"Single_crystal: %s: powder mode can not be used together with crystal curvature.\n", NAME_CURRENT_COMP));
}
MPI_MASTER(
printf("Direct space lattice orientation:\n");
printf(" a = [%g %g %g]\n", hkl_info.m_ax, hkl_info.m_ay, hkl_info.m_az);
printf(" b = [%g %g %g]\n", hkl_info.m_bx, hkl_info.m_by, hkl_info.m_bz);
printf(" c = [%g %g %g]\n", hkl_info.m_cx, hkl_info.m_cy, hkl_info.m_cz);
printf("Reciprocal space lattice orientation:\n");
printf(" a* = [%g %g %g]\n", hkl_info.asx, hkl_info.asy, hkl_info.asz);
printf(" b* = [%g %g %g]\n", hkl_info.bsx, hkl_info.bsy, hkl_info.bsz);
printf(" c* = [%g %g %g]\n", hkl_info.csx, hkl_info.csy, hkl_info.csz);
);
%}
TRACE
%{
double l1, l2=0; /* Entry and exit lengths in sample */
struct hkl_data *L; /* Structure factor list */
int i; /* Index into structure factor list */
#ifndef OPENACC
struct tau_data *T; /* List of reflections close to Ewald sphere */
#else
struct tau_data T[MCSX_REFL_SLIST_SIZE];
#endif
int tau_count; /* Number of reflections close to Ewald sphere*/
int j; /* Index into reflection list */
int event_counter; /* scattering event counter */
double kix, kiy, kiz, ki; /* Initial wave vector [1/AA] */
double kfx, kfy, kfz; /* Final wave vector */
double k; /* photon wave vector */
double rho_x, rho_y, rho_z; /* the vector ki - tau */
double rho;
double diff; /* Deviation from Bragg condition */
double ox, oy, oz; /* Origin of Ewald sphere tangent plane */
double b1x, b1y, b1z; /* First vector spanning tangent plane */
double b2x, b2y, b2z; /* Second vector spanning tangent plane */
double n11, n12, n22; /* 2D Gauss description matrix N */
double det_N; /* Determinant of N */
double inv_n11, inv_n12, inv_n22; /* Inverse of N */
double l11, l12, l22; /* Cholesky decomposition L of 1/2*inv(N) */
double det_L; /* Determinant of L */
double Bt_D_O_x, Bt_D_O_y; /* Temporaries */
double y0x, y0y; /* Center of 2D Gauss in plane coordinates */
double alpha; /* Offset of 2D Gauss center from 3D center */
double V0; /* Volume of unit cell */
double l_full; /* photon path length for transmission */
double l; /* Path length to scattering event */
double abs_xsect, abs_xlen; /* Absorption cross section and length */
double inc_xsect, inc_xlen; /* Incoherent scattering cross section and length */
double coh_xsect, coh_xlen; /* Coherent cross section and length */
double tot_xsect, tot_xlen; /* Total cross section and length */
double z1, z2, y1, y2; /* Temporaries to choose kf from 2D Gauss */
double adjust, sum; /* Temporaries */
double p_trans; /* Transmission probability */
double mc_trans, mc_interact; /* Transmission, interaction MC choices */
int intersect=0;
double curv_xangle;
double curv_yangle;
double _kx;
double _ky;
double _kz;
char type; /* type of last event: t=transmit,c=coherent or i=incoherent */
int itype; /* type of last event: t=1,c=2 or i=3 */
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
/* Intersection photon trajectory / sample (sample surface) */
if (hkl_info.shape == 0)
intersect = cylinder_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius, yheight);
else if (hkl_info.shape == 1)
intersect = box_intersect(&l1, &l2, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
else if (hkl_info.shape == 2)
intersect = sphere_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius);
#ifdef USE_OFF
else if (hkl_info.shape == 3)
intersect = off_x_intersect(&l1, &l2, NULL, NULL, x, y, z, kx, ky, kz, thread_offdata );
#endif
if (l2 < 0) intersect=0; /* we passed sample volume already */
if(intersect)
{ /* photon intersects crystal */
if(l1 > 0)
PROP_DL(l1); /* Move to crystal surface if not inside */
ki = sqrt(kx*kx + ky*ky + kz*kz);
event_counter = 0;
/*absorption cross-section */
abs_xsect=0;
if (abs_info.muc) {
double mu=Table_Value(abs_info.table, ki*K2E, abs_info.muc);
abs_xsect = (abs_info.atomic_weight/(6.02214076*10E23))*mu; //this is in cm^2
//atomic weight = [g . mol^-1]
//Avogadro number = [mol^-1]
//mu = [cm squared . g⁻1]
//therefore convert to barns if barns set to 1, otherwise to fm^2
if (barns) { //convert cm^2 into barns
abs_xsect *= 10E24;
} else { //convert cm^2 into fm^2, else we assume fm^2
abs_xsect *= 10E26;
}
}
V0= hkl_info.V0;
abs_xlen = abs_xsect/V0;
/*look into Compton scattering*/
inc_xsect = hkl_info.sigma_i;
inc_xlen = inc_xsect/V0;
if (barns) {
/*If cross sections are given in barns, we need a scaling factor of 100
to get scattering lengths in m, since V0 is assumed to be in AA*/
abs_xlen *= 100; inc_xlen *= 100;
} /* else assume fm^2 */
L = hkl_list;
type = '\0';
itype = 0;
#ifndef OPENACC
T = tau_list;
hkl_info.type = type;
#endif
do { /* Loop over multiple scattering events */
/* Angles for powder randomization */
double Alpha, Beta, Gamma;
if (hkl_info.shape == 0)
intersect = cylinder_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius, yheight);
else if (hkl_info.shape == 1)
intersect = box_intersect(&l1, &l2, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
else if (hkl_info.shape == 2)
intersect = sphere_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius);
#ifdef USE_OFF
else if (hkl_info.shape == 3)
intersect = off_x_intersect(&l1, &l2, NULL, NULL, x, y, z, kx, ky, kz, thread_offdata );
#endif
if(!intersect || l2 < -1e-7 || l1 > 1e-7)
{
/* photon is leaving the sample */
hkl_info.flag_warning++;
if (hkl_info.flag_warning < 10)
#ifndef OPENACC
MPI_MASTER(
fprintf(stderr,
"Single_crystal: %s: Warning: photon has unexpectedly left the crystal!\n"
" l1=%g l2=%g x=%g y=%g z=%g kx=%g ky=%g kz=%g order=%i\n",
NAME_CURRENT_COMP, l1, l2, x, y, z, kx, ky, kz, event_counter);
);
#endif
break;
}
l_full = l2;
if ( (order && !(extra_order) && event_counter >= order)
|| (order && extra_order && event_counter >= order + extra_order)) {
// Exit due to truncated order, weight with relevant cross-sections to distance l_full
p*=exp(-abs_xlen*l_full);
intersect=0;
break;
}
/* (1). Compute incoming wave vector ki */
if (powder) { /* orientation of crystallite is random */
Alpha = randpm1()*PI*powder;
Beta = randpm1()*PI/2;
Gamma = randpm1()*PI;
randrotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
}
/* ------------------------------------------------------------------------- */
/* lattice curvature option: rotate photon velocity */
curv_xangle = 0;
curv_yangle = 0;
_kx = kx;
_ky = ky;
_kz = kz;
if(RY) { /* rotate v around x axis based on y pos, for vertical focus */
curv_yangle = atan2(y, RY);
vec_rotate_2d(&ky,&kz, curv_yangle);
vec_rotate_2d(&Ey,&Ez, curv_yangle);
/*changing y,z actually curves the crystal, not only the planes*/
/*comment out if only curvature of the lattice planes is needed*/
vec_rotate_2d(&y,&z, curv_yangle);
}
if(RX) { /* rotate v around y axis based on x pos, for horizontal focus */
curv_xangle = atan2(x, RX);
vec_rotate_2d(&kx,&kz, curv_xangle);
vec_rotate_2d(&Ex,&Ez, curv_xangle);
/*changing x,z actually curves the crystal, not only the planes*/
/*comment out if only curvature of the lattice planes is needed*/
vec_rotate_2d(&x,&z, curv_xangle);
}
kix = kx;
kiy = ky;
kiz = kz;
kx = _kx;
ky = _ky;
kz = _kz;
/* ------------------------------------------------------------------------- */
/* (2). Intersection of Ewald sphere with reciprocal lattice points */
double coh_xsect = 0, coh_refl = 0;
// Condition to skip calculation of coherent cross section when, needed for extra_order feature
if (order==0 || extra_order==0 || event_counter < order) {
/* in case we use 'SPLIT' then consecutive photons can be identical when entering here
and we may skip the hkl_search call */
#ifndef OPENACC
if (order==1 && fabs(kix - hkl_info.kix) < deltak
&& fabs(kiy - hkl_info.kiy) < deltak
&& fabs(kiz - hkl_info.kiz) < deltak) {
hkl_info.nb_reuses++;
/* Restore in case of matching event (e.g. SPLIT) */
coh_refl = hkl_info.coh_refl;
coh_xsect = hkl_info.coh_xsect;
tau_count = hkl_info.tau_count;
} else {
#endif
/* Max possible tau for this ki with 5*sigma delta-d/d cutoff. */
double tau_max = 2*ki/(1 - 5*hkl_info.m_delta_d_d);
/* call hkl_search */
tau_count = hkl_search(L, T, hkl_info.count, hkl_info.V0,
kix, kiy, kiz, tau_max,
&coh_refl, &coh_xsect);
/* store ki so that we can check for further SPLIT iterations */
#ifndef OPENACC
if (tau_count>hkl_info.max_tau_count){
hkl_info.max_tau_count=tau_count;
}
if (event_counter == 0 ) { /* only for incoming photon */
hkl_info.kix = kix;
hkl_info.kiy = kiy;
hkl_info.kiz = kiz;
/* Store for potential re-use (e.g. SPLIT) */
hkl_info.coh_refl = coh_refl;
hkl_info.coh_xsect = coh_xsect;
hkl_info.tau_count = tau_count;
hkl_info.nb_refl += tau_count;
hkl_info.nb_refl_count++;
}
}
#endif
} else {
// When extra_order used, disable coherent scattering after order reached, but continue
// Set coherent cross section to zero to ignore coherent part
coh_refl = 0;
coh_xsect = 0;
tau_count = 0;
}
/* (3). Probabilities of the different possible interactions. */
/* Cross-sections are in barns = 10**-28 m**2, and unit cell volumes are
in AA**3 = 10**-30 m**2. Hence a factor of 100 is used to convert
scattering lengths to m**-1 */
coh_xlen = coh_xsect/V0;
if (barns) {
coh_xlen *= 100;
} /* else assume fm^2 */
tot_xlen = abs_xlen + inc_xlen + coh_xlen;
if(tot_xlen <= 0){
ABSORB; // Should we really absorb here? If "nothing" can happen we perhaps ought to "pass" instead?
}
/* (5). Transmission */
p_trans = exp(-tot_xlen*l_full);
if(!event_counter && p_transmit >= 0 && p_transmit <= 1) {
mc_trans = p_transmit; /* first event */
} else {
mc_trans = p_trans;
}
mc_interact = 1 - mc_trans;
if(mc_trans > 0 && (mc_trans >= 1 || rand01() < mc_trans)) /* Transmit */
{
p *= p_trans/mc_trans;
intersect=0;
if (powder) { /* orientation of crystallite is longer random */
randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
}
type = 't';
if (!itype) itype = 1;
#ifndef OPENACC
hkl_info.type = type;
#endif
break;
/* This break means that we are leaving the while-loop, exiting the
crystal by "tunneling". */
}
/* Scattering "proper", i.e. coh or incoh */
if(mc_interact <= 0) /* Protect against rounding errors */
{ intersect=0;
if (powder) { /* orientation of crystallite is no longer random */
randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
}
break;
}
/* First-pass considerations: */
if (!event_counter) p *= fabs(1 - p_trans)/mc_interact;
/* Select a point at which to scatter the photon, taking
secondary extinction into account. */
/* dP(l) = exp(-tot_xlen*l)dl
P(l<l_0) = [-1/tot_xlen*exp(-tot_xlen*l)]_0^l_0
= (1 - exp(-tot_xlen*l0))/tot_xlen
l = -log(1 - tot_xlen*rand0max(P(l<l_full)))/tot_xlen
*/
if(tot_xlen*l_full < 1e-6)
/* For very weak scattering, use simple uniform sampling of scattering
point to avoid rounding errors. */
l = rand0max(l_full);
else
l = -log(1 - rand0max((1 - exp(-tot_xlen*l_full))))/tot_xlen;
/* Propagate to scattering point */
PROP_DL(l);
event_counter++;
/* (4). Account for the probability of sigma_abs */
p *= (coh_xlen + inc_xlen)/tot_xlen;
/* Choose between coherent and incoherent scattering */
if(coh_xlen == 0 || rand0max(coh_xlen + inc_xlen) <= inc_xlen)
{
/* (6). Incoherent scattering */
randvec_target_circle(&kix, &kiy, &kiz, NULL, kx, ky, kz, 0);
kx = kix; /* ki vector is used as tmp var with norm v */
ky = kiy;
kz = kiz; /* Go for next scattering event */
type = 'i';
if (!itype) itype = 2;
#ifndef OPENACC
hkl_info.type = type;
#endif
} else {
/* 7. Coherent scattering. Select reciprocal lattice point. */
if(coh_refl <= 0){
ABSORB;
}
sum = 0;
j = hkl_select(T, tau_count, coh_refl, &sum,_particle);
if(j >= tau_count)
{
#ifndef OPENACC
if (hkl_info.flag_warning < 10)
MPI_MASTER(
fprintf(stderr, "Single_crystal: %s: Warning: failed tau search "
"(sum=%g, coh_refl=%g, j=%i, tau_count=%i). Using last reflection.\n", NAME_CURRENT_COMP, sum, coh_refl, j , tau_count);
);
#endif
hkl_info.flag_warning++;
j = tau_count - 1;
}
i = T[j].index;
/* (8). Pick scattered wavevector kf from 2D Gauss distribution. */
z1 = randnorm();
z2 = randnorm();
y1 = T[j].l11*z1 + T[j].y0x;
y2 = T[j].l12*z1 + T[j].l22*z2 + T[j].y0y;
kfx = T[j].rho_x + T[j].ox + T[j].b1x*y1 + T[j].b2x*y2;
kfy = T[j].rho_y + T[j].oy + T[j].b1y*y1 + T[j].b2y*y2;
kfz = T[j].rho_z + T[j].oz + T[j].b1z*y1 + T[j].b2z*y2;
/* Normalize kf to length of ki, to account for planer
approximation of the Ewald sphere. */
adjust = ki/sqrt(kfx*kfx + kfy*kfy + kfz*kfz);
kfx *= adjust;
kfy *= adjust;
kfz *= adjust;
/* Adjust photon weight (see manual for explanation). */
double pmul = T[j].xsect*coh_refl/(coh_xsect*T[j].refl);
if (!isnan(pmul)) p *= pmul;
kx = L[i].u1x*kfx + L[i].u2x*kfy + L[i].u3x*kfz;
ky = L[i].u1y*kfx + L[i].u2y*kfy + L[i].u3y*kfz;
kz = L[i].u1z*kfx + L[i].u2z*kfy + L[i].u3z*kfz;
/* add thin layer k-broadening, only with box/cylinder shape */
if (hkl_info.shape == 1) { /* box */
double thickness_threshold = 1000*2*PI/ki/1e10; // 1000*lambda in Angs, /1e10 -> m
if (xwidth < thickness_threshold) kx += 2*PI/xwidth /1e10*randnorm();
if (yheight < thickness_threshold) ky += 2*PI/yheight/1e10*randnorm();
if (zdepth < thickness_threshold) kz += 2*PI/zdepth /1e10*randnorm();
} else if (hkl_info.shape == 0) { /* cylinder */
double thickness_threshold = 1000*2*PI/ki/1e10;
if (yheight < thickness_threshold) ky += 2*PI/yheight/1e10*randnorm();
}
type = 'c';
if (!itype) itype = 3;
#ifndef OPENACC
hkl_info.type = type;
hkl_info.h = L[i].h;
hkl_info.k = L[i].k;
hkl_info.l = L[i].l;
#endif
}
/* ------------------------------------------------------------------------- */
/* lattice curvature option: rotate back photon velocity */
if(RX) {
vec_rotate_2d(&kx,&kz, -curv_xangle);
vec_rotate_2d(&Ex,&Ez, -curv_xangle);
/*changing x,z actually curves the crystal, not only the planes*/
/*comment out if only curvature of the lattice planes is needed*/
vec_rotate_2d(&x,&z, -curv_xangle);
}
if(RY) {
vec_rotate_2d(&ky,&kz, -curv_yangle);
vec_rotate_2d(&Ey,&Ez, -curv_yangle);
/*changing y,z actually curves the crystal, not only the planes*/
/*comment out if only curvature of the lattice planes is needed*/
vec_rotate_2d(&y,&z, -curv_yangle);
}
/* ------------------------------------------------------------------------- */
SCATTER;
if (powder) { /* orientation of crystallite is no longer random */
randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
}
/* Repeat loop for next scattering event. */
} while (intersect); /* end do (intersect) (multiple scattering loop) */
} /* if intersect */
%}
FINALLY
%{
MPI_MASTER(
if (hkl_info.flag_warning)
fprintf(stderr, "Single_crystal: %s: Error message was repeated %i times with absorbed photons/illegal tau search.\n",
NAME_CURRENT_COMP, hkl_info.flag_warning);
/* in case this instance is used in a SPLIT, we can recommend the
optimal iteration value */
if (hkl_info.max_tau_count>=MCSX_REFL_SLIST_SIZE){
fprintf(stderr,"Single_crystal: %s: Warning: The reflection short list buffer was exhausted at least once. Please consider redefining MCSX_REFL_SLIST_SIZE > %d\n", NAME_CURRENT_COMP, MCSX_REFL_SLIST_SIZE);
}
if (hkl_info.nb_refl_count) {
double split_iterations = (double)hkl_info.nb_reuses/hkl_info.nb_refl_count + 1;
double split_optimal = (double)hkl_info.nb_refl/hkl_info.nb_refl_count;
if (split_optimal > split_iterations + 5) {
printf("Single_crystal: %s: Info: you may improve the computation efficiency by using\n"
" SPLIT %i COMPONENT %s=Single_crystal(order=1, ...)\n"
" in the instrument description %s.\n",
NAME_CURRENT_COMP, (int)split_optimal, NAME_CURRENT_COMP, instrument_source);
}
}
);
%}
MCDISPLAY
%{
if (hkl_info.shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}
else if (hkl_info.shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (hkl_info.shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, radius);
circle("xz", 0, 0.0, 0, radius);
circle("yz", 0, 0.0, 0, radius);
}
else if (hkl_info.shape == 3) { /* OFF file */
off_display(offdata);
}
%}
END
|