File: Single_crystal.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (1892 lines) | stat: -rw-r--r-- 81,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Single_crystal
*
* %Identification
* Written by: Kristian Nielsen
* Date: December 1999
* Origin: Risoe
* Modified by: EF, 22nd Apr 2003 : now uses Read_Table library
* Modified by: EBK 2010: adapted for x-rays:
* Modified by: M. Schulz, March 2012 : allow to curve the crystal planes
* Modified by: EF, PW, May 2014: code efficiency improvement when SPLIT is used
* Modified by: EF, PW, 2015: powder and texture mode
* Modified by: PW, May 2017: Remove statement about being under validation
* Modified by: PW, June 2017: Doc updates
* Modified by: PW, Feb 2018: GPU edits
* Modified by: EF, May 2023: (re)port from n to X
* Modified by: EF, June 2023: can now read CIF files, via cif2hkl
*
* Mosaic single crystal with multiple scattering vectors, optimised for speed
* with large crystals and many reflections.
*
* %Description
* Single crystal with mosaic. Delta-D/D option for finite-size effects.
* Rectangular geometry. Multiple scattering and secondary extinction included.
* The mosaic may EITHER be specified isotropic by setting the mosaic input
* parameter, OR anisotropic by setting the mosaic_a, mosaic_b, and mosaic_c
* parameters.
* The crystal lattice can be bent locally, keeping the external geometry unchanged.
* Curvature is spherical along vertical and horizontal axes.
*
* <b>Speed/stat optimisation using SPLIT</b>
* In order to dramatically improve the simulation efficiency, we recommend to
* use a SPLIT keyword on this component (or prior to it), as well as to disable
* the multiple scattering handling by setting order=1. This is especially powerful
* for large reflection lists such as with macromolecular proteins. When an incoming
* particle is identical to the preceeding, reciprocal space initialisation is 
* skipped, and a Monte Carlo choice is done on available reflections from the last
* repciprocal space calculation! To assist the user in choosing a "relevant" value
* of the SPLIT, a rolling average of the number of available reflections is
* calculated and presented in the component output.
*
* <b>Mosacitiy modes</b>
* The component features three independent ways of parametrising mosaicity:
*  a) The original algorithm where mosaicity is implemented by extending each 
*     reflection by a Gaussian "cigar" in reciprocal space, characterised by
*     the parameters mosaic and delta_d_d. 
*     (Also known as "isotropic mosaicity").
*  b) A similar mode where mosaicities can be non-isotropic and given as the
*     parameters mosaic_a, mosaic_b and mosaic_c, around the unit cell axes.
*     (Also known as "anisotropic mosaicity").
*  c) Given two "macroscopically"/experimentally measured width/mosaicities 
*     of two independent reflections, parametrised by the list 
*     mosaic_AB = {mos_a, mos_b, a_h, a_k, a_l, b_h, b_k, b_l}, a set of 
*     microscopic mosaicities as in b) are estimated (internally) and applied.
*     (Also known as "phenomenological mosaicity").
*     
* <b>Powder-mode</b>
* When these two modes are used (powder=1 ), a randomised transformation
* of the particle direction is made before and after scattering, thereby letting 
* the single crystal behave as a crystallite of either a powder (crystallite
* orientation fully randomised).
* 
* <b>Curved crystal mode</b>
* The component features a method to curve the lattice planes slightly with respect
* to the outer geometry of the crystal. The method is implemented as a transformation
* on the particle direction vector, and should be used only in cases where:
*  a) The reflection lattice vector is ~ orthogonal to the crystal surface.
*  b) The modelled curvarture is "small" with respect to the crystal surface.
* 
* <b>Sample shape</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape:
*   box/plate:       xwidth x yheight x zdepth
*   cylinder:        radius x yheight
*   sphere:          radius (yheight=0)
*   any shape:       geometry=OFF/PLY file
*
*   The complex geometry option handles any closed non-convex polyhedra.
*   It computes the intersection points of the photon ray with the object
*   transparently, so that it can be used like a regular sample object.
*   It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
*   Such files may be generated from XYZ data using:
*     qhull < coordinates.xyz Qx Qv Tv o > geomview.off
*   or
*     powercrust coordinates.xyz
*   and viewed with geomview or java -jar jroff.jar (see below).
*   The default size of the object depends on the OFF/PLY file data, but its
*   bounding box may be resized using xwidth,yheight and zdepth.
*
* <b>Crystal definition file format</b>
* Crystal structure is specified with an ascii data file. Each line contains
* 4 or more numbers, separated by white spaces:
*
*       h k l ... F2
*
* The first three numbers are the (h,k,l) indices of the reciprocal lattice
* point, and the 7-th number is the value of the structure factor |F|**2, in
* barns. The rest of the numbers are not used; the file is in the format
* output by the Crystallographica program.
* The reflection list should be ordered by decreasing d-spacing values.
* Lines begining by '#' are read as comments (ignored). Most sample parameters
* may be defined from the data file header, following the same mechanism as
* PowderN.
*
* Current data file header keywords include, for data format specification:
*    #column_h <index of the Bragg Qh column>
*    #column_k <index of the Bragg Qk column>
*    #column_l <index of the Bragg Ql column>
*    #column_F2 <index of the squared str. factor '|F|^2' column [b]>
*    #column_F  <index of the structure factor norm '|F|' column>
* and for material specification:
*    #sigma_inc <value of incoherent cross section [barns]>
*    #Delta_d/d <value of Delta_d/d width for all lines>
*    #lattice_a <value of the a lattice parameter [Angs]>
*    #lattice_b <value of the b lattice parameter [Angs]>
*    #lattice_c <value of the c lattice parameter [Angs]>
*    #lattice_aa <value of the alpha lattice angle [deg]>
*    #lattice_bb <value of the beta  lattice angle [deg]>
*    #lattice_cc <value of the gamma lattice angle [deg]>
*
* Last, CIF, FullProf and ShelX files can be read, and converted to F2(hkl) lists
* when 'cif2hkl' is installed. The CIF2HKL env variable can be used to point to a
* proper executable, else the McCode or the system installed versions are used.
*
* <b>Satellite Bragg peaks - surface crystal truncation rods (CTR)</b>
* It is known that scattering from a finite crystal introduces a broadening of
* Bragg peaks, seen in surface diffraction at grazing angle [Robinson and Tweet, 
* Rep. Prog. Phys. 55 (1992) 599)]. The CTR is specified as two vectors, which 
* hold the squared Fourier transform of the crystal geometry, for instance:
*   bulk:       Dirac peak      (FT of infinity)
*   half-bulk:  Dirac+1/k^2     (FT of half plane, k in rlu)
*   layer:      sinc(PI*k*d)^2  (FT of a top-hat, thickness 'd')
* These vectors are given as 'surf_k' [in 1/Angs] and 'surf_FT2', both of length
* 'surf_size'. The CTR is to be applied along vector 'surf_dir' which indicates 
* the surface normal {nx,ny,nz} in real space. When surf_size=-1, the component 
* sets the proper truncation function (only for thin box and disk shapes).
* This feature is an approximation of the real surface scattering, and does not
* handle complex geometries (clusters, wetting, multi-layers, ...). It may be 
* used as well to describe over-structure satellite peaks.
*
* Example: Single_crystal(xwidth=0.01, yheight=0.01, zdepth=0.01, mosaic = 5, 
*   reflections="Si.lau")
*
* A diamond crystal plate, cut for (002) reflections
*   Single_crystal(xwidth = 0.002, yheight = 0.1, zdepth = 0.1,
*     mosaic = 30, reflections = "C-diamond.lau",
*     ax=0,      ay=2.14,   az=-1.24,
*     bx = 0,    by = 0,    bz =  2.47,
*     cx = 6.71, cy = 0,    cz =  0)
*
* A adrenaline protein
*   Single_crystal(xwidth=0.005, yheight=0.005, zdepth=0.005,
*     mosaic = 5, reflections="adrenaline.lau")
*
* Also, always use a non-zero value of delta_d_d.
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT sx = Single_crystal(...)
*
* %Parameters
* INPUT PARAMETERS
* radius:             [m] Outer radius of sample in (x,z) plane
* xwidth:             [m] Width of crystal
* yheight:            [m] Height of crystal
* zdepth:             [m] Depth of crystal (no extinction simulated)
* geometry:         [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust
* delta_d_d:          [1] Lattice spacing variance, gaussian RMS
* mosaic:   [arc minutes] Crystal mosaic (isotropic), gaussian RMS. Puts the crystal in the isotropic mosaic model state, thus disregarding other mosaicity parameters.
* mosaic_a: [arc minutes] Horizontal (rotation around lattice vector a) mosaic (anisotropic), gaussian RMS. Put the crystal in the anisotropic crystal vector state. I.e. model mosaicity through rotation around the crystal lattice vectors. Has precedence over in-plane mosaic model.
* mosaic_b: [arc minutes] Vertical (rotation around lattice vector b) mosaic (anisotropic), gaussian RMS.
* mosaic_c: [arc minutes] Out-of-plane (Rotation around lattice vector c) mosaic (anisotropic), gaussian RMS
* mosaic_AB: [arc_minutes, arc_minutes,1, 1, 1, 1, 1, 1]  In Plane mosaic rotation and plane vectors (anisotropic), mosaic_A, mosaic_B, A_h,A_k,A_l, B_h,B_k,B_l. Puts the crystal in the in-plane mosaic state. Vectors A and B define plane in which  the crystal roation is defined, and mosaic_A, mosaic_B, denotes the resp. mosaicities (gaussian RMS) with respect to the two reflections chosen by A and B (Miller indices).
*
* recip_cell:        [1] Choice of direct/reciprocal (0/1) unit cell definition
* ax:      [AA or AA^-1] Coordinates of first (direct/recip) unit cell vector 
* ay:      [AA or AA^-1]   a on y axis
* az:      [AA or AA^-1]   a on z axis
* bx:      [AA or AA^-1] Coordinates of second (direct/recip) unit cell vector
* by:      [AA or AA^-1]   b on y axis
* bz:      [AA or AA^-1]   b on z axis
* cx:      [AA or AA^-1] Coordinates of third (direct/recip) unit cell vector
* cy:      [AA or AA^-1]   c on y axis
* cz:      [AA or AA^-1]   c on z axis
* reflections:  [string] File name containing structure factors of reflections (LAZ LAU CIF, FullProf, ShelX). Use empty ("") or NULL for incoherent scattering only
* order:             [1] Limit multiple scattering up to given order (0: all, 1: first, 2: second, ...)
* extra_order:       [1] When using order, allow additional multiple scattering without coherent scattering, sensible with very large unit cells (0: disable, 1: one extra, 2: two extra, ...)
*
* Optional input parameters
*
* p_transmit:        [1] Monte Carlo probability for photons to be transmitted without any scattering. Used to improve statistics from weak reflections
* sigma_inc:     [barns] Incoherent scattering cross-section per unit cell (uniform). Fully isotropic and constant. Use -1 to unactivate
* aa:              [deg] Unit cell angles alpha, beta and gamma. Then uses norms of vectors a,b and c as lattice parameters
* bb:              [deg] Beta angle
* cc:              [deg] Gamma angle
* barns:             [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2. barns=1 for laz and isotropic constant elastic scattering (reflections=NULL), barns=0 for lau type files
* RX:                [m] Radius of horizontal along X lattice curvature. flat for 0
* RY:                [m] Radius of vertical   along Y lattice curvature. flat for 0
* powder:            [1] Flag to indicate powder mode, for simulation of Debye-Scherrer cones via random crystallite orientation. A powder texture can be approximated with powder within 0-1
* deltak:         [AA-1] Equality-threshold for use in SPLIT settings. If difference between all ki_{x,y,z} are less than deltak from previous particle, the two are considered alike enough to jump directly to the MC choice between 'active' reflections 
* material_datafile: [Be.txt] File where the material parameters for the absorption may be found. Format is similar to what may be found off the NIST website. 
* surf_size:         [1] Length of the surf_k and surf_FT vectors. When set as -1, CTR is automatically set for the box/thin disk geometry.
* surf_k:       [1/Angs] Momentum 'k' distribution around 0 for the CTR, length 'surf_size'.
* surf_FT2:          [1] Intensity |FT(real space)|^2 distribution as CTR of a single Bragg peak, length 'surf_size'.
* surf_dir:   [nx,ny,nz] Normal vector in real space for the truncation rod spread direction. {1,0,0} is for an YZ surface, with normal along X.
*
* CALCULATED PARAMETERS:
*
* hkl_info: [structure]  Internal
* hkl_info.type: interaction type of event 't'=Transmit, 'i'=Incoherent, 'c'=Coherent [char]
* hkl_info.h:
* hkl_info.k:    wavevector indices of last coherent scattering event [Angs-1]
* hkl_info.l:
*
* %Link
* See <a href="http://icsd.ill.fr">ICSD</a> Inorganic Crystal Structure Database
* %Link
* <a href="http://www.webelements.com/">Web Elements</a>
* %Link
* <a href="http://www.ill.eu/sites/fullprof/index.html">Fullprof</a> powder refinement
* %Link
* <a href="http://www.crystallographica.com/">Crystallographica</a> software
* %Link
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %Link
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %Link
* <a href="http://qhull.org">qhull</a>
* %Link
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
* %Link
* material datafile obtained from http://physics.nist.gov/cgi-bin/ffast/ffast.pl
* %Link
* cif2hkl https://gitlab.com/soleil-data-treatment/soleil-software-projects/cif2hkl
*
* %End
****************************************************************************/

/*
Overview of algorithm:

(1). The photon intersects the crystal at (x,y,z) with given
incoming wavevector ki=(kix,kiy,kiz).

(2). Every reciprocal lattice point tau of magnitude less than 2*ki
is considered for scattering. The scattering probability is the
area of the intersection of the Ewald sphere (approximated by
the tangential plane) with the 3-D Gaussian mosaic of the point
tau.

(3). The total coherent scattering cross section is computed as the
sum over all tau. Together with the absorption and incoherent
scattering cross sections and known potential flight-length
l_full through the sample, we can compute the probability of
the four events absorption, coherent scattering, incoherent
scattering, and transmission.

(4). absorption is never simulated explicitly, just incorporated in
the photon weight.

(5). Transmission in the first event is selected with the Monte
Carlo probability p_transmit, which defaults to the actual
transmission probability. After the first event, transmission
is selected with the correct Monte Carlo probability.

(6). Incoherent scattering is done simply by selecting a random
direction for the outgoing wave vector kf.

(7). For coherent scattering, a reciprocal lattice point is selected
using the relative probabilities computed in (2), and the
weight is adjusted with the contribution from the structure
factors (this way all reflections will get equally good
statistics in the detector).

(8). The outgoing wave vector direction is picked at random using
the intersecting 2-D Gauss computed in (2). The vector is
normalized to the length of ki (elastic scattering) to account
for the error caused by the planar approximation of the Ewald
sphere.

(9). The process is repeated from (2) with kf as new initial wave
vector ki.

*/

DEFINE COMPONENT Single_crystal

SETTING PARAMETERS(string reflections=0, string geometry=0, vector mosaic_AB={0,0, 0,0,0, 0,0,0},
  xwidth=0, yheight=0, zdepth=0, radius=0, delta_d_d=1e-4,
  mosaic = -1, mosaic_a = -1, mosaic_b = -1, mosaic_c = -1,
  recip_cell=0, barns=0,
  ax = 0, ay = 0, az = 0,
  bx = 0, by = 0, bz = 0,
  cx = 0, cy = 0, cz = 0,
  p_transmit = 0.001, sigma_inc = 0,
  aa=0, bb=0, cc=0, order=1, extra_order=0, RX=0, RY=0, powder=0,
  deltak=1e-6, string material_datafile="Si.txt",
  int surf_size=0, vector surf_k=NULL, vector surf_FT2=NULL, vector surf_dir={0,0,0})

/* photon parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef SINGLE_CRYSTAL_DECL
#define SINGLE_CRYSTAL_DECL

#ifndef Mosaic_AB_Undefined
#define Mosaic_AB_Undefined {0,0, 0,0,0, 0,0,0}
#endif

#ifndef MCSX_REFL_SLIST_SIZE
#define MCSX_REFL_SLIST_SIZE 128
#endif

  struct hkl_data
    {
      int h,k,l;                  /* Indices for this reflection */
      double F2;                  /* Value of structure factor */
      double tau_x, tau_y, tau_z; /* Coordinates in reciprocal space */
      double tau;                 /* Length of (tau_x, tau_y, tau_z) */
      double u1x, u1y, u1z;       /* First axis of local coordinate system */
      double u2x, u2y, u2z;       /* Second axis of local coordinate system */
      double u3x, u3y, u3z;       /* Third axis of local coordinate system */
      double sig123;              /* The product sig1*sig2*sig3 = volume of spot */
      double m1, m2, m3;          /* Diagonal matrix representation of Gauss */
      double cutoff;              /* Cutoff value for Gaussian tails */
    };

  struct tau_data
    {
      int index;                  /* Index into reflection table */
      double refl;
      double xsect;
      /* The following vectors are in local koordinates. */
      double rho_x, rho_y, rho_z; /* The vector ki - tau */
      double rho;                 /* Length of rho vector */
      double ox, oy, oz;          /* Origin of Ewald sphere tangent plane */
      double b1x, b1y, b1z;       /* Spanning vectors of Ewald sphere tangent */
      double b2x, b2y, b2z;
      double l11, l12, l22;       /* Cholesky decomposition L of 2D Gauss */
      double y0x, y0y;            /* 2D Gauss center in tangent plane */
    };

  struct hkl_info_struct
    {
      int    count;               /* Number of reflections */
      double m_delta_d_d;         /* Delta-d/d FWHM */
      double m_ax,m_ay,m_az;      /* First unit cell axis (direct space, AA) */
      double m_bx,m_by,m_bz;      /* Second unit cell axis */
      double m_cx,m_cy,m_cz;      /* Third unit cell axis */
      double asx,asy,asz;         /* First reciprocal lattice axis (1/AA) */
      double bsx,bsy,bsz;         /* Second reciprocal lattice axis */
      double csx,csy,csz;         /* Third reciprocal lattice axis */
      double m_a, m_b, m_c;       /* length of lattice parameter lengths */
      double m_aa, m_bb, m_cc;    /* lattice angles */
      double sigma_i;             /* inc X sect */
      double rho;                 /* density [at/Angs^3] */
      double mat_weight;          /* material atomic weight [g/mol] */
      double mat_density;         /* material atomic density [g/cm3] */
      double V0;                  /* Unit cell volume (AA**3) */
      int    column_order[5];     /* column signification [h,k,l,F,F2] */
      int    recip;               /* Flag to indicate if recip or direct cell axes given */
      int    shape;               /* 0:cylinder, 1:box, 2:sphere 3:any shape*/
      int    flag_warning;        /* number of warnings */
      char   type;                /* type of last event: t=transmit,c=coherent or i=incoherent */
      int    h,k,l;               /* last coherent scattering momentum transfer indices */
      int    tau_count;           /* Number of reflections within cutoff */
      double coh_refl, coh_xsect; /* cross section computed with last tau_list */
      double kix, kiy, kiz;       /* last incoming photon ki */
      int    nb_reuses, nb_refl, nb_refl_count;
      int    max_tau_count;
      int    ctr_size;
      double *ctr_k;
      double *ctr_FT2;
      double *ctr_dir;
    };
    
#pragma acc routine
  // sign = SX_list_compare(a,b) 
  //   used for qsort, to sort reflections
  // input:  a,b: two 'line_data' reflection pointers.
  // output: -1,0,1 for a<b, a=b, a>b
  int SX_list_compare (void const *a, void const *b)
  {
     struct hkl_data const *pa = a;
     struct hkl_data const *pb = b;
     double s = pa->tau - pb->tau;

     if (!s) return 0;
     else    return (s < 0 ? -1 : 1);
  } /* SX_list_compare */
  
#ifndef CIF2HKL
#define CIF2HKL
  // hkl_filename = cif2hkl(file, options)
  //   used to convert CIF/CFL/INS file into F2(hkl)
  //   the CIF2HKL env var can point to a cif2hkl executable
  //   else the McCode binary is attempted, then the system.
  char *cif2hkl(const char *infile, const char *options) {
    char cmd[1024];
    int  ret = 0;
    int  found = 0;
    char *OUTFILE;
    
    // get filename extension
    const char *ext = strrchr(infile, '.');
    if(!ext || ext == infile) return infile;
    else ext++;
    
    // return input when no extension or not a CIF/FullProf/ShelX file
    if ( strcasecmp(ext, "cif") 
      && strcasecmp(ext, "pcr")
      && strcasecmp(ext, "cfl")
      && strcasecmp(ext, "shx")
      && strcasecmp(ext, "ins")
      && strcasecmp(ext, "res")) return infile;
      
    OUTFILE = malloc(1024);
    if (!OUTFILE) return infile;
    
    strncpy(OUTFILE, tmpnam(NULL), 1024); // create an output temporary file name
    
    // try in order the CIF2HKL env var, then the system cif2hkl, then the McCode one
    if (!found && getenv("CIF2HKL")) {
      snprintf(cmd,  1024, "%s -o %s %s %s",
        getenv("CIF2HKL"),
        OUTFILE, options, infile);
      ret = system(cmd);
      if (ret != -1 && ret != 127) found = 1;
    }
    if (!found) {
      // try with cif2hkl command from the system PATH
      snprintf(cmd,  1024, "%s -o %s %s %s",
        "cif2hkl", OUTFILE, options, infile);
      ret = system(cmd);
      if (ret != -1 && ret != 127) found = 1;
    }
    if (!found) {
      // As a last resort, attempt with cif2hkl from $MCXTRACE/bin
      snprintf(cmd,  1024, "%s%c%s%c%s -o %s %s %s",
        getenv(FLAVOR_UPPER) ? getenv(FLAVOR_UPPER) : MCXTRACE,
        MC_PATHSEP_C, "bin", MC_PATHSEP_C, "cif2hkl",
        OUTFILE, options, infile);
      ret = system(cmd);
    }
    // ret = -1:  child process could not be created
    // ret = 127: shell could not be executed in the child process     
    if (ret == -1 || ret == 127) {
      free(OUTFILE);
      return(NULL);
    }
      
    // test if the result file has been created
    FILE *file = Open_File(OUTFILE,"r", NULL);
    if (!file) return(NULL);     
    MPI_MASTER(
    printf("%s: INFO: Converting %s into F2(HKL) list %s\n", 
      __FILE__, infile, OUTFILE);
    printf ("%s\n",cmd);
    );
    fflush(NULL);
    return(OUTFILE);
  } // cif2hkl
#endif

  /* ------------------------------------------------------------------------ */
  
  // count = read_hkl_data(filename, &info)
  //   read the given file to store F2(HKL) reflections and metadata.
  int
  read_hkl_data(char *SC_file, struct hkl_info_struct *info, struct hkl_data **hkl_list,
      double SC_mosaic, double SC_mosaic_a, double SC_mosaic_b, double SC_mosaic_c, double *SC_mosaic_AB,
      int surf_size, double *surf_k, double *surf_FT2, double *surf_dir)
  {
    struct hkl_data *list = NULL;
    int    size = 0;
    t_Table sTable; /* sample data table structure from SC_file */
    int i=0, j=0, J=0;
    double tmp_x, tmp_y, tmp_z;
    char **parsing;
    char   flag=0;
    double nb_atoms=1;
    double sum_F2=0;
    char  *filename=NULL;

    if (!SC_file || !strlen(SC_file) || !strcmp(SC_file,"NULL") || !strcmp(SC_file,"0"))
      return(0);
      
    filename = cif2hkl(SC_file, "--xtal --mode XRA");
    
    if (!filename || Table_Read(&sTable, filename, 1) < 0) return(0);
    
    if (sTable.columns < 4) {
      MPI_MASTER(
        fprintf(stderr, "Single_crystal: %s: ERROR: The number of columns in %s should be at least %d for [h,k,l,F2]\n", __FILE__, SC_file, 4);
      );
      return(0);
    }
    if (!sTable.rows) {
      MPI_MASTER(
        fprintf(stderr, "Single_crystal: %s: ERROR: The number of rows in %s should be at least %d\n", __FILE__, SC_file, 1);
      );
      return(0);
    } else size = sTable.rows;

    /* parsing of header */
    parsing = Table_ParseHeader(sTable.header,
      "sigma_abs","sigma_a ", // 0-1
      "sigma_inc","sigma_i ",
      "column_h",
      "column_k",
      "column_l",
      "column_F ",
      "column_F2",
      "Delta_d/d", // 9
      "lattice_a ",
      "lattice_b ",
      "lattice_c ",
      "lattice_aa",
      "lattice_bb",
      "lattice_cc",
      "nb_atoms","multiplicity", // 17
      "Vc","V_0","V_rho","density","weight",
      NULL);

    if (parsing) {
      //if (parsing[0] && !info->sigma_a) info->sigma_a=atof(parsing[0]);
      //if (parsing[1] && !info->sigma_a) info->sigma_a=atof(parsing[1]);
      if (parsing[2] && !info->sigma_i) info->sigma_i=atof(parsing[2]);
      if (parsing[3] && !info->sigma_i) info->sigma_i=atof(parsing[3]);
      if (parsing[4])                   info->column_order[0]=atoi(parsing[4]);
      if (parsing[5])                   info->column_order[1]=atoi(parsing[5]);
      if (parsing[6])                   info->column_order[2]=atoi(parsing[6]);
      if (parsing[7])                   info->column_order[3]=atoi(parsing[7]);
      if (parsing[8])                   info->column_order[4]=atoi(parsing[8]);
      if (parsing[9] && info->m_delta_d_d <0) info->m_delta_d_d=atof(parsing[9]);
      if (parsing[10] && !info->m_a)    info->m_a =atof(parsing[10]);
      if (parsing[11] && !info->m_b)    info->m_b =atof(parsing[11]);
      if (parsing[12] && !info->m_c)    info->m_c =atof(parsing[12]);
      if (parsing[13] && !info->m_aa)   info->m_aa=atof(parsing[13]);
      if (parsing[14] && !info->m_bb)   info->m_bb=atof(parsing[14]);
      if (parsing[15] && !info->m_cc)   info->m_cc=atof(parsing[15]);
      if (parsing[16])                  nb_atoms=atof(parsing[16]);
      if (parsing[17])                  nb_atoms=atof(parsing[17]);
      if (parsing[18] && !info->rho)    info->rho    =1/atof(parsing[18]);
      if (parsing[19] && !info->rho)    info->rho    =1/atof(parsing[19]);
      if (parsing[20] && !info->rho)    info->rho    =atof(parsing[20]);
      if (parsing[21] && !info->mat_density) info->mat_density=atof(parsing[21]);
      if (parsing[22] && !info->mat_weight)  info->mat_weight =atof(parsing[22]);
      
      for (i=0; i<=22; i++) if (parsing[i]) free(parsing[i]);
      free(parsing);
    }
    
    if (!info->rho && info->mat_density > 0 && info->mat_weight > 0 && nb_atoms > 0) {
      /* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
      /* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
      info->rho = info->mat_density/(info->mat_weight*nb_atoms)/1e24*NA;
    }

    if (nb_atoms > 1) { info->sigma_i *= nb_atoms; }

    /* special cases for the structure definition */
    if (info->m_ax || info->m_ay || info->m_az) {info->m_a=0; info->m_aa=0;} /* means we specify by hand the vectors */
    if (info->m_bx || info->m_by || info->m_bz) {info->m_b=0; info->m_bb=0;}
    if (info->m_cx || info->m_cy || info->m_cz) {info->m_c=0; info->m_cc=0;};

    /* compute the norm from vector a if missing */
    if (info->m_ax || info->m_ay || info->m_az) {
      double as=sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
      if (!info->m_bx && !info->m_by && !info->m_bz) info->m_a=info->m_b=as;
      if (!info->m_cx && !info->m_cy && !info->m_cz) info->m_a=info->m_c=as;
    }
    if (info->m_a && !info->m_b) info->m_b=info->m_a;
    if (info->m_b && !info->m_c) info->m_c=info->m_b;

    /* compute the lattive angles if not set from data file. Not used when in vector mode. */
    if (info->m_a && !info->m_aa) info->m_aa=90;
    if (info->m_aa && !info->m_bb) info->m_bb=info->m_aa;
    if (info->m_bb && !info->m_cc) info->m_cc=info->m_bb;

    /* parameters consistency checks */
    if (!info->m_ax && !info->m_ay && !info->m_az && !info->m_a) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Wrong a lattice vector definition\n", __FILE__);
      );
      return(0);
    }
    if (!info->m_bx && !info->m_by && !info->m_bz && !info->m_b) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Wrong b lattice vector definition\n", __FILE__);
      );
      return(0);
    }
    if (!info->m_cx && !info->m_cy && !info->m_cz && !info->m_c) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Wrong c lattice vector definition\n", __FILE__);
      );
      return(0);
    }
    if (info->m_aa && info->m_bb && info->m_cc && info->recip) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Selecting reciprocal cell and angles is unmeaningful.\n", __FILE__);
      );
      return(0);
    }

    /* when lengths a,b,c + angles are given (instead of vectors a,b,c) */
    if (info->m_aa && info->m_bb && info->m_cc)
    {
      double as,bs,cs;
      if (info->m_a) as = info->m_a;
      else as = sqrt(info->m_ax*info->m_ax+info->m_ay*info->m_ay+info->m_az*info->m_az);
      if (info->m_b) bs = info->m_b;
      else bs = sqrt(info->m_bx*info->m_bx+info->m_by*info->m_by+info->m_bz*info->m_bz);
      if (info->m_c) cs = info->m_c;
      else cs =  sqrt(info->m_cx*info->m_cx+info->m_cy*info->m_cy+info->m_cz*info->m_cz);

      info->m_bz = as; info->m_by = 0; info->m_bx = 0;
      info->m_az = bs*cos(info->m_cc*DEG2RAD);
      info->m_ay = bs*sin(info->m_cc*DEG2RAD);
      info->m_ax = 0;
      info->m_cz = cs*cos(info->m_bb*DEG2RAD);
      info->m_cy = cs*(cos(info->m_aa*DEG2RAD)-cos(info->m_cc*DEG2RAD)*cos(info->m_bb*DEG2RAD))
                     /sin(info->m_cc*DEG2RAD);
      info->m_cx = sqrt(cs*cs - info->m_cz*info->m_cz - info->m_cy*info->m_cy);

      MPI_MASTER(
        printf("Single_crystal: %s structure a=%g b=%g c=%g aa=%g bb=%g cc=%g ",
        SC_file, as, bs, cs, info->m_aa, info->m_bb, info->m_cc);
      );
    } else {
      MPI_MASTER(
      if (!info->recip) {
        printf("Single_crystal: %s structure a=[%g,%g,%g] b=[%g,%g,%g] c=[%g,%g,%g] ",
	       SC_file, info->m_ax ,info->m_ay ,info->m_az,
	       info->m_bx ,info->m_by ,info->m_bz,
	       info->m_cx ,info->m_cy ,info->m_cz);
      } else {
        printf("Single_crystal: %s structure a*=[%g,%g,%g] b*=[%g,%g,%g] c*=[%g,%g,%g] ",
	       SC_file, info->m_ax ,info->m_ay ,info->m_az,
	       info->m_bx ,info->m_by ,info->m_bz,
	       info->m_cx ,info->m_cy ,info->m_cz);
      }
      );
    }
    /* Compute reciprocal or direct lattice vectors. */
    if (!info->recip) {
      vec_prod(tmp_x, tmp_y, tmp_z,
	       info->m_bx, info->m_by, info->m_bz,
	       info->m_cx, info->m_cy, info->m_cz);
      info->V0 = fabs(scalar_prod(info->m_ax, info->m_ay, info->m_az, tmp_x, tmp_y, tmp_z));
      if (!info->V0 || isnan(info->V0)) {
        MPI_MASTER(
          fprintf(stderr,
              "Single_crystal: %s: ERROR: Lattice cell volume is found invalid V0=%g. Check crystal cell parameters.\n", __FILE__, info->V0));
      }

      info->asx = 2*PI/info->V0*tmp_x;
      info->asy = 2*PI/info->V0*tmp_y;
      info->asz = 2*PI/info->V0*tmp_z;
      vec_prod(tmp_x, tmp_y, tmp_z, info->m_cx, info->m_cy, info->m_cz, info->m_ax, info->m_ay, info->m_az);
      info->bsx = 2*PI/info->V0*tmp_x;
      info->bsy = 2*PI/info->V0*tmp_y;
      info->bsz = 2*PI/info->V0*tmp_z;
      vec_prod(tmp_x, tmp_y, tmp_z, info->m_ax, info->m_ay, info->m_az, info->m_bx, info->m_by, info->m_bz);
      info->csx = 2*PI/info->V0*tmp_x;
      info->csy = 2*PI/info->V0*tmp_y;
      info->csz = 2*PI/info->V0*tmp_z;
    } else {
      info->asx = info->m_ax;
      info->asy = info->m_ay;
      info->asz = info->m_az;
      info->bsx = info->m_bx;
      info->bsy = info->m_by;
      info->bsz = info->m_bz;
      info->csx = info->m_cx;
      info->csy = info->m_cy;
      info->csz = info->m_cz;

      vec_prod(tmp_x, tmp_y, tmp_z,
	       info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI),
	       info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI));
	    info->V0 = scalar_prod(info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI), tmp_x, tmp_y, tmp_z);
	    if (!info->V0 || isnan(info->V0)) {
        MPI_MASTER(
          fprintf(stderr,
              "Single_crystal: %s: ERROR: Lattice reciprocal cell volume is found invalid V0=%g. Check crystal cell parameters.\n", __FILE__, info->V0));
      }
      info->V0 = 1/fabs(info->V0);

      /*compute the direct cell parameters, for completeness*/
      info->m_ax = tmp_x*info->V0;
      info->m_ay = tmp_y*info->V0;
      info->m_az = tmp_z*info->V0;
      vec_prod(tmp_x, tmp_y, tmp_z,info->csx/(2*PI), info->csy/(2*PI), info->csz/(2*PI),info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI));
      info->m_bx = tmp_x*info->V0;
      info->m_by = tmp_y*info->V0;
      info->m_bz = tmp_z*info->V0;
      vec_prod(tmp_x, tmp_y, tmp_z,info->asx/(2*PI), info->asy/(2*PI), info->asz/(2*PI),info->bsx/(2*PI), info->bsy/(2*PI), info->bsz/(2*PI));
      info->m_cx = tmp_x*info->V0;
      info->m_cy = tmp_y*info->V0;
      info->m_cz = tmp_z*info->V0;
    }
    MPI_MASTER(printf("V0=%g\n", info->V0););

    if (!info->column_order[0] || !info->column_order[1] || !info->column_order[2]) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Wrong h,k,l column definition\n", SC_file);
      );
      return(0);
    }
    if (!info->column_order[3] && !info->column_order[4]) {
      MPI_MASTER(
        fprintf(stderr,
              "Single_crystal: %s: ERROR: Wrong F,F2 column definition\n", SC_file);
      );
      return(0);
    }

    /* allocate hkl_data array */
    
    if (surf_size <= 0 || !surf_k || !surf_FT2 || !surf_dir) surf_size = 1;
    list = (struct hkl_data*) malloc(size*surf_size*sizeof(struct hkl_data));

    for (i=0; i<size; i++)
    for (j=0; j<surf_size; j++)
    {
      double h=0, k=0, l=0, F2=0;
      double b1[3], b2[3];
      double sig1, sig2, sig3;

      /* get data from table */
      h = Table_Index(sTable, i, info->column_order[0]-1);
      k = Table_Index(sTable, i, info->column_order[1]-1);
      l = Table_Index(sTable, i, info->column_order[2]-1);
      if (info->column_order[3])
      { F2= Table_Index(sTable, i, info->column_order[3]-1); F2 *= F2; }
      else if (info->column_order[4])
        F2= Table_Index(sTable, i, info->column_order[4]-1);

      list[J].h = h;
      list[J].k = k;
      list[J].l = l;
      list[J].F2 = F2;
      sum_F2    += F2;

      /* Precompute some values */
      list[J].tau_x = h*info->asx + k*info->bsx + l*info->csx;
      list[J].tau_y = h*info->asy + k*info->bsy + l*info->csy;
      list[J].tau_z = h*info->asz + k*info->bsz + l*info->csz;
      
      // create satellite peaks from e.g. surface truncation (CTR)
      if (surf_size > 1 && surf_FT2 && surf_k && surf_FT2[j] > 0 && surf_k[j]) {
        list[J].tau_x += surf_dir[0]*surf_k[j];
        list[J].tau_y += surf_dir[1]*surf_k[j];
        list[J].tau_z += surf_dir[2]*surf_k[j];
        list[J].F2    *= surf_FT2[j];
      }
      
      list[J].tau = sqrt(list[J].tau_x*list[J].tau_x +
                         list[J].tau_y*list[J].tau_y +
                         list[J].tau_z*list[J].tau_z);
      list[J].u1x = list[J].tau_x/list[J].tau;
      list[J].u1y = list[J].tau_y/list[J].tau;
      list[J].u1z = list[J].tau_z/list[J].tau;
      sig1 = FWHM2RMS*info->m_delta_d_d*list[J].tau;

      /* Find two arbitrary axes perpendicular to tau and each other. */
      normal_vec(&b1[0], &b1[1], &b1[2],
                 list[J].u1x, list[J].u1y, list[J].u1z);
      vec_prod(b2[0], b2[1], b2[2],
               list[J].u1x, list[J].u1y, list[J].u1z,
               b1[0], b1[1], b1[2]);

      /* Find the two mosaic axes perpendicular to tau. */
      if(SC_mosaic > 0) {
        /* Use isotropic mosaic. */
        list[J].u2x = b1[0];
        list[J].u2y = b1[1];
        list[J].u2z = b1[2];
        sig2 = FWHM2RMS*list[J].tau*MIN2RAD*SC_mosaic;
        list[J].u3x = b2[0];
        list[J].u3y = b2[1];
        list[J].u3z = b2[2];
        sig3 = FWHM2RMS*list[J].tau*MIN2RAD*SC_mosaic;
      } else if(SC_mosaic_a > 0 && SC_mosaic_b > 0 && SC_mosaic_c > 0) {
        /* Use anisotropic mosaic. */
        MPI_MASTER(
        fprintf(stderr,"Single_crystal: Warning: you are using an experimental feature:\n"
          "  anistropic mosaicity. Please examine your data carefully.\n");
        );
        /* compute the jacobian of (tau_v,tau_n) from rotations around the unit cell vectors. */
        struct hkl_data *l =&(list[J]);
        double xia_x,xia_y,xia_z,xib_x,xib_y,xib_z,xic_x,xic_y,xic_z;
        /*input parameters are in arc minutes*/
        double sig_fi_a=SC_mosaic_a*MIN2RAD;
        double sig_fi_b=SC_mosaic_b*MIN2RAD;
        double sig_fi_c=SC_mosaic_c*MIN2RAD;
        if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
        if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
        if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));

        l->u2x = b1[0];
        l->u2y = b1[1];
        l->u2z = b1[2];
        l->u3x = b2[0];
        l->u3y = b2[1];
        l->u3z = b2[2];

        xia_x=l->tau_x-(M_2_PI*h/info->m_a)*info->asx;
        xia_y=l->tau_y-(M_2_PI*h/info->m_a)*info->asy;
        xia_z=l->tau_z-(M_2_PI*h/info->m_a)*info->asz;
        xib_x=l->tau_x-(M_2_PI*h/info->m_b)*info->bsx;
        xib_y=l->tau_y-(M_2_PI*h/info->m_b)*info->bsy;
        xib_z=l->tau_z-(M_2_PI*h/info->m_b)*info->bsz;
        xic_x=l->tau_x-(M_2_PI*h/info->m_c)*info->csx;
        xic_y=l->tau_y-(M_2_PI*h/info->m_c)*info->csy;
        xic_z=l->tau_z-(M_2_PI*h/info->m_c)*info->csz;

        double xia=sqrt(xia_x*xia_x + xia_y*xia_y + xia_z*xia_z);
        double xib=sqrt(xib_x*xib_x + xib_y*xib_y + xib_z*xib_z);
        double xic=sqrt(xic_x*xic_x + xic_y*xic_y + xic_z*xic_z);

        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u2x,l->u2y,l->u2z);
        double J_n_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);

        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fia= xia/info->m_a/l->tau*scalar_prod(info->asx,info->asy,info->asz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fib= xib/info->m_b/l->tau*scalar_prod(info->bsx,info->bsy,info->bsz,tmp_x,tmp_y,tmp_z);
        vec_prod(tmp_x,tmp_y,tmp_z,l->tau_x,l->tau_y,l->tau_z, l->u3x,l->u3y,l->u3z);
        double J_v_fic= xic/info->m_c/l->tau*scalar_prod(info->csx,info->csy,info->csz,tmp_x,tmp_y,tmp_z);

        /*with the jacobian we can compute the sigmas in terms of the orthogonal vectors u2 and u3*/
        sig2=sig_fi_a*fabs(J_v_fia) + sig_fi_b*fabs(J_v_fib) + sig_fi_c*fabs(J_v_fic);
        sig3=sig_fi_a*fabs(J_n_fia) + sig_fi_b*fabs(J_n_fib) + sig_fi_c*fabs(J_n_fic);
      } else if (SC_mosaic_AB[0]!=0 && SC_mosaic_AB[1]!=0){
        if ( (SC_mosaic_AB[2]==0 && SC_mosaic_AB[3]==0 && SC_mosaic_AB[4]==0) || (SC_mosaic_AB[5]==0 && SC_mosaic_AB[6]==0 && SC_mosaic_AB[7]==0) ){
          MPI_MASTER(
          fprintf(stderr,"Single_crystal: %s: ERROR: in-plane mosaics are specified but one (or both)\n"
              "  in-plane reciprocal vector is the zero vector.\n", __FILE__);
          );
          return(0);
        }
        MPI_MASTER(
        fprintf(stderr,"Single_crystal: %s: Warning: you are using an experimental feature: \n"
              "  \"in-plane\" anistropic mosaicity. Please examine your data carefully.\n", __FILE__);
        );

        /*for given reflection in list - compute linear comb of tau_a and tau_b*/
        /*check for not in plane - f.i. check if (tau_a X tau_b).tau_i)==0*/
        struct hkl_data *l =&(list[J]);
        double det,c1,c2,sig_tau_c;
        double em_x,em_y,em_z, tmp_x,tmp_y,tmp_z;
        double tau_a[3],tau_b[3];
        /*convert Miller indices to taus*/
        if(info->m_a==0) info->m_a=sqrt(scalar_prod( info->m_ax,info->m_ay,info->m_az,info->m_ax,info->m_ay,info->m_az));
        if(info->m_b==0) info->m_b=sqrt(scalar_prod( info->m_bx,info->m_by,info->m_bz,info->m_bx,info->m_by,info->m_bz));
        if(info->m_c==0) info->m_c=sqrt(scalar_prod( info->m_cx,info->m_cy,info->m_cz,info->m_cx,info->m_cy,info->m_cz));
        tau_a[0]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asx + (SC_mosaic_AB[3]/info->m_b)*info->bsx + (SC_mosaic_AB[4]/info->m_c)*info->csx );
        tau_a[1]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asy + (SC_mosaic_AB[3]/info->m_b)*info->bsy + (SC_mosaic_AB[4]/info->m_c)*info->csy );
        tau_a[2]=M_2_PI*( (SC_mosaic_AB[2]/info->m_a)*info->asz + (SC_mosaic_AB[3]/info->m_b)*info->bsz + (SC_mosaic_AB[4]/info->m_c)*info->csz );
        tau_b[0]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asx + (SC_mosaic_AB[6]/info->m_b)*info->bsx + (SC_mosaic_AB[7]/info->m_c)*info->csx );
        tau_b[1]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asy + (SC_mosaic_AB[6]/info->m_b)*info->bsy + (SC_mosaic_AB[7]/info->m_c)*info->csy );
        tau_b[2]=M_2_PI*( (SC_mosaic_AB[5]/info->m_a)*info->asz + (SC_mosaic_AB[6]/info->m_b)*info->bsz + (SC_mosaic_AB[7]/info->m_c)*info->csz );

        /*check determinants to see how we should compute the linear combination of a and b (to match c)*/
        if ((det=tau_a[0]*tau_b[1]-tau_a[1]*tau_b[0])!=0){
          c1= (l->tau_x*tau_b[1] - l->tau_y*tau_b[0])/det;
          c2= (tau_a[0]*l->tau_y - tau_a[1]*l->tau_x)/det;
        }else if ((det=tau_a[1]*tau_b[2]-tau_a[2]*tau_b[1])!=0){
          c1= (l->tau_y*tau_b[2] - l->tau_z*tau_b[1])/det;
          c2= (tau_a[1]*l->tau_z - tau_a[2]*l->tau_y)/det;
        }else if ((det=tau_a[0]*tau_b[2]-tau_a[2]*tau_b[0])!=0){
          c1= (l->tau_x*tau_b[2] - l->tau_z*tau_b[0])/det;
          c2= (tau_a[0]*l->tau_z - tau_a[2]*l->tau_x)/det;
        }
        if ((c1==0) && (c2==0)){
          MPI_MASTER(
          fprintf(stderr,"Single_crystal: %s: Warning: reflection tau[%i]=(%g %g %g) "
          "has no component in defined mosaic plane\n", __FILE__,
          i, l->tau_x,l->tau_y,l->tau_z);
          );
        }
        /*compute linear combination => sig_tau_i = | c1*sig_tau_a + c2*sig_tau_b |  - also add in the minute to radian scaling factor*/;
        sig_tau_c = MIN2RAD*sqrt(c1*SC_mosaic_AB[0]*c1*SC_mosaic_AB[0] + c2*SC_mosaic_AB[1]*c2*SC_mosaic_AB[1]);
        l->u2x = b1[0]; l->u2y = b1[1]; l->u2z = b1[2];
        l->u3x = b2[0]; l->u3y = b2[1]; l->u3z = b2[2];

        /*so now let's compute the rotation around planenormal tau_a X tau_b*/
        /*g_bar (unit normal of rotation plane) = tau_a X tau_b / norm(tau_a X tau_b)*/
        vec_prod(tmp_x,tmp_y,tmp_z, tau_a[0],tau_a[1],tau_a[2],tau_b[0],tau_b[1],tau_b[2]);
        vec_prod(em_x,em_y,em_z, l->tau_x, l->tau_y, l->tau_z, tmp_x,tmp_y,tmp_z);
        NORM(em_x,em_y,em_z);
        sig2 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u2x,l->u2y,l->u2z));
        sig3 = l->tau*sig_tau_c*fabs(scalar_prod(em_x,em_y,em_z, l->u3x,l->u3y,l->u3z));
        /*protect against collapsing gaussians. These seem to be sensible values.*/
        if (sig2<1e-5) sig2=1e-5;
        if (sig3<1e-5) sig3=1e-5;
      }
      else {
        MPI_MASTER(
        fprintf(stderr,
                "Single_crystal: %s: ERROR: EITHER mosaic OR (mosaic_a, mosaic_b, mosaic_c)\n"
                "  must be given and be >0.\n", __FILE__);
        );
        return(0);
      }
      list[J].sig123 = sig1*sig2*sig3;
      list[J].m1 = 1/(2*sig1*sig1);
      list[J].m2 = 1/(2*sig2*sig2);
      list[J].m3 = 1/(2*sig3*sig3);
      /* Set Gauss cutoff to 5 times the maximal sigma. */
      if(sig1 > sig2)
        if(sig1 > sig3)
          list[J].cutoff = 5*sig1;
        else
          list[J].cutoff = 5*sig3;
      else
        if(sig2 > sig3)
          list[J].cutoff = 5*sig2;
        else
          list[J].cutoff = 5*sig3;
      if (!isnan(list[J].F2) && !isnan(list[J].cutoff) && !isnan(list[J].tau))
        J++; // switch to next HKL Bragg element in hkl_data
    } // for i, j
    Table_Free(&sTable);
    
    if (!sum_F2) {
      MPI_MASTER(
      exit(fprintf(stderr, "Single_crystal: %s: ERROR: all %i structure factors in file '%s' are null. Check the reflection list.\n",
        __FILE__, i, SC_file));
      );
    }
    
    // remove temporary F2(hkl) file when giving CFL/CIF/ShelX file
    if (filename != SC_file)
      unlink(filename);

    /* sort the list with increasing tau */
    qsort(list, J, sizeof(struct hkl_data),  SX_list_compare);

    *hkl_list = list;
    info->count = J;
    
    return(info->count);
  } /* read_hkl_data */

  /* ------------------------------------------------------------------------ */
  /* hkl_search
    search the HKL reflections which are on the Ewald sphere
    input:
      L,T,count,V0: constants for all calls
      kix,kiy,kiz: may be different for each call
    this function returns:
      tau_count (return), coh_refl, coh_xsect, T (updated elements in the array up to [j])
   */
#pragma acc routine
int hkl_search(struct hkl_data *L, void *TT, int count, double V0,
    double kix, double kiy, double kiz, double tau_max,
    double *coh_refl, double *coh_xsect)
  {
    double rho, rho_x, rho_y, rho_z;
    double diff;
    int    i,j;
    double ox,oy,oz;
    double b1x,b1y,b1z, b2x,b2y,b2z, kx, ky, kz, nx, ny, nz;
    double n11, n22, n12, det_N, inv_n11, inv_n22, inv_n12, l11, l22, l12,  det_L;
    double Bt_D_O_x, Bt_D_O_y, y0x, y0y, alpha;

    double ki = sqrt(kix*kix+kiy*kiy+kiz*kiz);
    int jglobal=-1;
    double coherent_refl,coherent_xsect;

    struct tau_data *T=(struct tau_data *)TT;

    //coherent_refl = *coh_refl;
    //coherent_xsect = *coh_xsect;
    coherent_refl = 0;
    coherent_xsect = 0;

    /* Common factor in coherent cross-section */
    double xsect_factor = pow(2*PI, 5.0/2.0)/(V0*ki*ki);
    j=0;
    for(i = 0; i < count; i++)
      {
    /* Assuming reflections are sorted, stop search when max tau exceeded. */
        if(L[i].tau > tau_max)
          break;
        /* Check if this reciprocal lattice point is close enough to the
           Ewald sphere to make scattering possible. */
        rho_x = kix - L[i].tau_x; /* rho = |ki - tau| = |kf| = |ki| within cutoff on the Ewald sphere */
        rho_y = kiy - L[i].tau_y;
        rho_z = kiz - L[i].tau_z;
        rho = sqrt(rho_x*rho_x + rho_y*rho_y + rho_z*rho_z);
        diff = fabs(rho - ki);

        /* Check if scattering is possible (cutoff of Gaussian tails). */
        if(diff <= L[i].cutoff)
        {
          /* Store reflection. */
          T[j].index = i;
          /* Get ki vector in local coordinates. */
          kx = kix*L[i].u1x + kiy*L[i].u1y + kiz*L[i].u1z;
          ky = kix*L[i].u2x + kiy*L[i].u2y + kiz*L[i].u2z;
          kz = kix*L[i].u3x + kiy*L[i].u3y + kiz*L[i].u3z;
          T[j].rho_x = kx - L[i].tau;
          T[j].rho_y = ky;
          T[j].rho_z = kz;
          T[j].rho = rho;
          /* Compute the tangent plane of the Ewald sphere. */
          nx = T[j].rho_x/T[j].rho;
          ny = T[j].rho_y/T[j].rho;
          nz = T[j].rho_z/T[j].rho;
          ox = (ki - T[j].rho)*nx;
          oy = (ki - T[j].rho)*ny;
          oz = (ki - T[j].rho)*nz;
          T[j].ox = ox;
          T[j].oy = oy;
          T[j].oz = oz;
          /* Compute unit vectors b1 and b2 that span the tangent plane. */
          normal_vec(&b1x, &b1y, &b1z, nx, ny, nz);
          vec_prod(b2x, b2y, b2z, nx, ny, nz, b1x, b1y, b1z);
          T[j].b1x = b1x;
          T[j].b1y = b1y;
          T[j].b1z = b1z;
          T[j].b2x = b2x;
          T[j].b2y = b2y;
          T[j].b2z = b2z;
          /* Compute the 2D projection of the 3D Gauss of the reflection. */
          /* The symmetric 2x2 matrix N describing the 2D gauss. */
          n11 = L[i].m1*b1x*b1x + L[i].m2*b1y*b1y + L[i].m3*b1z*b1z;
          n12 = L[i].m1*b1x*b2x + L[i].m2*b1y*b2y + L[i].m3*b1z*b2z;
          n22 = L[i].m1*b2x*b2x + L[i].m2*b2y*b2y + L[i].m3*b2z*b2z;
          /* The (symmetric) inverse matrix of N. */
          det_N = n11*n22 - n12*n12;
          inv_n11 = n22/det_N;
          inv_n12 = -n12/det_N;
          inv_n22 = n11/det_N;
          /* The Cholesky decomposition of 1/2*inv_n (lower triangular L). */
          l11 = sqrt(inv_n11/2);
          l12 = inv_n12/(2*l11);
          l22 = sqrt(inv_n22/2 - l12*l12);
          T[j].l11 = l11;
          T[j].l12 = l12;
          T[j].l22 = l22;
          det_L = l11*l22;
          /* The product B^T D o. */
          Bt_D_O_x = b1x*L[i].m1*ox + b1y*L[i].m2*oy + b1z*L[i].m3*oz;
          Bt_D_O_y = b2x*L[i].m1*ox + b2y*L[i].m2*oy + b2z*L[i].m3*oz;
          /* Center of 2D Gauss in plane coordinates. */
          y0x = -(Bt_D_O_x*inv_n11 + Bt_D_O_y*inv_n12);
          y0y = -(Bt_D_O_x*inv_n12 + Bt_D_O_y*inv_n22);
          T[j].y0x = y0x;
          T[j].y0y = y0y;
          /* Factor alpha for the distance of the 2D Gauss from the origin. */
          alpha = L[i].m1*ox*ox + L[i].m2*oy*oy + L[i].m3*oz*oz -
                       (y0x*y0x*n11 + y0y*y0y*n22 + 2*y0x*y0y*n12);
          T[j].refl = xsect_factor*det_L*exp(-alpha)/L[i].sig123; /* intensity of that Bragg */
          if (isnan(T[j].refl)) continue;
          *coh_refl += T[j].refl;                                 /* total scatterable intensity */
          T[j].xsect = T[j].refl*L[i].F2;
          *coh_xsect += T[j].xsect;
          j++;
        }
        /*protect against tau shortlist buffer overrrun*/
        if (j==MCSX_REFL_SLIST_SIZE){
          break;
        }
      } /* end for */
        return (j); // this is 'tau_count', i.e. number of reachable reflections
    } /* end hkl_search */

#pragma acc routine
  int hkl_select(struct tau_data *T, int tau_count, double coh_refl, double *sum,_class_particle *_particle) {
      int j;
      double r = rand0max(coh_refl);
      *sum = 0;
      for(j = 0; j < tau_count; j++)
      {
        *sum += T[j].refl;
        if(*sum > r) break;
      }
      return j;
    }

    /* Functions for "reorientation", powder mode */
    /* Powder, forward */
#pragma acc routine
       void randrotate(double *nx, double *ny, double *nz, double a, double b, double c) {
      double x1, y1, z1, x2, y2, z2;
      rotate(x1, y1, z1, *nx,*ny,*nz, a, 1, 0, 0); /* <1> = rot(<n>,a) */
      rotate(x2, y2, z2,  x1, y1, z1, b, 0, 1, 0); /* <2> = rot(<1>,b) */
      rotate(*nx,*ny,*nz, x2, y2, z2, c, 0, 0, 1); /* <n> = rot(<2>,c) */
    }
    /* Powder, back */
#pragma acc routine
void randderotate(double *nx, double *ny, double *nz, double a, double b, double c) {
      double x1, y1, z1, x2, y2, z2;
      rotate(x1, y1, z1, *nx,*ny,*nz, -c, 0,0,1);
      rotate(x2, y2, z2,  x1, y1, z1, -b, 0,1,0);
      rotate(*nx,*ny,*nz, x2, y2, z2, -a, 1,0,0);
    }

#pragma acc routine
    /* rotate vector counterclockwise */
    void vec_rotate_2d(double* x, double* y, double angle) {
        double c, s;
        double newx, newy;

        c = cos(angle);
        s = sin(angle);

        newx = *x*c - *y*s;
        newy = *x*s + *y*c;

        *x = newx;
        *y = newy;
    }
  
  struct sx_abs_data
  {
    int     muc; // column where mu is to be found
    double  atomic_weight;
    double  delta_prefactor;
    t_Table table;
  };
  

  int sx_read_abs_data(char *ABS_file, struct sx_abs_data *abs, struct hkl_info_struct info ){
    int    status;
    char **parsing;
    double Z;
    
    if (ABS_file && strlen(ABS_file) && strcmp(ABS_file, "NULL") && strcmp(ABS_file, "0")) {
      if ( (status=Table_Read(&(abs->table),ABS_file,0))==-1){
        MPI_MASTER(
        fprintf(stderr,"Single_crystal: %s: ERROR: Could not parse file \"%s\"\n", __FILE__, ABS_file);
        );
        exit(-1);
      }
      abs->muc = (abs->table.columns==3 ? 1 : 5);
      
      parsing=Table_ParseHeader(abs->table.header,"Z","A[r]","rho",NULL);
      if (parsing) {
        if (parsing[0])                     Z               =strtol(parsing[0],NULL,10);
        if (parsing[1] && !info.mat_weight) info.mat_weight =strtod(parsing[1],NULL); // aka A[r] in g/mol
        if (parsing[2] && !info.rho)        info.rho        =strtod(parsing[2],NULL);
      }
  
      if (info.rho && info.mat_weight)
        abs->delta_prefactor= NA*(info.rho*1e-24)/info.mat_weight * 2.0*M_PI*RE;
      
      abs->atomic_weight=info.mat_weight;     
      
      return 1;
    } else {
      // init an empty table with absorption 0
      Table_Init(&(abs->table),2,2);
      abs->table.data[0]=0;abs->table.data[1]=0;
      abs->table.data[2]=FLT_MAX;abs->table.data[3]=0;
      fprintf(stderr,"Single_crystal: %s: Warning: material file %s not found. Absorption set to 0\n",
        __FILE__, ABS_file);
        return 0;
    }
  } // sx_read_abs_data
  
  
#endif /* !SINGLE_CRYSTAL_DECL */
%}


DECLARE
%{
  struct hkl_info_struct hkl_info;
  off_struct             offdata;
  struct hkl_data       *hkl_list;
  struct tau_data        tau_list[MCSX_REFL_SLIST_SIZE];
  struct sx_abs_data     abs_info;
%}

INITIALIZE
%{

  double as, bs, cs;
  int i=0;

  /* transfer input parameters */
  hkl_info.m_delta_d_d = delta_d_d;
  hkl_info.m_a  = 0;
  hkl_info.m_b  = 0;
  hkl_info.m_c  = 0;
  hkl_info.m_aa = aa;
  hkl_info.m_bb = bb;
  hkl_info.m_cc = cc;
  hkl_info.m_ax = ax;
  hkl_info.m_ay = ay;
  hkl_info.m_az = az;
  hkl_info.m_bx = bx;
  hkl_info.m_by = by;
  hkl_info.m_bz = bz;
  hkl_info.m_cx = cx;
  hkl_info.m_cy = cy;
  hkl_info.m_cz = cz;
 
  hkl_info.sigma_i = sigma_inc;
  hkl_info.recip   = recip_cell;

  /* default format h,k,l,F,F2  */
  hkl_info.column_order[0]=1;
  hkl_info.column_order[1]=2;
  hkl_info.column_order[2]=3;
  hkl_info.column_order[3]=0;
  hkl_info.column_order[4]=7;
  hkl_info.kix = hkl_info.kiy = hkl_info.kiz = 0;
  hkl_info.nb_reuses = hkl_info.nb_refl = hkl_info.nb_refl_count = 0;
  hkl_info.tau_count = 0;
  
  /*this should not be in hkl_info*/
  hkl_info.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape  */
  if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
    #ifndef USE_OFF
    MPI_MASTER(
    fprintf(stderr,"Single_crystal: %s: ERROR: You are attempting to use an OFF/PLY geometry without -DUSE_OFF. You will need to recompile with that define set!\n", NAME_CURRENT_COMP);
    );
    exit(-1);
    #else
    if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
      hkl_info.shape=3;
    }
    #endif
  }
  else if (xwidth && yheight && zdepth)  hkl_info.shape=1; /* box */
  else if (radius > 0 && yheight)        hkl_info.shape=0; /* cylinder */
  else if (radius > 0 && !yheight)       hkl_info.shape=2; /* sphere */

  if (hkl_info.shape < 0)
    exit(fprintf(stderr,"Single_crystal: %s: sample has invalid dimensions.\n"
                        "ERROR           Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
  
  /* determine if we have a surface broadening/truncation rods (CTR) */
  hkl_info.ctr_size=surf_size;
  hkl_info.ctr_k   =surf_k;
  hkl_info.ctr_FT2 =surf_FT2;
  hkl_info.ctr_dir =surf_dir;
  if (hkl_info.ctr_size < 0) { /* CTR automatic mode */
    double surf_dir_sum  =0;
    double surf_thickness=0;
    for (i=0; i<3; hkl_info.ctr_dir[i++]=0);
    if (hkl_info.shape == 1) {
      if      (xwidth <= yheight && xwidth <= zdepth)    { hkl_info.ctr_dir[0]=1; surf_thickness=xwidth;  }
      else if (yheight<= xwidth  && yheight<= zdepth)    { hkl_info.ctr_dir[1]=1; surf_thickness=yheight; }
      else                                               { hkl_info.ctr_dir[2]=1; surf_thickness=zdepth;  }
    } else if (hkl_info.shape == 0 && yheight <= radius) { hkl_info.ctr_dir[1]=1; surf_thickness=yheight; }
    // surf_size=-1: set automatically the k and FT2 vectors
    if (0 < surf_thickness) {
      hkl_info.ctr_size=21;                       // nb of satellite peaks
      double range_k = 1.0;               // k range [1/Angs], k=[-range/2 : +range/2]
      double dk = range_k/(hkl_info.ctr_size-1);  // delta-k for btw satellites
      DArray1d s_k = create_darr1d(hkl_info.ctr_size);
      DArray1d s_F = create_darr1d(hkl_info.ctr_size);
      hkl_info.ctr_k       = (double *)s_k;
      hkl_info.ctr_FT2     = (double *)s_F;
      for (i=0; i<hkl_info.ctr_size; i++) {
        hkl_info.ctr_k[i]   = -range_k/2+i*dk;    // 1/Angs, symmetric around 0 [1/Angs]
        if (surf_thickness < 1e-7) {      // thin layer thickness < 0.1 um -> sinc^2
          double x=PI*hkl_info.ctr_k[i]*surf_thickness*1e10;  // 1e10 [m -> Angs]
          hkl_info.ctr_FT2[i] = hkl_info.ctr_k[i] ? sin(x)/x : 1; 
        } else {                          // assume a half-bulk -> 1/k^2 [in rlu]
          hkl_info.ctr_FT2[i] = hkl_info.ctr_k[i] ? 1/(hkl_info.ctr_k[i]*2*PI) : 4*PI; // we assume a=2PI
        }
        hkl_info.ctr_FT2[i]*= hkl_info.ctr_FT2[i];        // squared
      }
      MPI_MASTER(
        printf("Single_crystal: %s: Info: Setting CTR surface normal XYZ=[%g,%g,%g], as a %s.\n", 
          NAME_CURRENT_COMP,
          hkl_info.ctr_dir[0],hkl_info.ctr_dir[1],hkl_info.ctr_dir[2], 
          surf_thickness < 1e-7 ? "thin layer (sinc^2)" : "half-bulk (1/k^2)");
      );
    }
  }
  if (hkl_info.ctr_size > 1 && (!hkl_info.ctr_dir || !hkl_info.ctr_dir[0] && !hkl_info.ctr_dir[1] && !hkl_info.ctr_dir[2])) { // no CTR normal ?
    MPI_MASTER(
    printf("Single_crystal: %s: Warning: No surf_dir surface normal set. Ignoring CTR.\n", i, NAME_CURRENT_COMP);
    );
    hkl_info.ctr_size = 1;
  }
  if (hkl_info.ctr_size > 1 && hkl_info.ctr_FT2 && hkl_info.ctr_k) { // do some CTR tests
    double sum_FT2=0, min_k=FLT_MAX, max_k=-FLT_MAX;
    for (i=0; i<hkl_info.ctr_size; i++) {
      if (hkl_info.ctr_FT2[i] < 0) {
        MPI_MASTER(
        printf("Single_crystal: %s: Warning: surf_FT2[%i] < 0. Must all be >= 0. Ignoring CTR.\n", i, NAME_CURRENT_COMP);
        );
        hkl_info.ctr_size=1;
        break;
      }
      sum_FT2 += hkl_info.ctr_FT2[i];
      if (hkl_info.ctr_k[i] < min_k) min_k = hkl_info.ctr_k[i];
      if (max_k < hkl_info.ctr_k[i]) max_k = hkl_info.ctr_k[i];
    }
    if (hkl_info.ctr_size>1 && min_k*max_k >= 0) { // k vector not around 0 ?
      MPI_MASTER(
        printf("Single_crystal: %s: Warning: surf_k = [%g:%g]. Must be around 0. Ignoring CTR.\n", min_k, max_k, NAME_CURRENT_COMP);
      );
      hkl_info.ctr_size=1;
    }
    if (hkl_info.ctr_size>1 && sum_FT2 <= 0) { // no positive FT2 value ?
      MPI_MASTER(
        printf("Single_crystal: %s: Warning: sum(surf_FT2) <= 0. Must be > 0. Ignoring CTR.\n", min_k, max_k, NAME_CURRENT_COMP);
      );
      hkl_info.ctr_size=1;
    }
    if (hkl_info.ctr_size>1 && sum_FT2) { // all is fine. Normalize CTR.
      NORM(hkl_info.ctr_dir[0],hkl_info.ctr_dir[1],hkl_info.ctr_dir[2]); // normal vector |u|=1
      // normalize surf_FT2 (distribute Bragg scattering along all satellites)
      for (i=0; i<hkl_info.ctr_size; hkl_info.ctr_FT2[i++] /= sum_FT2);
    }
  } // if (CTR)

  /* ought to be cleaned up as mosaic_AB now is a proper vector/array and not a define */
  double* mosaic_ABin = mosaic_AB;
  /* Read in structure factors, and do some pre-calculations. */
  if (!read_hkl_data(reflections, &hkl_info, &hkl_list, mosaic, mosaic_a, mosaic_b, mosaic_c, mosaic_ABin,
    hkl_info.ctr_size,hkl_info.ctr_k,hkl_info.ctr_FT2,hkl_info.ctr_dir)) {
    MPI_MASTER(
    printf("Single_crystal: %s: ERROR: can not set crystal structure. Check file and mosaic. Aborting.\n", NAME_CURRENT_COMP);
    );
    exit(-1);
  }

  if (hkl_info.sigma_i<0) hkl_info.sigma_i=0;

  if (hkl_info.count)
    printf("Single_crystal: %s: Read %d reflections from file '%s'\n",
      NAME_CURRENT_COMP, hkl_info.count, reflections);
  else printf("Single_crystal: %s: Using uniform incoherent elastic scattering only sigma=%g.\n",
      NAME_CURRENT_COMP, hkl_info.sigma_i);
      
  if (!sx_read_abs_data(material_datafile, &abs_info, hkl_info )) abs_info.muc=0;

  MPI_MASTER(
  printf("Single_crystal: %s: Vc=%g [Angs] sigma_inc=%g [barn] reflections=%s\n",
      NAME_CURRENT_COMP, hkl_info.V0, hkl_info.sigma_i,
      reflections && strlen(reflections) ? reflections : "NULL");
  );

  if (powder && !(order==1)) {
    MPI_MASTER(
    fprintf(stderr,"Single_crystal: %s: powder mode means implicit choice of no multiple scattering!\n"
            "WARNING setting order=1\n", NAME_CURRENT_COMP);
    );
    order=1;
  }
  if (powder && (RX || RY)) {
    exit(fprintf(stderr,"Single_crystal: %s: powder mode can not be used together with crystal curvature.\n", NAME_CURRENT_COMP));
  }
  MPI_MASTER(
  printf("Direct space lattice orientation:\n");
  printf("  a = [%g %g %g]\n", hkl_info.m_ax, hkl_info.m_ay, hkl_info.m_az);
  printf("  b = [%g %g %g]\n", hkl_info.m_bx, hkl_info.m_by, hkl_info.m_bz);
  printf("  c = [%g %g %g]\n", hkl_info.m_cx, hkl_info.m_cy, hkl_info.m_cz);
  printf("Reciprocal space lattice orientation:\n");
  printf("  a* = [%g %g %g]\n", hkl_info.asx, hkl_info.asy, hkl_info.asz);
  printf("  b* = [%g %g %g]\n", hkl_info.bsx, hkl_info.bsy, hkl_info.bsz);
  printf("  c* = [%g %g %g]\n", hkl_info.csx, hkl_info.csy, hkl_info.csz);
  );

%}

TRACE
%{
  double l1, l2=0;              /* Entry and exit lengths in sample */
  struct hkl_data *L;           /* Structure factor list */
  int i;                        /* Index into structure factor list */
#ifndef OPENACC
  struct tau_data *T;           /* List of reflections close to Ewald sphere */
#else
  struct tau_data T[MCSX_REFL_SLIST_SIZE];
#endif
  int tau_count;                /* Number of reflections close to Ewald sphere*/
  int j;                        /* Index into reflection list */
  int event_counter;            /* scattering event counter */
  double kix, kiy, kiz, ki;     /* Initial wave vector [1/AA] */
  double kfx, kfy, kfz;         /* Final wave vector */
  double k;                     /* photon wave vector */
  double rho_x, rho_y, rho_z;   /* the vector ki - tau */
  double rho;
  double diff;                  /* Deviation from Bragg condition */
  double ox, oy, oz;            /* Origin of Ewald sphere tangent plane */
  double b1x, b1y, b1z;         /* First vector spanning tangent plane */
  double b2x, b2y, b2z;         /* Second vector spanning tangent plane */
  double n11, n12, n22;         /* 2D Gauss description matrix N */
  double det_N;                 /* Determinant of N */
  double inv_n11, inv_n12, inv_n22; /* Inverse of N */
  double l11, l12, l22;         /* Cholesky decomposition L of 1/2*inv(N) */
  double det_L;                 /* Determinant of L */
  double Bt_D_O_x, Bt_D_O_y;    /* Temporaries */
  double y0x, y0y;              /* Center of 2D Gauss in plane coordinates */
  double alpha;                 /* Offset of 2D Gauss center from 3D center */
  double V0;                    /* Volume of unit cell */
  double l_full;                /* photon path length for transmission */
  double l;                     /* Path length to scattering event */
  double abs_xsect, abs_xlen;   /* Absorption cross section and length */
  double inc_xsect, inc_xlen;   /* Incoherent scattering cross section and length */
  double coh_xsect, coh_xlen;   /* Coherent cross section and length */
  double tot_xsect, tot_xlen;   /* Total cross section and length */
  double z1, z2, y1, y2;        /* Temporaries to choose kf from 2D Gauss */
  double adjust, sum;           /* Temporaries */

  double p_trans;               /* Transmission probability */
  double mc_trans, mc_interact; /* Transmission, interaction MC choices */
  int    intersect=0;

  double curv_xangle;
  double curv_yangle;

  double _kx;
  double _ky;
  double _kz;

  char   type;      /* type of last event: t=transmit,c=coherent or i=incoherent */
  int    itype;     /* type of last event: t=1,c=2 or i=3 */

  #ifdef OPENACC
  #ifdef USE_OFF
  off_struct thread_offdata = offdata;
  #endif
  #else
  #define thread_offdata offdata
  #endif
  
  /* Intersection photon trajectory / sample (sample surface) */
  if (hkl_info.shape == 0)
    intersect = cylinder_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius, yheight);
  else if (hkl_info.shape == 1)
    intersect = box_intersect(&l1, &l2, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
  else if (hkl_info.shape == 2)
    intersect = sphere_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius);
  #ifdef USE_OFF
  else if (hkl_info.shape == 3)
      intersect = off_x_intersect(&l1, &l2, NULL, NULL, x, y, z, kx, ky, kz, thread_offdata );
  #endif
  if (l2 < 0) intersect=0;  /* we passed sample volume already */

  if(intersect)
  {                         /* photon intersects crystal */
    if(l1 > 0)
      PROP_DL(l1);          /* Move to crystal surface if not inside */
    ki  = sqrt(kx*kx + ky*ky + kz*kz);
    event_counter = 0;

    /*absorption cross-section */
    abs_xsect=0;
    if (abs_info.muc) {
      double mu=Table_Value(abs_info.table, ki*K2E, abs_info.muc);
      abs_xsect = (abs_info.atomic_weight/(6.02214076*10E23))*mu; //this is in cm^2
      //atomic weight = [g . mol^-1]
      //Avogadro number = [mol^-1]
      //mu = [cm squared . g⁻1]
      //therefore convert to barns if barns set to 1, otherwise to fm^2
      if (barns) { //convert cm^2 into barns
        abs_xsect *= 10E24; 
      } else {  //convert cm^2 into fm^2, else we assume fm^2
        abs_xsect *= 10E26;
      }
    }
    V0= hkl_info.V0;
    abs_xlen  = abs_xsect/V0;

    /*look into Compton scattering*/
    inc_xsect = hkl_info.sigma_i;
    inc_xlen  = inc_xsect/V0;

    if (barns) {
      /*If cross sections are given in barns, we need a scaling factor of 100 
       to get scattering lengths in m, since V0 is assumed to be in AA*/
    abs_xlen *= 100; inc_xlen *= 100;
    } /* else assume fm^2 */
    L = hkl_list;
    
    type = '\0';
    itype = 0;
    
#ifndef OPENACC
    T = tau_list;
    hkl_info.type = type;
#endif
    do {  /* Loop over multiple scattering events */
      /* Angles for powder randomization */
      double Alpha, Beta, Gamma;

      if (hkl_info.shape == 0)
        intersect = cylinder_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius, yheight);
      else if (hkl_info.shape == 1)
        intersect = box_intersect(&l1, &l2, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);
      else if (hkl_info.shape == 2)
        intersect = sphere_intersect(&l1, &l2, x, y, z, kx, ky, kz, radius);
      #ifdef USE_OFF
      else if (hkl_info.shape == 3)
	      intersect = off_x_intersect(&l1, &l2, NULL, NULL, x, y, z, kx, ky, kz, thread_offdata );
      #endif
      if(!intersect || l2 < -1e-7 || l1 > 1e-7)
      {
        /* photon is leaving the sample */
        hkl_info.flag_warning++;
        if (hkl_info.flag_warning < 10)
#ifndef OPENACC
          MPI_MASTER(
          fprintf(stderr,
                "Single_crystal: %s: Warning: photon has unexpectedly left the crystal!\n"
                "                l1=%g l2=%g x=%g y=%g z=%g kx=%g ky=%g kz=%g order=%i\n",
                NAME_CURRENT_COMP, l1, l2, x, y, z, kx, ky, kz, event_counter);
          );
#endif
        break;
      }

      l_full = l2;
	  
      if (   (order && !(extra_order) && event_counter >= order)
  		  || (order && extra_order && event_counter >= order + extra_order)) {
        // Exit due to truncated order, weight with relevant cross-sections to distance l_full
        p*=exp(-abs_xlen*l_full);
        intersect=0; 
        break;
      }

      /* (1). Compute incoming wave vector ki */
      if (powder) { /* orientation of crystallite is random */
        Alpha = randpm1()*PI*powder;
        Beta  = randpm1()*PI/2;
        Gamma = randpm1()*PI;
        randrotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
      }

      /* ------------------------------------------------------------------------- */
      /* lattice curvature option: rotate photon velocity */
      curv_xangle = 0;
      curv_yangle = 0;

      _kx = kx;
      _ky = ky;
      _kz = kz;

      if(RY) { /* rotate v around x axis based on y pos, for vertical focus */
          curv_yangle = atan2(y, RY);
          vec_rotate_2d(&ky,&kz, curv_yangle);
          vec_rotate_2d(&Ey,&Ez, curv_yangle);

          /*changing y,z actually curves the crystal, not only the planes*/
          /*comment out if only curvature of the lattice planes is needed*/
          vec_rotate_2d(&y,&z, curv_yangle);
      }
      if(RX) { /* rotate v around y axis based on x pos, for horizontal focus */
          curv_xangle = atan2(x, RX);
          vec_rotate_2d(&kx,&kz, curv_xangle);
          vec_rotate_2d(&Ex,&Ez, curv_xangle);

          /*changing x,z actually curves the crystal, not only the planes*/
          /*comment out if only curvature of the lattice planes is needed*/
          vec_rotate_2d(&x,&z, curv_xangle);
      }

      kix = kx;
      kiy = ky;
      kiz = kz;
      kx = _kx;
      ky = _ky;
      kz = _kz;
      /* ------------------------------------------------------------------------- */

      /* (2). Intersection of Ewald sphere with reciprocal lattice points */

      double coh_xsect = 0, coh_refl = 0;
	  
	  // Condition to skip calculation of coherent cross section when, needed for extra_order feature	  
	  if (order==0 || extra_order==0 || event_counter < order) {	  
      /* in case we use 'SPLIT' then consecutive photons can be identical when entering here
         and we may skip the hkl_search call */
#ifndef OPENACC
      if (order==1 && fabs(kix - hkl_info.kix) < deltak
        && fabs(kiy - hkl_info.kiy) < deltak
        && fabs(kiz - hkl_info.kiz) < deltak) {
        hkl_info.nb_reuses++;

        /* Restore in case of matching event (e.g. SPLIT) */
        coh_refl  = hkl_info.coh_refl;
        coh_xsect = hkl_info.coh_xsect;
        tau_count = hkl_info.tau_count;

      } else {
#endif
        /* Max possible tau for this ki with 5*sigma delta-d/d cutoff. */
        double tau_max   = 2*ki/(1 - 5*hkl_info.m_delta_d_d);

        /* call hkl_search */
        
        tau_count = hkl_search(L, T, hkl_info.count, hkl_info.V0, 
                kix, kiy, kiz, tau_max,
                &coh_refl, &coh_xsect);

        /* store ki so that we can check for further SPLIT iterations */
#ifndef OPENACC
        if (tau_count>hkl_info.max_tau_count){
          hkl_info.max_tau_count=tau_count;
        }
        if (event_counter == 0 ) { /* only for incoming photon */
          hkl_info.kix = kix;
          hkl_info.kiy = kiy;
          hkl_info.kiz = kiz;

	        /* Store for potential re-use (e.g. SPLIT) */
	        hkl_info.coh_refl  = coh_refl;
	        hkl_info.coh_xsect = coh_xsect;
	        hkl_info.tau_count = tau_count;
	        hkl_info.nb_refl += tau_count;
	        hkl_info.nb_refl_count++;
	      }
      }
#endif
      } else {
        // When extra_order used, disable coherent scattering after order reached, but continue
  	    // Set coherent cross section to zero to ignore coherent part
        coh_refl = 0;
        coh_xsect = 0;
        tau_count = 0;
      }
	  
      /* (3). Probabilities of the different possible interactions. */
      /* Cross-sections are in barns = 10**-28 m**2, and unit cell volumes are
         in AA**3 = 10**-30 m**2. Hence a factor of 100 is used to convert
         scattering lengths to m**-1 */
      coh_xlen = coh_xsect/V0;
      if (barns) {
        coh_xlen *= 100;
      } /* else assume fm^2 */
      tot_xlen = abs_xlen + inc_xlen + coh_xlen;

      if(tot_xlen <= 0){
        ABSORB; // Should we really absorb here? If "nothing" can happen we perhaps ought to "pass" instead? 
      }
      
      /* (5). Transmission */
      p_trans = exp(-tot_xlen*l_full);
      if(!event_counter && p_transmit >= 0 && p_transmit <= 1) {
        mc_trans = p_transmit; /* first event */
      } else {
        mc_trans = p_trans;
      }
      mc_interact = 1 - mc_trans;
      if(mc_trans > 0 && (mc_trans >= 1 || rand01() < mc_trans))  /* Transmit */
      {
        p *= p_trans/mc_trans;
        intersect=0;
        if (powder) { /* orientation of crystallite is longer random */
          randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
        }

        type = 't';
        if (!itype) itype = 1;
        #ifndef OPENACC
        hkl_info.type = type;
        #endif

        break; 
        /* This break means that we are leaving the while-loop, exiting the
	   crystal by "tunneling". */
      }

      /* Scattering "proper", i.e. coh or incoh */
      if(mc_interact <= 0)        /* Protect against rounding errors */
        { intersect=0;
          if (powder) { /* orientation of crystallite is no longer random */
            randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
          }
          break;
        }

      /* First-pass considerations: */
      if (!event_counter) p *= fabs(1 - p_trans)/mc_interact;
      /* Select a point at which to scatter the photon, taking
         secondary extinction into account. */
      /* dP(l) = exp(-tot_xlen*l)dl
         P(l<l_0) = [-1/tot_xlen*exp(-tot_xlen*l)]_0^l_0
                  = (1 - exp(-tot_xlen*l0))/tot_xlen
         l = -log(1 - tot_xlen*rand0max(P(l<l_full)))/tot_xlen
       */
      if(tot_xlen*l_full < 1e-6)
        /* For very weak scattering, use simple uniform sampling of scattering
           point to avoid rounding errors. */
        l = rand0max(l_full);
      else
        l = -log(1 - rand0max((1 - exp(-tot_xlen*l_full))))/tot_xlen;
 
      /* Propagate to scattering point */
      PROP_DL(l);
      event_counter++;

      /* (4). Account for the probability of sigma_abs */
      p *= (coh_xlen + inc_xlen)/tot_xlen;
      /* Choose between coherent and incoherent scattering */
      if(coh_xlen == 0 || rand0max(coh_xlen + inc_xlen) <= inc_xlen)
      {
        /* (6). Incoherent scattering */
        randvec_target_circle(&kix, &kiy, &kiz, NULL, kx, ky, kz, 0);
        kx = kix; /* ki vector is used as tmp var with norm v */
        ky = kiy;
        kz = kiz; /* Go for next scattering event */
	
        type = 'i';
        if (!itype) itype = 2;
#ifndef OPENACC
        hkl_info.type = type;
#endif
      } else {
        /* 7. Coherent scattering. Select reciprocal lattice point. */
        if(coh_refl <= 0){
          ABSORB;
        }
        sum = 0;
        j = hkl_select(T, tau_count, coh_refl, &sum,_particle);
        if(j >= tau_count)
        {
#ifndef OPENACC
          if (hkl_info.flag_warning < 10)
            MPI_MASTER(
            fprintf(stderr, "Single_crystal: %s: Warning: failed tau search "
              "(sum=%g, coh_refl=%g, j=%i, tau_count=%i). Using last reflection.\n", NAME_CURRENT_COMP, sum, coh_refl, j , tau_count);
            );
#endif
          hkl_info.flag_warning++;
          j = tau_count - 1;
        }
        i = T[j].index;
        /* (8). Pick scattered wavevector kf from 2D Gauss distribution. */
        z1 = randnorm();
        z2 = randnorm();
        y1 = T[j].l11*z1 + T[j].y0x;
        y2 = T[j].l12*z1 + T[j].l22*z2 + T[j].y0y;
        kfx = T[j].rho_x + T[j].ox + T[j].b1x*y1 + T[j].b2x*y2;
        kfy = T[j].rho_y + T[j].oy + T[j].b1y*y1 + T[j].b2y*y2;
        kfz = T[j].rho_z + T[j].oz + T[j].b1z*y1 + T[j].b2z*y2;

        /* Normalize kf to length of ki, to account for planer
          approximation of the Ewald sphere. */
        adjust = ki/sqrt(kfx*kfx + kfy*kfy + kfz*kfz);
        kfx *= adjust;
        kfy *= adjust;
        kfz *= adjust;
        /* Adjust photon weight (see manual for explanation). */
        double pmul = T[j].xsect*coh_refl/(coh_xsect*T[j].refl);
        if (!isnan(pmul)) p *= pmul;
        kx = L[i].u1x*kfx + L[i].u2x*kfy + L[i].u3x*kfz;
        ky = L[i].u1y*kfx + L[i].u2y*kfy + L[i].u3y*kfz;
        kz = L[i].u1z*kfx + L[i].u2z*kfy + L[i].u3z*kfz;
        
        /* add thin layer k-broadening, only with box/cylinder shape */
        if (hkl_info.shape == 1) { /* box */
          double thickness_threshold = 1000*2*PI/ki/1e10; // 1000*lambda in Angs, /1e10 -> m
          if (xwidth  < thickness_threshold) kx += 2*PI/xwidth /1e10*randnorm();
          if (yheight < thickness_threshold) ky += 2*PI/yheight/1e10*randnorm();
          if (zdepth  < thickness_threshold) kz += 2*PI/zdepth /1e10*randnorm();
        } else if (hkl_info.shape == 0) { /* cylinder */
          double thickness_threshold = 1000*2*PI/ki/1e10;
          if (yheight < thickness_threshold) ky += 2*PI/yheight/1e10*randnorm();
        }
        
	
        type = 'c';
        if (!itype) itype = 3;
#ifndef OPENACC
        hkl_info.type = type;
        hkl_info.h    = L[i].h;
        hkl_info.k    = L[i].k;
        hkl_info.l    = L[i].l;
#endif

      }
      /* ------------------------------------------------------------------------- */
      /* lattice curvature option: rotate back photon velocity */
      if(RX) {
          vec_rotate_2d(&kx,&kz, -curv_xangle);
          vec_rotate_2d(&Ex,&Ez, -curv_xangle);

          /*changing x,z actually curves the crystal, not only the planes*/
          /*comment out if only curvature of the lattice planes is needed*/
          vec_rotate_2d(&x,&z, -curv_xangle);
      }
      if(RY) {
          vec_rotate_2d(&ky,&kz, -curv_yangle);
          vec_rotate_2d(&Ey,&Ez, -curv_yangle);

          /*changing y,z actually curves the crystal, not only the planes*/
          /*comment out if only curvature of the lattice planes is needed*/
          vec_rotate_2d(&y,&z, -curv_yangle);
      }
      /* ------------------------------------------------------------------------- */
      SCATTER;
      if (powder) { /* orientation of crystallite is no longer random */
        randderotate(&kx, &ky, &kz, Alpha, Beta, Gamma);
      }
      /* Repeat loop for next scattering event. */
    } while (intersect); /* end do (intersect) (multiple scattering loop) */
  } /* if intersect */
%}

FINALLY
%{
  MPI_MASTER(
  if (hkl_info.flag_warning)
    fprintf(stderr, "Single_crystal: %s: Error message was repeated %i times with absorbed photons/illegal tau search.\n",
      NAME_CURRENT_COMP, hkl_info.flag_warning);

  /* in case this instance is used in a SPLIT, we can recommend the
     optimal iteration value */
  if (hkl_info.max_tau_count>=MCSX_REFL_SLIST_SIZE){
    fprintf(stderr,"Single_crystal: %s: Warning: The reflection short list buffer was exhausted at least once. Please consider redefining MCSX_REFL_SLIST_SIZE > %d\n", NAME_CURRENT_COMP, MCSX_REFL_SLIST_SIZE);
  }

  if (hkl_info.nb_refl_count) {
    double split_iterations = (double)hkl_info.nb_reuses/hkl_info.nb_refl_count + 1;
    double split_optimal    = (double)hkl_info.nb_refl/hkl_info.nb_refl_count;
    if (split_optimal > split_iterations + 5) {
      printf("Single_crystal: %s: Info: you may improve the computation efficiency by using\n"
        "    SPLIT %i COMPONENT %s=Single_crystal(order=1, ...)\n"
        "  in the instrument description %s.\n",
        NAME_CURRENT_COMP, (int)split_optimal, NAME_CURRENT_COMP, instrument_source);
    }
  }
  );
%}

MCDISPLAY
%{
  if (hkl_info.shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, radius);
    circle("xz", 0, -yheight/2.0, 0, radius);
    line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
    line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
    line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
    line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
  }
  else if (hkl_info.shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (hkl_info.shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, radius);
    circle("xz", 0,  0.0, 0, radius);
    circle("yz", 0,  0.0, 0, radius);
  }
  else if (hkl_info.shape == 3) {	/* OFF file */
    off_display(offdata);
  }
%}
END