1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_core_multi_shell
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView core_multi_shell model component as sample description.
*
* %Description
*
* SasView_core_multi_shell component, generated from core_multi_shell.c in sasmodels.
*
* Example:
* SasView_core_multi_shell(sld_core, radius, sld_solvent, n, sld[n], thickness[n],
* model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0,
* int target_index=1, target_x=0, target_y=0, target_z=1,
* focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0,
* pd_radius=0.0, pd_thickness[n]=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* sld_core: [1e-6/Ang^2] ([-inf, inf]) Core scattering length density.
* radius: [Ang] ([0, inf]) Radius of the core.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) Solvent scattering length density.
* n: [] ([0, 10]) number of shells.
* sld[n]: [1e-6/Ang^2] ([-inf, inf]) scattering length density of shell k.
* thickness[n]: [Ang] ([0, inf]) Thickness of shell k.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_thickness[n]: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_core_multi_shell
SETTING PARAMETERS (
sld_core=1.0,
radius=200.0,
sld_solvent=6.4,
n=1,
vector sld[n]={1.7},
vector thickness[n]={40.0},
model_scale=1.0,
model_abs=0.0,
xwidth=0.01,
yheight=0.01,
zdepth=0.005,
R=0,
target_x=0,
target_y=0,
target_z=1,
int target_index=1,
focus_xw=0.5,
focus_yh=0.5,
focus_aw=0,
focus_ah=0,
focus_r=0,
pd_radius=0.0,
pd_thickness[n]=0.0)
SHARE %{
%include "sas_kernel_header.c"
/* BEGIN Required header for SASmodel core_multi_shell */
#define HAS_FQ
#define FORM_VOL
#ifndef SAS_HAVE_sas_3j1x_x
#define SAS_HAVE_sas_3j1x_x
#line 1 "sas_3j1x_x"
/**
* Spherical Bessel function 3*j1(x)/x
*
* Used for low q to avoid cancellation error.
* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
* in this case it is likely cancellation errors in the original expression
* using double precision that are the source.
*/
double sas_3j1x_x(double q);
// The choice of the number of terms in the series and the cutoff value for
// switching between series and direct calculation depends on the numeric
// precision.
//
// Point where direct calculation reaches machine precision:
//
// single machine precision eps 3e-8 at qr=1.1 **
// double machine precision eps 4e-16 at qr=1.1
//
// Point where Taylor series reaches machine precision (eps), where taylor
// series matches direct calculation (cross) and the error at that point:
//
// prec n eps cross error
// single 3 0.28 0.4 6.2e-7
// single 4 0.68 0.7 2.3e-7
// single 5 1.18 1.2 7.5e-8
// double 3 0.01 0.03 2.3e-13
// double 4 0.06 0.1 3.1e-14
// double 5 0.16 0.2 5.0e-15
//
// ** Note: relative error on single precision starts increase on the direct
// method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3. This should be
// safe for the sans range, with objects of 100 nm supported to a q of 0.1
// while maintaining 5 digits of precision. For usans/sesans, the objects
// are larger but the q is smaller, so again it should be fine.
//
// See explore/sph_j1c.py for code to explore these ranges.
// Use 4th order series
#if FLOAT_SIZE>4
#define SPH_J1C_CUTOFF 0.1
#else
#define SPH_J1C_CUTOFF 0.7
#endif
#pragma acc routine seq
double sas_3j1x_x(double q)
{
// 2017-05-18 PAK - support negative q
if (fabs(q) < SPH_J1C_CUTOFF) {
const double q2 = q*q;
return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.)))));
} else {
double sin_q, cos_q;
SINCOS(q, sin_q, cos_q);
return 3.0*(sin_q/q - cos_q)/(q*q);
}
}
#endif // SAS_HAVE_sas_3j1x_x
#ifndef SAS_HAVE_core_multi_shell
#define SAS_HAVE_core_multi_shell
#line 1 "core_multi_shell"
static double
f_constant(double q, double r, double sld)
{
const double bes = sas_3j1x_x(q * r);
const double vol = M_4PI_3 * cube(r);
return sld * vol * bes;
}
static double
outer_radius(double core_radius, double fp_n, double thickness[])
{
double r = core_radius;
int n = (int)(fp_n+0.5);
for (int i=0; i < n; i++) {
r += thickness[i];
}
return r;
}
static double
form_volume_core_multi_shell(double core_radius, double fp_n, double thickness[])
{
return M_4PI_3 * cube(outer_radius(core_radius, fp_n, thickness));
}
static double
radius_effective_core_multi_shell(int mode, double core_radius, double fp_n, double thickness[])
{
switch (mode) {
default:
case 1: // outer radius
return outer_radius(core_radius, fp_n, thickness);
case 2: // core radius
return core_radius;
}
}
static void
Fq_core_multi_shell(double q, double *F1, double *F2, double core_sld, double core_radius,
double solvent_sld, double fp_n, double sld[], double thickness[])
{
const int n = (int)(fp_n+0.5);
double f, r, last_sld;
r = core_radius;
last_sld = core_sld;
f = 0.;
for (int i=0; i<n; i++) {
f += M_4PI_3 * cube(r) * (sld[i] - last_sld) * sas_3j1x_x(q*r);
last_sld = sld[i];
r += thickness[i];
}
f += M_4PI_3 * cube(r) * (solvent_sld - last_sld) * sas_3j1x_x(q*r);
*F1 = 1e-2 * f;
*F2 = 1e-4 * f * f;
}
#endif // SAS_HAVE_core_multi_shell
/* END Required header for SASmodel core_multi_shell */
%}
DECLARE
%{
double shape;
double my_a_k;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth)
shape=1;
else if (R > 0 && yheight)
shape=0;
else if (R > 0 && !yheight)
shape=2;
if (shape < 0)
exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
/*TODO fix absorption*/
my_a_k = model_abs; /* assume absorption is given in 1/m */
%}
TRACE
%{
double l0, l1, k, l_full, l, dl, d_Phi;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
char intersect=0;
/* Intersection photon trajectory / sample (sample surface) */
if (shape == 0){
intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
else if (shape == 1){
intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
else if (shape == 2){
intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
if(intersect)
{
if(l0 < 0)
ABSORB;
/* Photon enters at l0. */
k = sqrt(kx*kx + ky*ky + kz*kz);
l_full = (l1 - l0); /* Length of full path through sample */
dl = rand01()*(l1 - l0) + l0; /* Point of scattering */
PROP_DL(dl); /* Point of scattering */
l = (dl-l0); /* Penetration in sample */
kx_i=kx;
ky_i=ky;
kz_i=kz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
qx = (kx_i-kx);
qy = (ky_i-ky);
qz = (kz_i-kz);
q = sqrt(qx*qx+qy*qy+qz*qz);
double trace_radius=radius;
double trace_thickness[n]=thickness[n];
if ( pd_radius!=0.0 || pd_thickness[n]!=0.0 ){
trace_radius = (randnorm()*pd_radius+1.0)*radius;
trace_thickness[n] = (randnorm()*pd_thickness[n]+1.0)*thickness[n];
}
// Sample dependent. Retrieved from SasView./////////////////////
float Iq_out;
Iq_out = 1;
double F1=0.0, F2=0.0;
Fq_core_multi_shell(q, &F1, &F2, sld_core, trace_radius, sld_solvent, n, sld[n], trace_thickness[n]);
Iq_out = F2;
float vol;
vol = 1;
// Scale by 1.0E2 [SasView: 1/cm -> McXtrace: 1/m]
Iq_out = model_scale*Iq_out / vol * 1.0E2;
p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, R);
circle("xz", 0, -yheight/2.0, 0, R);
line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, R);
circle("xz", 0, 0.0, 0, R);
circle("yz", 0, 0.0, 0, R);
}
%}
END
|