1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_core_shell_bicelle_elliptical
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView core_shell_bicelle_elliptical model component as sample description.
*
* %Description
*
* SasView_core_shell_bicelle_elliptical component, generated from core_shell_bicelle_elliptical.c in sasmodels.
*
* Example:
* SasView_core_shell_bicelle_elliptical(radius, x_core, thick_rim, thick_face, length, sld_core, sld_face, sld_rim, sld_solvent,
* model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0,
* int target_index=1, target_x=0, target_y=0, target_z=1,
* focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0,
* pd_radius=0.0, pd_thick_rim=0.0, pd_thick_face=0.0, pd_length=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* radius: [Ang] ([0, inf]) Cylinder core radius r_minor.
* x_core: [None] ([0, inf]) Axial ratio of core, X = r_major/r_minor.
* thick_rim: [Ang] ([0, inf]) Rim shell thickness.
* thick_face: [Ang] ([0, inf]) Cylinder face thickness.
* length: [Ang] ([0, inf]) Cylinder length.
* sld_core: [1e-6/Ang^2] ([-inf, inf]) Cylinder core scattering length density.
* sld_face: [1e-6/Ang^2] ([-inf, inf]) Cylinder face scattering length density.
* sld_rim: [1e-6/Ang^2] ([-inf, inf]) Cylinder rim scattering length density.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) Solvent scattering length density.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_thick_rim: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_thick_face: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_length: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_core_shell_bicelle_elliptical
SETTING PARAMETERS (
radius=30,
x_core=3,
thick_rim=8,
thick_face=14,
length=50,
sld_core=4,
sld_face=7,
sld_rim=1,
sld_solvent=6,
model_scale=1.0,
model_abs=0.0,
xwidth=0.01,
yheight=0.01,
zdepth=0.005,
R=0,
target_x=0,
target_y=0,
target_z=1,
int target_index=1,
focus_xw=0.5,
focus_yh=0.5,
focus_aw=0,
focus_ah=0,
focus_r=0,
pd_radius=0.0,
pd_thick_rim=0.0,
pd_thick_face=0.0,
pd_length=0.0)
SHARE %{
%include "sas_kernel_header.c"
/* BEGIN Required header for SASmodel core_shell_bicelle_elliptical */
#define HAS_Iqabc
#define HAS_FQ
#define FORM_VOL
#ifndef SAS_HAVE_sas_Si
#define SAS_HAVE_sas_Si
#line 1 "sas_Si"
// integral of sin(x)/x Taylor series approximated to w/i 0.1%
double sas_Si(double x);
#pragma acc routine seq
double sas_Si(double x)
{
if (x >= M_PI*6.2/4.0) {
const double xxinv = 1./(x*x);
// Explicitly writing factorial values triples the speed of the calculation
const double out_cos = (((-720.*xxinv + 24.)*xxinv - 2.)*xxinv + 1.)/x;
const double out_sin = (((-5040.*xxinv + 120.)*xxinv - 6.)*xxinv + 1)*xxinv;
double sin_x, cos_x;
SINCOS(x, sin_x, cos_x);
return M_PI_2 - cos_x*out_cos - sin_x*out_sin;
} else {
const double xx = x*x;
// Explicitly writing factorial values triples the speed of the calculation
return (((((-1./439084800.*xx
+ 1./3265920.)*xx
- 1./35280.)*xx
+ 1./600.)*xx
- 1./18.)*xx
+ 1.)*x;
}
}
#endif // SAS_HAVE_sas_Si
#ifndef SAS_HAVE_polevl
#define SAS_HAVE_polevl
#line 1 "polevl"
/* polevl.c
* p1evl.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* double x, y, coef[N+1], polevl[];
*
* y = polevl( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that C_N = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/*
Cephes Math Library Release 2.1: December, 1988
Copyright 1984, 1987, 1988 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#pragma acc routine seq
static
double polevl( double x, pconstant double *coef, int N )
{
int i = 0;
double ans = coef[i];
while (i < N) {
i++;
ans = ans * x + coef[i];
}
return ans;
}
/* p1evl() */
/* N
* Evaluate polynomial when coefficient of x is 1.0.
* Otherwise same as polevl.
*/
#pragma acc routine seq
static
double p1evl( double x, pconstant double *coef, int N )
{
int i=0;
double ans = x+coef[i];
while (i < N-1) {
i++;
ans = ans*x + coef[i];
}
return ans;
}
#endif // SAS_HAVE_polevl
#ifndef SAS_HAVE_sas_J1
#define SAS_HAVE_sas_J1
#line 1 "sas_J1"
/* j1.c
*
* Bessel function of order one
*
*
*
* SYNOPSIS:
*
* double x, y, j1();
*
* y = j1( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order one of the argument.
*
* The domain is divided into the intervals [0, 8] and
* (8, infinity). In the first interval a 24 term Chebyshev
* expansion is used. In the second, the asymptotic
* trigonometric representation is employed using two
* rational functions of degree 5/5.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* DEC 0, 30 10000 4.0e-17 1.1e-17
* IEEE 0, 30 30000 2.6e-16 1.1e-16
*
*
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
*/
#if FLOAT_SIZE>4
//Cephes double pression function
constant double RPJ1[8] = {
-8.99971225705559398224E8,
4.52228297998194034323E11,
-7.27494245221818276015E13,
3.68295732863852883286E15,
0.0,
0.0,
0.0,
0.0 };
constant double RQJ1[8] = {
6.20836478118054335476E2,
2.56987256757748830383E5,
8.35146791431949253037E7,
2.21511595479792499675E10,
4.74914122079991414898E12,
7.84369607876235854894E14,
8.95222336184627338078E16,
5.32278620332680085395E18
};
constant double PPJ1[8] = {
7.62125616208173112003E-4,
7.31397056940917570436E-2,
1.12719608129684925192E0,
5.11207951146807644818E0,
8.42404590141772420927E0,
5.21451598682361504063E0,
1.00000000000000000254E0,
0.0} ;
constant double PQJ1[8] = {
5.71323128072548699714E-4,
6.88455908754495404082E-2,
1.10514232634061696926E0,
5.07386386128601488557E0,
8.39985554327604159757E0,
5.20982848682361821619E0,
9.99999999999999997461E-1,
0.0 };
constant double QPJ1[8] = {
5.10862594750176621635E-2,
4.98213872951233449420E0,
7.58238284132545283818E1,
3.66779609360150777800E2,
7.10856304998926107277E2,
5.97489612400613639965E2,
2.11688757100572135698E2,
2.52070205858023719784E1 };
constant double QQJ1[8] = {
7.42373277035675149943E1,
1.05644886038262816351E3,
4.98641058337653607651E3,
9.56231892404756170795E3,
7.99704160447350683650E3,
2.82619278517639096600E3,
3.36093607810698293419E2,
0.0 };
#pragma acc declare copyin( RPJ1[0:8], RQJ1[0:8], PPJ1[0:8], PQJ1[0:8], QPJ1[0:8], QQJ1[0:8])
#pragma acc routine seq
static
double cephes_j1(double x)
{
double w, z, p, q, abs_x, sign_x;
const double Z1 = 1.46819706421238932572E1;
const double Z2 = 4.92184563216946036703E1;
// 2017-05-18 PAK - mathematica and mpmath use J1(-x) = -J1(x)
if (x < 0) {
abs_x = -x;
sign_x = -1.0;
} else {
abs_x = x;
sign_x = 1.0;
}
if( abs_x <= 5.0 ) {
z = abs_x * abs_x;
w = polevl( z, RPJ1, 3 ) / p1evl( z, RQJ1, 8 );
w = w * abs_x * (z - Z1) * (z - Z2);
return( sign_x * w );
}
w = 5.0/abs_x;
z = w * w;
p = polevl( z, PPJ1, 6)/polevl( z, PQJ1, 6 );
q = polevl( z, QPJ1, 7)/p1evl( z, QQJ1, 7 );
// 2017-05-19 PAK improve accuracy using trig identies
// original:
// const double THPIO4 = 2.35619449019234492885;
// const double SQ2OPI = 0.79788456080286535588;
// double sin_xn, cos_xn;
// SINCOS(abs_x - THPIO4, sin_xn, cos_xn);
// p = p * cos_xn - w * q * sin_xn;
// return( sign_x * p * SQ2OPI / sqrt(abs_x) );
// expanding p*cos(a - 3 pi/4) - wq sin(a - 3 pi/4)
// [ p(sin(a) - cos(a)) + wq(sin(a) + cos(a)) / sqrt(2)
// note that sqrt(1/2) * sqrt(2/pi) = sqrt(1/pi)
const double SQRT1_PI = 0.56418958354775628;
double sin_x, cos_x;
SINCOS(abs_x, sin_x, cos_x);
p = p*(sin_x - cos_x) + w*q*(sin_x + cos_x);
return( sign_x * p * SQRT1_PI / sqrt(abs_x) );
}
#else
//Single precission version of cephes
constant float JPJ1[8] = {
-4.878788132172128E-009,
6.009061827883699E-007,
-4.541343896997497E-005,
1.937383947804541E-003,
-3.405537384615824E-002,
0.0,
0.0,
0.0
};
constant float MO1J1[8] = {
6.913942741265801E-002,
-2.284801500053359E-001,
3.138238455499697E-001,
-2.102302420403875E-001,
5.435364690523026E-003,
1.493389585089498E-001,
4.976029650847191E-006,
7.978845453073848E-001
};
constant float PH1J1[8] = {
-4.497014141919556E+001,
5.073465654089319E+001,
-2.485774108720340E+001,
7.222973196770240E+000,
-1.544842782180211E+000,
3.503787691653334E-001,
-1.637986776941202E-001,
3.749989509080821E-001
};
#pragma acc declare copyin( JPJ1[0:8], MO1J1[0:8], PH1J1[0:8])
#pragma acc routine seq
static
float cephes_j1f(float xx)
{
float x, w, z, p, q, xn;
const float Z1 = 1.46819706421238932572E1;
// 2017-05-18 PAK - mathematica and mpmath use J1(-x) = -J1(x)
x = xx;
if( x < 0 )
x = -xx;
if( x <= 2.0 ) {
z = x * x;
p = (z-Z1) * x * polevl( z, JPJ1, 4 );
return( xx < 0. ? -p : p );
}
q = 1.0/x;
w = sqrt(q);
p = w * polevl( q, MO1J1, 7);
w = q*q;
// 2017-05-19 PAK improve accuracy using trig identies
// original:
// const float THPIO4F = 2.35619449019234492885; /* 3*pi/4 */
// xn = q * polevl( w, PH1J1, 7) - THPIO4F;
// p = p * cos(xn + x);
// return( xx < 0. ? -p : p );
// expanding cos(a + b - 3 pi/4) is
// [sin(a)sin(b) + sin(a)cos(b) + cos(a)sin(b)-cos(a)cos(b)] / sqrt(2)
xn = q * polevl( w, PH1J1, 7);
float cos_xn, sin_xn;
float cos_x, sin_x;
SINCOS(xn, sin_xn, cos_xn); // about xn and 1
SINCOS(x, sin_x, cos_x);
p *= M_SQRT1_2*(sin_xn*(sin_x+cos_x) + cos_xn*(sin_x-cos_x));
return( xx < 0. ? -p : p );
}
#endif
#if FLOAT_SIZE>4
#define sas_J1 cephes_j1
#else
#define sas_J1 cephes_j1f
#endif
//Finally J1c function that equals 2*J1(x)/x
#pragma acc routine seq
static
double sas_2J1x_x(double x)
{
return (x != 0.0 ) ? 2.0*sas_J1(x)/x : 1.0;
}
#endif // SAS_HAVE_sas_J1
#ifndef SAS_HAVE_gauss76
#define SAS_HAVE_gauss76
#line 1 "gauss76"
// Created by Andrew Jackson on 4/23/07
#ifdef GAUSS_N
# undef GAUSS_N
# undef GAUSS_Z
# undef GAUSS_W
#endif
#define GAUSS_N 76
#define GAUSS_Z Gauss76Z
#define GAUSS_W Gauss76Wt
// Gaussians
constant double Gauss76Wt[76] = {
.00126779163408536, //0
.00294910295364247,
.00462793522803742,
.00629918049732845,
.00795984747723973,
.00960710541471375,
.0112381685696677,
.0128502838475101,
.0144407317482767,
.0160068299122486,
.0175459372914742, //10
.0190554584671906,
.020532847967908,
.0219756145344162,
.0233813253070112,
.0247476099206597,
.026072164497986,
.0273527555318275,
.028587223650054,
.029773487255905,
.0309095460374916, //20
.0319934843404216,
.0330234743977917,
.0339977794120564,
.0349147564835508,
.0357728593807139,
.0365706411473296,
.0373067565423816,
.0379799643084053,
.0385891292645067,
.0391332242205184, //30
.0396113317090621,
.0400226455325968,
.040366472122844,
.0406422317102947,
.0408494593018285,
.040987805464794,
.0410570369162294,
.0410570369162294,
.040987805464794,
.0408494593018285, //40
.0406422317102947,
.040366472122844,
.0400226455325968,
.0396113317090621,
.0391332242205184,
.0385891292645067,
.0379799643084053,
.0373067565423816,
.0365706411473296,
.0357728593807139, //50
.0349147564835508,
.0339977794120564,
.0330234743977917,
.0319934843404216,
.0309095460374916,
.029773487255905,
.028587223650054,
.0273527555318275,
.026072164497986,
.0247476099206597, //60
.0233813253070112,
.0219756145344162,
.020532847967908,
.0190554584671906,
.0175459372914742,
.0160068299122486,
.0144407317482767,
.0128502838475101,
.0112381685696677,
.00960710541471375, //70
.00795984747723973,
.00629918049732845,
.00462793522803742,
.00294910295364247,
.00126779163408536 //75 (indexed from 0)
};
constant double Gauss76Z[76] = {
-.999505948362153, //0
-.997397786355355,
-.993608772723527,
-.988144453359837,
-.981013938975656,
-.972229228520377,
-.961805126758768,
-.949759207710896,
-.936111781934811,
-.92088586125215,
-.904107119545567, //10
-.885803849292083,
-.866006913771982,
-.844749694983342,
-.822068037328975,
-.7980001871612,
-.77258672828181,
-.74587051350361,
-.717896592387704,
-.688712135277641,
-.658366353758143, //20
-.626910417672267,
-.594397368836793,
-.560882031601237,
-.526420920401243,
-.491072144462194,
-.454895309813726,
-.417951418780327,
-.380302767117504,
-.342012838966962,
-.303146199807908, //30
-.263768387584994,
-.223945802196474,
-.183745593528914,
-.143235548227268,
-.102483975391227,
-.0615595913906112,
-.0205314039939986,
.0205314039939986,
.0615595913906112,
.102483975391227, //40
.143235548227268,
.183745593528914,
.223945802196474,
.263768387584994,
.303146199807908,
.342012838966962,
.380302767117504,
.417951418780327,
.454895309813726,
.491072144462194, //50
.526420920401243,
.560882031601237,
.594397368836793,
.626910417672267,
.658366353758143,
.688712135277641,
.717896592387704,
.74587051350361,
.77258672828181,
.7980001871612, //60
.822068037328975,
.844749694983342,
.866006913771982,
.885803849292083,
.904107119545567,
.92088586125215,
.936111781934811,
.949759207710896,
.961805126758768,
.972229228520377, //70
.981013938975656,
.988144453359837,
.993608772723527,
.997397786355355,
.999505948362153 //75
};
#pragma acc declare copyin(Gauss76Wt[0:76], Gauss76Z[0:76])
#endif // SAS_HAVE_gauss76
#ifndef SAS_HAVE_core_shell_bicelle_elliptical
#define SAS_HAVE_core_shell_bicelle_elliptical
#line 1 "core_shell_bicelle_elliptical"
// NOTE that "length" here is the full height of the core!
static double
form_volume_core_shell_bicelle_elliptical(double r_minor,
double x_core,
double thick_rim,
double thick_face,
double length)
{
return M_PI*(r_minor+thick_rim)*(r_minor*x_core+thick_rim)*(length+2.0*thick_face);
}
static double
radius_from_excluded_volume_core_shell_bicelle_elliptical(double r_minor, double x_core, double thick_rim, double thick_face, double length)
{
const double r_equiv = sqrt((r_minor + thick_rim)*(r_minor*x_core + thick_rim));
const double length_tot = length + 2.0*thick_face;
return 0.5*cbrt(0.75*r_equiv*(2.0*r_equiv*length_tot + (r_equiv + length_tot)*(M_PI*r_equiv + length_tot)));
}
static double
radius_from_volume_core_shell_bicelle_elliptical(double r_minor, double x_core, double thick_rim, double thick_face, double length)
{
const double volume_bicelle = form_volume_core_shell_bicelle_elliptical(r_minor, x_core, thick_rim,thick_face,length);
return cbrt(volume_bicelle/M_4PI_3);
}
static double
radius_from_diagonal_core_shell_bicelle_elliptical(double r_minor, double x_core, double thick_rim, double thick_face, double length)
{
const double radius_max = (x_core < 1.0 ? r_minor : x_core*r_minor);
const double radius_max_tot = radius_max + thick_rim;
const double length_tot = length + 2.0*thick_face;
return sqrt(radius_max_tot*radius_max_tot + 0.25*length_tot*length_tot);
}
static double
radius_effective_core_shell_bicelle_elliptical(int mode, double r_minor, double x_core, double thick_rim, double thick_face, double length)
{
switch (mode) {
default:
case 1: // equivalent cylinder excluded volume
return radius_from_excluded_volume_core_shell_bicelle_elliptical(r_minor, x_core, thick_rim, thick_face, length);
case 2: // equivalent volume sphere
return radius_from_volume_core_shell_bicelle_elliptical(r_minor, x_core, thick_rim, thick_face, length);
case 3: // outer rim average radius
return 0.5*r_minor*(1.0 + x_core) + thick_rim;
case 4: // outer rim min radius
return (x_core < 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim);
case 5: // outer max radius
return (x_core > 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim);
case 6: // half outer thickness
return 0.5*length + thick_face;
case 7: // half diagonal
return radius_from_diagonal_core_shell_bicelle_elliptical(r_minor,x_core,thick_rim,thick_face,length);
}
}
static void
Fq_core_shell_bicelle_elliptical(double q,
double *F1,
double *F2,
double r_minor,
double x_core,
double thick_rim,
double thick_face,
double length,
double sld_core,
double sld_face,
double sld_rim,
double sld_solvent)
{
// core_shell_bicelle_elliptical, RKH Dec 2016, based on elliptical_cylinder and core_shell_bicelle
// tested against limiting cases of cylinder, elliptical_cylinder, stacked_discs, and core_shell_bicelle
const double halfheight = 0.5*length;
const double r_major = r_minor * x_core;
const double r2A = 0.5*(square(r_major) + square(r_minor));
const double r2B = 0.5*(square(r_major) - square(r_minor));
const double vol1 = M_PI*r_minor*r_major*(2.0*halfheight);
const double vol2 = M_PI*(r_minor+thick_rim)*(r_major+thick_rim)*2.0*(halfheight+thick_face);
const double vol3 = M_PI*r_minor*r_major*2.0*(halfheight+thick_face);
const double dr1 = vol1*(sld_core-sld_face);
const double dr2 = vol2*(sld_rim-sld_solvent);
const double dr3 = vol3*(sld_face-sld_rim);
//initialize integral
double outer_total_F1 = 0.0;
double outer_total_F2 = 0.0;
for(int i=0;i<GAUSS_N;i++) {
//setup inner integral over the ellipsoidal cross-section
//const double cos_theta = ( GAUSS_Z[i]*(vb-va) + va + vb )/2.0;
const double cos_theta = ( GAUSS_Z[i] + 1.0 )/2.0;
const double sin_theta = sqrt(1.0 - cos_theta*cos_theta);
const double qab = q*sin_theta;
const double qc = q*cos_theta;
const double si1 = sas_sinx_x(halfheight*qc);
const double si2 = sas_sinx_x((halfheight+thick_face)*qc);
double inner_total_F1 = 0;
double inner_total_F2 = 0;
for(int j=0;j<GAUSS_N;j++) {
//76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe)
//const double beta = ( GAUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0;
const double beta = ( GAUSS_Z[j] +1.0)*M_PI_2;
const double rr = sqrt(r2A - r2B*cos(beta));
const double be1 = sas_2J1x_x(rr*qab);
const double be2 = sas_2J1x_x((rr+thick_rim)*qab);
const double f = dr1*si1*be1 + dr2*si2*be2 + dr3*si2*be1;
inner_total_F1 += GAUSS_W[j] * f;
inner_total_F2 += GAUSS_W[j] * f * f;
}
//now calculate outer integral
outer_total_F1 += GAUSS_W[i] * inner_total_F1;
outer_total_F2 += GAUSS_W[i] * inner_total_F2;
}
// now complete change of integration variables (1-0)/(1-(-1))= 0.5
outer_total_F1 *= 0.25;
outer_total_F2 *= 0.25;
//convert from [1e-12 A-1] to [cm-1]
*F1 = 1e-2*outer_total_F1;
*F2 = 1e-4*outer_total_F2;
}
static double
Iqabc_core_shell_bicelle_elliptical(double qa, double qb, double qc,
double r_minor,
double x_core,
double thick_rim,
double thick_face,
double length,
double sld_core,
double sld_face,
double sld_rim,
double sld_solvent)
{
const double dr1 = sld_core-sld_face;
const double dr2 = sld_rim-sld_solvent;
const double dr3 = sld_face-sld_rim;
const double r_major = r_minor*x_core;
const double halfheight = 0.5*length;
const double vol1 = M_PI*r_minor*r_major*length;
const double vol2 = M_PI*(r_minor+thick_rim)*(r_major+thick_rim)*2.0*(halfheight+thick_face);
const double vol3 = M_PI*r_minor*r_major*2.0*(halfheight+thick_face);
// Compute effective radius in rotated coordinates
const double qr_hat = sqrt(square(r_major*qb) + square(r_minor*qa));
const double qrshell_hat = sqrt(square((r_major+thick_rim)*qb)
+ square((r_minor+thick_rim)*qa));
const double be1 = sas_2J1x_x( qr_hat );
const double be2 = sas_2J1x_x( qrshell_hat );
const double si1 = sas_sinx_x( halfheight*qc );
const double si2 = sas_sinx_x( (halfheight + thick_face)*qc );
const double fq = vol1*dr1*si1*be1 + vol2*dr2*si2*be2 + vol3*dr3*si2*be1;
return 1.0e-4 * fq*fq;
}
#endif // SAS_HAVE_core_shell_bicelle_elliptical
/* END Required header for SASmodel core_shell_bicelle_elliptical */
%}
DECLARE
%{
double shape;
double my_a_k;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth)
shape=1;
else if (R > 0 && yheight)
shape=0;
else if (R > 0 && !yheight)
shape=2;
if (shape < 0)
exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
/*TODO fix absorption*/
my_a_k = model_abs; /* assume absorption is given in 1/m */
%}
TRACE
%{
double l0, l1, k, l_full, l, dl, d_Phi;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
char intersect=0;
/* Intersection photon trajectory / sample (sample surface) */
if (shape == 0){
intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
else if (shape == 1){
intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
else if (shape == 2){
intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
if(intersect)
{
if(l0 < 0)
ABSORB;
/* Photon enters at l0. */
k = sqrt(kx*kx + ky*ky + kz*kz);
l_full = (l1 - l0); /* Length of full path through sample */
dl = rand01()*(l1 - l0) + l0; /* Point of scattering */
PROP_DL(dl); /* Point of scattering */
l = (dl-l0); /* Penetration in sample */
kx_i=kx;
ky_i=ky;
kz_i=kz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
qx = (kx_i-kx);
qy = (ky_i-ky);
qz = (kz_i-kz);
q = sqrt(qx*qx+qy*qy+qz*qz);
double trace_radius=radius;
double trace_thick_rim=thick_rim;
double trace_thick_face=thick_face;
double trace_length=length;
if ( pd_radius!=0.0 || pd_thick_rim!=0.0 || pd_thick_face!=0.0 || pd_length!=0.0 ){
trace_radius = (randnorm()*pd_radius+1.0)*radius;
trace_thick_rim = (randnorm()*pd_thick_rim+1.0)*thick_rim;
trace_thick_face = (randnorm()*pd_thick_face+1.0)*thick_face;
trace_length = (randnorm()*pd_length+1.0)*length;
}
// Sample dependent. Retrieved from SasView./////////////////////
float Iq_out;
Iq_out = 1;
double F1=0.0, F2=0.0;
Fq_core_shell_bicelle_elliptical(q, &F1, &F2, trace_radius, x_core, trace_thick_rim, trace_thick_face, trace_length, sld_core, sld_face, sld_rim, sld_solvent);
Iq_out = F2;
float vol;
vol = 1;
// Scale by 1.0E2 [SasView: 1/cm -> McXtrace: 1/m]
Iq_out = model_scale*Iq_out / vol * 1.0E2;
p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, R);
circle("xz", 0, -yheight/2.0, 0, R);
line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, R);
circle("xz", 0, 0.0, 0, R);
circle("yz", 0, 0.0, 0, R);
}
%}
END
|