File: SasView_fractal_core_shell.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (625 lines) | stat: -rw-r--r-- 18,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_fractal_core_shell
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView fractal_core_shell model component as sample description.
*
* %Description
*
* SasView_fractal_core_shell component, generated from fractal_core_shell.c in sasmodels.
*
* Example: 
*  SasView_fractal_core_shell(radius, thickness, sld_core, sld_shell, sld_solvent, volfraction, fractal_dim, cor_length, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_radius=0.0, pd_thickness=0.0, pd_cor_length=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* radius: [Ang] ([0.0, inf]) Sphere core radius.
* thickness: [Ang] ([0.0, inf]) Sphere shell thickness.
* sld_core: [1e-6/Ang^2] ([-inf, inf]) Sphere core scattering length density.
* sld_shell: [1e-6/Ang^2] ([-inf, inf]) Sphere shell scattering length density.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) Solvent scattering length density.
* volfraction: [] ([0.0, inf]) Volume fraction of building block spheres.
* fractal_dim: [] ([0.0, 6.0]) Fractal dimension.
* cor_length: [Ang] ([0.0, inf]) Correlation length of fractal-like aggregates.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_thickness: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_cor_length: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_fractal_core_shell

SETTING PARAMETERS (
        radius=60.0,
        thickness=10.0,
        sld_core=1.0,
        sld_shell=2.0,
        sld_solvent=3.0,
        volfraction=0.05,
        fractal_dim=2.0,
        cor_length=100.0,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_radius=0.0,
        pd_thickness=0.0,
        pd_cor_length=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel fractal_core_shell */
#define HAS_Iq
#define FORM_VOL

#ifndef SAS_HAVE_sas_3j1x_x
#define SAS_HAVE_sas_3j1x_x

#line 1 "sas_3j1x_x"
/**
* Spherical Bessel function 3*j1(x)/x
*
* Used for low q to avoid cancellation error.
* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
* in this case it is likely cancellation errors in the original expression
* using double precision that are the source.
*/
double sas_3j1x_x(double q);

// The choice of the number of terms in the series and the cutoff value for
// switching between series and direct calculation depends on the numeric
// precision.
//
// Point where direct calculation reaches machine precision:
//
//   single machine precision eps 3e-8 at qr=1.1 **
//   double machine precision eps 4e-16 at qr=1.1
//
// Point where Taylor series reaches machine precision (eps), where taylor
// series matches direct calculation (cross) and the error at that point:
//
//   prec   n eps  cross  error
//   single 3 0.28  0.4   6.2e-7
//   single 4 0.68  0.7   2.3e-7
//   single 5 1.18  1.2   7.5e-8
//   double 3 0.01  0.03  2.3e-13
//   double 4 0.06  0.1   3.1e-14
//   double 5 0.16  0.2   5.0e-15
//
// ** Note: relative error on single precision starts increase on the direct
// method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3.  This should be
// safe for the sans range, with objects of 100 nm supported to a q of 0.1
// while maintaining 5 digits of precision.  For usans/sesans, the objects
// are larger but the q is smaller, so again it should be fine.
//
// See explore/sph_j1c.py for code to explore these ranges.

// Use 4th order series
#if FLOAT_SIZE>4
#define SPH_J1C_CUTOFF 0.1
#else
#define SPH_J1C_CUTOFF 0.7
#endif
#pragma acc routine seq
double sas_3j1x_x(double q)
{
    // 2017-05-18 PAK - support negative q
    if (fabs(q) < SPH_J1C_CUTOFF) {
        const double q2 = q*q;
        return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.)))));
    } else {
        double sin_q, cos_q;
        SINCOS(q, sin_q, cos_q);
        return 3.0*(sin_q/q - cos_q)/(q*q);
    }
}


#endif // SAS_HAVE_sas_3j1x_x


#ifndef SAS_HAVE_sas_gamma
#define SAS_HAVE_sas_gamma

#line 1 "sas_gamma"
/*
The wrapper for gamma function from OpenCL and standard libraries
The OpenCL gamma function fails miserably on values lower than 1.0
while works fine on larger values.
We use gamma definition Gamma(t + 1) = t * Gamma(t) to compute
to function for values lower than 1.0. Namely Gamma(t) = 1/t * Gamma(t + 1)
For t < 0, we use Gamma(t) = pi / ( Gamma(1 - t) * sin(pi * t) )
*/

#if defined(NEED_TGAMMA)
#pragma acc routine seq
static double cephes_stirf(double x)
{
	const double MAXSTIR=143.01608;
	const double SQTPI=2.50662827463100050242E0;
	double y, w, v;

	w = 1.0 / x;

	w = ((((
		7.87311395793093628397E-4*w
		- 2.29549961613378126380E-4)*w
		- 2.68132617805781232825E-3)*w
		+ 3.47222221605458667310E-3)*w
		+ 8.33333333333482257126E-2)*w
		+ 1.0;
	y = exp(x);
	if (x > MAXSTIR)
	{ /* Avoid overflow in pow() */
		v = pow(x, 0.5 * x - 0.25);
		y = v * (v / y);
	}
	else
	{
		y = pow(x, x - 0.5) / y;
	}
	y = SQTPI * y * w;
	return(y);
}

#pragma acc routine seq
static double tgamma(double x) {
	double p, q, z;
	int sgngam;
	int i;

	sgngam = 1;
	if (isnan(x))
		return(x);
	q = fabs(x);

	if (q > 33.0)
	{
		if (x < 0.0)
		{
			p = floor(q);
			if (p == q)
			{
				return (NAN);
			}
			i = p;
			if ((i & 1) == 0)
				sgngam = -1;
			z = q - p;
			if (z > 0.5)
			{
				p += 1.0;
				z = q - p;
			}
			z = q * sin(M_PI * z);
			if (z == 0.0)
			{
				return(NAN);
			}
			z = fabs(z);
			z = M_PI / (z * cephes_stirf(q));
		}
		else
		{
			z = cephes_stirf(x);
		}
		return(sgngam * z);
	}

	z = 1.0;
	while (x >= 3.0)
	{
		x -= 1.0;
		z *= x;
	}

	while (x < 0.0)
	{
		if (x > -1.E-9)
			goto small;
		z /= x;
		x += 1.0;
	}

	while (x < 2.0)
	{
		if (x < 1.e-9)
			goto small;
		z /= x;
		x += 1.0;
	}

	if (x == 2.0)
		return(z);

	x -= 2.0;
	p = (((((
		+1.60119522476751861407E-4*x
		+ 1.19135147006586384913E-3)*x
		+ 1.04213797561761569935E-2)*x
		+ 4.76367800457137231464E-2)*x
		+ 2.07448227648435975150E-1)*x
		+ 4.94214826801497100753E-1)*x
		+ 9.99999999999999996796E-1;
	q = ((((((
		-2.31581873324120129819E-5*x
		+ 5.39605580493303397842E-4)*x
		- 4.45641913851797240494E-3)*x
		+ 1.18139785222060435552E-2)*x
		+ 3.58236398605498653373E-2)*x
		- 2.34591795718243348568E-1)*x
		+ 7.14304917030273074085E-2)*x
		+ 1.00000000000000000320E0;
	return(z * p / q);

small:
	if (x == 0.0)
	{
		return (NAN);
	}
	else
		return(z / ((1.0 + 0.5772156649015329 * x) * x));
}
#endif // NEED_TGAMMA

#pragma acc routine seq
inline double sas_gamma(double x)
{
    // Note: the builtin tgamma can give slow and unreliable results for x<1.
    // The following transform extends it to zero and to negative values.
    // It should return NaN for zero and negative integers but doesn't.
    // The accuracy is okay but not wonderful for negative numbers, maybe
    // one or two digits lost in the calculation. If higher accuracy is
    // needed, you could test the following loop:
    //    double norm = 1.;
    //    while (x<1.) { norm*=x; x+=1.; }
    //    return tgamma(x)/norm;
    return (x<0. ? M_PI/tgamma(1.-x)/sin(M_PI*x) : tgamma(x+1)/x);
}


#endif // SAS_HAVE_sas_gamma


#ifndef SAS_HAVE_core_shell
#define SAS_HAVE_core_shell

#line 1 "core_shell"
/*******************************************************************

core_shell_kernel

Form factor used in core_shell and fractal_core_shell

********************************************************************/
#pragma acc routine seq
static
double core_shell_fq(double q,
                         double radius,
                         double thickness,
                         double core_sld,
                         double shell_sld,
                         double solvent_sld)
{
    // Core first, then add in shell
    const double core_qr = q * radius;
    const double core_contrast = core_sld - shell_sld;
    const double core_bes = sas_3j1x_x(core_qr);
    const double core_volume = M_4PI_3 * cube(radius);
    double f = core_volume * core_bes * core_contrast;

    // Now the shell
    const double shell_qr = q * (radius + thickness);
    const double shell_contrast = shell_sld - solvent_sld;
    const double shell_bes = sas_3j1x_x(shell_qr);
    const double shell_volume = M_4PI_3 * cube(radius + thickness);
    f += shell_volume * shell_bes * shell_contrast;
    return f;
}

// Deprecated function: use core_shell_fq instead.
#pragma acc routine seq
static
double core_shell_kernel(double q,
                         double radius,
                         double thickness,
                         double core_sld,
                         double shell_sld,
                         double solvent_sld)
{
    const double fq = core_shell_fq(q, radius, thickness, core_sld, shell_sld, solvent_sld);
    return 1.0e-4 * fq*fq;
}


#endif // SAS_HAVE_core_shell


#ifndef SAS_HAVE_fractal_sq
#define SAS_HAVE_fractal_sq

#line 1 "fractal_sq"
#pragma acc routine seq
static double
fractal_sq(double q, double radius, double fractal_dim, double cor_length)
{
    //calculate S(q),  using Teixeira, Eq(15)
    // mathematica query to check limiting conditions:
    //    lim x->0 of [ x gamma(x-1) sin(arctan(q c (x-1))) (q r)^(-x) (1 + 1/(q c)^2)^((1-x)/2) ]
    // Note: gamma(x) may be unreliable for x<0, so the gamma(D-1) is risky.
    // We instead transform D*gamma(D-1) into gamma(D+1)/(D-1).
    double term;
    if (q == 0.) {
        const double D = fractal_dim;
        term = pow(cor_length/radius, D)*sas_gamma(D+1.);
    } else if (fractal_dim == 0.) {
        term = 1.0;
    } else if (fractal_dim == 1.) {
        term = atan(q*cor_length)/(q*radius);
    } else {
        // q>0, D>0
        const double D = fractal_dim;
        const double Dm1 = fractal_dim - 1.0;
        // Note: for large Dm1, sin(Dm1*atan(q*cor_length) can go negative
        const double t1 = sas_gamma(D+1.)/Dm1*sin(Dm1*atan(q*cor_length));
        const double t2 = pow(q*radius, -D);
        const double t3 = pow(1.0 + 1.0/square(q*cor_length), -0.5*Dm1);
        term = t1 * t2 * t3;
    }
    return 1.0 + term;
}


#endif // SAS_HAVE_fractal_sq


#ifndef SAS_HAVE_fractal_core_shell
#define SAS_HAVE_fractal_core_shell

#line 1 "fractal_core_shell"
static double
form_volume_fractal_core_shell(double radius, double thickness)
{
    return M_4PI_3 * cube(radius + thickness);
}

static double
Iq_fractal_core_shell(double q,
   double radius,
   double thickness,
   double core_sld,
   double shell_sld,
   double solvent_sld,
   double volfraction,
   double fractal_dim,
   double cor_length)
{
    //The radius for the building block of the core shell particle that is
    //needed by the Teixeira fractal S(q) is the radius of the whole particle.
    const double cs_radius = radius + thickness;
    const double sq = fractal_sq(q, cs_radius, fractal_dim, cor_length);
    const double fq = core_shell_fq(q, radius, thickness,
                                    core_sld, shell_sld, solvent_sld);

    return 1.0e-4 * volfraction * sq * fq * fq;
}


#endif // SAS_HAVE_fractal_core_shell



/* END Required header for SASmodel fractal_core_shell */
%}
    DECLARE
%{
  double shape;
  double my_a_k;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  /*TODO fix absorption*/
  my_a_k = model_abs; /* assume absorption is given in 1/m */

%}


TRACE
%{
  double l0, l1, k, l_full, l, dl, d_Phi;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection photon trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
  if(intersect)
  {
    if(l0 < 0)
      ABSORB;

    /* Photon enters at l0. */
    k = sqrt(kx*kx + ky*ky + kz*kz);
    l_full = (l1 - l0);          /* Length of full path through sample */
    dl = rand01()*(l1 - l0) + l0;    /* Point of scattering */
    PROP_DL(dl);                     /* Point of scattering */
    l = (dl-l0);                   /* Penetration in sample */

    kx_i=kx;
    ky_i=ky;
    kz_i=kz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(kx, ky, kz);
    kx *= k;
    ky *= k;
    kz *= k;
    qx = (kx_i-kx);
    qy = (ky_i-ky);
    qz = (kz_i-kz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_radius=radius;
    double trace_thickness=thickness;
    double trace_cor_length=cor_length;
    if ( pd_radius!=0.0 || pd_thickness!=0.0 || pd_cor_length!=0.0 ){
    trace_radius = (randnorm()*pd_radius+1.0)*radius;
    trace_thickness = (randnorm()*pd_thickness+1.0)*thickness;
    trace_cor_length = (randnorm()*pd_cor_length+1.0)*cor_length;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_fractal_core_shell(q, trace_radius, trace_thickness, sld_core, sld_shell, sld_solvent, volfraction, fractal_dim, trace_cor_length);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McXtrace: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));


    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END