1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_gaussian_peak
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView gaussian_peak model component as sample description.
*
* %Description
*
* SasView_gaussian_peak component, generated from gaussian_peak.c in sasmodels.
*
* Example:
* SasView_gaussian_peak(peak_pos, sigma,
* model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0,
* int target_index=1, target_x=0, target_y=0, target_z=1,
* focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0,
* )
*
* %Parameters
* INPUT PARAMETERS:
* peak_pos: [1/Ang] ([-inf, inf]) Peak position.
* sigma: [1/Ang] ([0, inf]) Peak width (standard deviation).
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_gaussian_peak
SETTING PARAMETERS (
peak_pos=0.05,
sigma=0.005,
model_scale=1.0,
model_abs=0.0,
xwidth=0.01,
yheight=0.01,
zdepth=0.005,
R=0,
target_x=0,
target_y=0,
target_z=1,
int target_index=1,
focus_xw=0.5,
focus_yh=0.5,
focus_aw=0,
focus_ah=0,
focus_r=0)
SHARE %{
%include "sas_kernel_header.c"
/* BEGIN Required header for SASmodel gaussian_peak */
#define HAS_Iq
#ifndef SAS_HAVE_gaussian_peak
#define SAS_HAVE_gaussian_peak
#line 1 "gaussian_peak"
double Iq_gaussian_peak(double q, double peak_pos, double sigma)
{
double scaled_dq = (q - peak_pos)/sigma;
return exp(-0.5*scaled_dq*scaled_dq); //sqrt(2*M_PI*sigma*sigma);
}
#endif // SAS_HAVE_gaussian_peak
/* END Required header for SASmodel gaussian_peak */
%}
DECLARE
%{
double shape;
double my_a_k;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth)
shape=1;
else if (R > 0 && yheight)
shape=0;
else if (R > 0 && !yheight)
shape=2;
if (shape < 0)
exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
/*TODO fix absorption*/
my_a_k = model_abs; /* assume absorption is given in 1/m */
%}
TRACE
%{
double l0, l1, k, l_full, l, dl, d_Phi;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
char intersect=0;
/* Intersection photon trajectory / sample (sample surface) */
if (shape == 0){
intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
else if (shape == 1){
intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
else if (shape == 2){
intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
if(intersect)
{
if(l0 < 0)
ABSORB;
/* Photon enters at l0. */
k = sqrt(kx*kx + ky*ky + kz*kz);
l_full = (l1 - l0); /* Length of full path through sample */
dl = rand01()*(l1 - l0) + l0; /* Point of scattering */
PROP_DL(dl); /* Point of scattering */
l = (dl-l0); /* Penetration in sample */
kx_i=kx;
ky_i=ky;
kz_i=kz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
qx = (kx_i-kx);
qy = (ky_i-ky);
qz = (kz_i-kz);
q = sqrt(qx*qx+qy*qy+qz*qz);
// Sample dependent. Retrieved from SasView./////////////////////
float Iq_out;
Iq_out = 1;
Iq_out = Iq_gaussian_peak(q, peak_pos, sigma);
float vol;
vol = 1;
// Scale by 1.0E2 [SasView: 1/cm -> McXtrace: 1/m]
Iq_out = model_scale*Iq_out / vol * 1.0E2;
p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, R);
circle("xz", 0, -yheight/2.0, 0, R);
line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, R);
circle("xz", 0, 0.0, 0, R);
circle("yz", 0, 0.0, 0, R);
}
%}
END
|