File: SasView_hollow_rectangular_prism_thin_walls.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (577 lines) | stat: -rw-r--r-- 16,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_hollow_rectangular_prism_thin_walls
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView hollow_rectangular_prism_thin_walls model component as sample description.
*
* %Description
*
* SasView_hollow_rectangular_prism_thin_walls component, generated from hollow_rectangular_prism_thin_walls.c in sasmodels.
*
* Example: 
*  SasView_hollow_rectangular_prism_thin_walls(sld, sld_solvent, length_a, b2a_ratio, c2a_ratio, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_length_a=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* sld: [1e-6/Ang^2] ([-inf, inf]) Parallelepiped scattering length density.
* sld_solvent: [1e-6/Ang^2] ([-inf, inf]) Solvent scattering length density.
* length_a: [Ang] ([0, inf]) Shorter side of the parallelepiped.
* b2a_ratio: [Ang] ([0, inf]) Ratio sides b/a.
* c2a_ratio: [Ang] ([0, inf]) Ratio sides c/a.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_length_a: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_hollow_rectangular_prism_thin_walls

SETTING PARAMETERS (
        sld=6.3,
        sld_solvent=1,
        length_a=35,
        b2a_ratio=1,
        c2a_ratio=1,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_length_a=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel hollow_rectangular_prism_thin_walls */
#define HAS_FQ
#define FORM_VOL

#ifndef SAS_HAVE_gauss76
#define SAS_HAVE_gauss76

#line 1 "gauss76"
// Created by Andrew Jackson on 4/23/07

 #ifdef GAUSS_N
 # undef GAUSS_N
 # undef GAUSS_Z
 # undef GAUSS_W
 #endif
 #define GAUSS_N 76
 #define GAUSS_Z Gauss76Z
 #define GAUSS_W Gauss76Wt

// Gaussians
constant double Gauss76Wt[76] = {
	.00126779163408536,		//0
	.00294910295364247,
	.00462793522803742,
	.00629918049732845,
	.00795984747723973,
	.00960710541471375,
	.0112381685696677,
	.0128502838475101,
	.0144407317482767,
	.0160068299122486,
	.0175459372914742,		//10
	.0190554584671906,
	.020532847967908,
	.0219756145344162,
	.0233813253070112,
	.0247476099206597,
	.026072164497986,
	.0273527555318275,
	.028587223650054,
	.029773487255905,
	.0309095460374916,		//20
	.0319934843404216,
	.0330234743977917,
	.0339977794120564,
	.0349147564835508,
	.0357728593807139,
	.0365706411473296,
	.0373067565423816,
	.0379799643084053,
	.0385891292645067,
	.0391332242205184,		//30
	.0396113317090621,
	.0400226455325968,
	.040366472122844,
	.0406422317102947,
	.0408494593018285,
	.040987805464794,
	.0410570369162294,
	.0410570369162294,
	.040987805464794,
	.0408494593018285,		//40
	.0406422317102947,
	.040366472122844,
	.0400226455325968,
	.0396113317090621,
	.0391332242205184,
	.0385891292645067,
	.0379799643084053,
	.0373067565423816,
	.0365706411473296,
	.0357728593807139,		//50
	.0349147564835508,
	.0339977794120564,
	.0330234743977917,
	.0319934843404216,
	.0309095460374916,
	.029773487255905,
	.028587223650054,
	.0273527555318275,
	.026072164497986,
	.0247476099206597,		//60
	.0233813253070112,
	.0219756145344162,
	.020532847967908,
	.0190554584671906,
	.0175459372914742,
	.0160068299122486,
	.0144407317482767,
	.0128502838475101,
	.0112381685696677,
	.00960710541471375,		//70
	.00795984747723973,
	.00629918049732845,
	.00462793522803742,
	.00294910295364247,
	.00126779163408536		//75 (indexed from 0)
};

constant double Gauss76Z[76] = {
	-.999505948362153,		//0
	-.997397786355355,
	-.993608772723527,
	-.988144453359837,
	-.981013938975656,
	-.972229228520377,
	-.961805126758768,
	-.949759207710896,
	-.936111781934811,
	-.92088586125215,
	-.904107119545567,		//10
	-.885803849292083,
	-.866006913771982,
	-.844749694983342,
	-.822068037328975,
	-.7980001871612,
	-.77258672828181,
	-.74587051350361,
	-.717896592387704,
	-.688712135277641,
	-.658366353758143,		//20
	-.626910417672267,
	-.594397368836793,
	-.560882031601237,
	-.526420920401243,
	-.491072144462194,
	-.454895309813726,
	-.417951418780327,
	-.380302767117504,
	-.342012838966962,
	-.303146199807908,		//30
	-.263768387584994,
	-.223945802196474,
	-.183745593528914,
	-.143235548227268,
	-.102483975391227,
	-.0615595913906112,
	-.0205314039939986,
	.0205314039939986,
	.0615595913906112,
	.102483975391227,			//40
	.143235548227268,
	.183745593528914,
	.223945802196474,
	.263768387584994,
	.303146199807908,
	.342012838966962,
	.380302767117504,
	.417951418780327,
	.454895309813726,
	.491072144462194,		//50
	.526420920401243,
	.560882031601237,
	.594397368836793,
	.626910417672267,
	.658366353758143,
	.688712135277641,
	.717896592387704,
	.74587051350361,
	.77258672828181,
	.7980001871612,	//60
	.822068037328975,
	.844749694983342,
	.866006913771982,
	.885803849292083,
	.904107119545567,
	.92088586125215,
	.936111781934811,
	.949759207710896,
	.961805126758768,
	.972229228520377,		//70
	.981013938975656,
	.988144453359837,
	.993608772723527,
	.997397786355355,
	.999505948362153		//75
};


#pragma acc declare copyin(Gauss76Wt[0:76], Gauss76Z[0:76])

#endif // SAS_HAVE_gauss76


#ifndef SAS_HAVE_hollow_rectangular_prism_thin_walls
#define SAS_HAVE_hollow_rectangular_prism_thin_walls

#line 1 "hollow_rectangular_prism_thin_walls"
static double
shell_volume(double length_a, double b2a_ratio, double c2a_ratio)
{
    const double length_b = length_a * b2a_ratio;
    const double length_c = length_a * c2a_ratio;
    const double shell_volume = 2.0 * (length_a*length_b + length_a*length_c + length_b*length_c);
    return shell_volume;
}

static double
form_volume_hollow_rectangular_prism_thin_walls(double length_a, double b2a_ratio, double c2a_ratio)
{
    const double length_b = length_a * b2a_ratio;
    const double length_c = length_a * c2a_ratio;
    const double form_volume = length_a * length_b * length_c;
    return form_volume;
}

static double
radius_from_excluded_volume_hollow_rectangular_prism_thin_walls(double length_a, double b2a_ratio, double c2a_ratio)
{
    const double r_equiv = sqrt(length_a*length_a*b2a_ratio/M_PI);
    const double length_c = length_a*c2a_ratio;
    return 0.5*cbrt(0.75*r_equiv*(2.0*r_equiv*length_c + (r_equiv + length_c)*(M_PI*r_equiv + length_c)));
}

static double
radius_effective_hollow_rectangular_prism_thin_walls(int mode, double length_a, double b2a_ratio, double c2a_ratio)
{
    switch (mode) {
    default:
    case 1: // equivalent cylinder excluded volume
        return radius_from_excluded_volume_hollow_rectangular_prism_thin_walls(length_a, b2a_ratio, c2a_ratio);
    case 2: // equivalent outer volume sphere
        return cbrt(cube(length_a)*b2a_ratio*c2a_ratio/M_4PI_3);
    case 3: // half length_a
        return 0.5 * length_a;
    case 4: // half length_b
        return 0.5 * length_a*b2a_ratio;
    case 5: // half length_c
        return 0.5 * length_a*c2a_ratio;
    case 6: // equivalent outer circular cross-section
        return length_a*sqrt(b2a_ratio/M_PI);
    case 7: // half ab diagonal
        return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio)));
    case 8: // half diagonal
        return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio) + square(c2a_ratio)));
    }
}

static void
Fq_hollow_rectangular_prism_thin_walls(double q,
    double *F1,
    double *F2,
    double sld,
    double solvent_sld,
    double length_a,
    double b2a_ratio,
    double c2a_ratio)
{
    const double length_b = length_a * b2a_ratio;
    const double length_c = length_a * c2a_ratio;
    const double a_half = 0.5 * length_a;
    const double b_half = 0.5 * length_b;
    const double c_half = 0.5 * length_c;

   //Integration limits to use in Gaussian quadrature
    const double v1a = 0.0;
    const double v1b = M_PI_2;  //theta integration limits
    const double v2a = 0.0;
    const double v2b = M_PI_2;  //phi integration limits

    double outer_sum_F1 = 0.0;
    double outer_sum_F2 = 0.0;
    for(int i=0; i<GAUSS_N; i++) {
        const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b );

        double sin_theta, cos_theta;
        double sin_c, cos_c;
        SINCOS(theta, sin_theta, cos_theta);
        SINCOS(q*c_half*cos_theta, sin_c, cos_c);

        // To check potential problems if denominator goes to zero here !!!
        const double termAL_theta = 8.0 * cos_c / (q*q*sin_theta*sin_theta);
        const double termAT_theta = 8.0 * sin_c / (q*q*sin_theta*cos_theta);

        double inner_sum_F1 = 0.0;
        double inner_sum_F2 = 0.0;
        for(int j=0; j<GAUSS_N; j++) {
            const double phi = 0.5 * ( GAUSS_Z[j]*(v2b-v2a) + v2a + v2b );

            double sin_phi, cos_phi;
            double sin_a, cos_a;
            double sin_b, cos_b;
            SINCOS(phi, sin_phi, cos_phi);
            SINCOS(q*a_half*sin_theta*sin_phi, sin_a, cos_a);
            SINCOS(q*b_half*sin_theta*cos_phi, sin_b, cos_b);

            // Amplitude AL from eqn. (7c)
            const double AL = termAL_theta
                * sin_a*sin_b / (sin_phi*cos_phi);

            // Amplitude AT from eqn. (9)
            const double AT = termAT_theta
                * ( cos_a*sin_b/cos_phi + cos_b*sin_a/sin_phi );

            inner_sum_F1 += GAUSS_W[j] * (AL+AT);
            inner_sum_F2 += GAUSS_W[j] * square(AL+AT);
        }

        inner_sum_F1 *= 0.5 * (v2b-v2a);
        inner_sum_F2 *= 0.5 * (v2b-v2a);
        outer_sum_F1 += GAUSS_W[i] * inner_sum_F1 * sin_theta;
        outer_sum_F2 += GAUSS_W[i] * inner_sum_F2 * sin_theta;
    }

    outer_sum_F1 *= 0.5*(v1b-v1a);
    outer_sum_F2 *= 0.5*(v1b-v1a);

    // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization)
    // The factor 2 is due to the different theta integration limit (pi/2 instead of pi)
    const double form_avg = outer_sum_F1/M_PI_2;
    const double form_squared_avg = outer_sum_F2/M_PI_2;

    // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization.
    const double contrast = sld - solvent_sld;

    // Convert from [1e-12 A-1] to [cm-1]
    *F1 = 1e-2 * contrast * form_avg;
    *F2 = 1e-4 * contrast * contrast * form_squared_avg;
}


#endif // SAS_HAVE_hollow_rectangular_prism_thin_walls



/* END Required header for SASmodel hollow_rectangular_prism_thin_walls */
%}
    DECLARE
%{
  double shape;
  double my_a_k;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  /*TODO fix absorption*/
  my_a_k = model_abs; /* assume absorption is given in 1/m */

%}


TRACE
%{
  double l0, l1, k, l_full, l, dl, d_Phi;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection photon trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
  if(intersect)
  {
    if(l0 < 0)
      ABSORB;

    /* Photon enters at l0. */
    k = sqrt(kx*kx + ky*ky + kz*kz);
    l_full = (l1 - l0);          /* Length of full path through sample */
    dl = rand01()*(l1 - l0) + l0;    /* Point of scattering */
    PROP_DL(dl);                     /* Point of scattering */
    l = (dl-l0);                   /* Penetration in sample */

    kx_i=kx;
    ky_i=ky;
    kz_i=kz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(kx, ky, kz);
    kx *= k;
    ky *= k;
    kz *= k;
    qx = (kx_i-kx);
    qy = (ky_i-ky);
    qz = (kz_i-kz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_length_a=length_a;
    if ( pd_length_a!=0.0 ){
    trace_length_a = (randnorm()*pd_length_a+1.0)*length_a;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    double F1=0.0, F2=0.0;
    Fq_hollow_rectangular_prism_thin_walls(q, &F1, &F2, sld, sld_solvent, trace_length_a, b2a_ratio, c2a_ratio);
    Iq_out = F2;


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McXtrace: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));


    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END