1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_rpa
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView rpa model component as sample description.
*
* %Description
*
* SasView_rpa component, generated from rpa.c in sasmodels.
*
* Example:
* SasView_rpa(case_num, N[4], Phi[4], v[4], L[4], b[4], K12, K13, K14, K23, K24, K34,
* model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0,
* int target_index=1, target_x=0, target_y=0, target_z=1,
* focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0,
* )
*
* %Parameters
* INPUT PARAMETERS:
* case_num: [] ([['C+D binary mixture', 'C:D diblock copolymer', 'B+C+D ternary mixture', 'B+C:D binary mixture', 'B:C:D triblock copolymer', 'A+B+C+D quaternary mixture', 'A+B+C:D ternary mixture', 'A+B:C:D binary mixture', 'A:B+C:D binary mixture', 'A:B:C:D quadblock copolymer']]) Component organization.
* N[4]: [] ([1, inf]) Degree of polymerization.
* Phi[4]: [] ([0, 1]) volume fraction.
* v[4]: [mL/mol] ([0, inf]) molar volume.
* L[4]: [fm] ([-inf, inf]) scattering length.
* b[4]: [Ang] ([0, inf]) segment length.
* K12: [] ([-inf, inf]) A:B interaction parameter.
* K13: [] ([-inf, inf]) A:C interaction parameter.
* K14: [] ([-inf, inf]) A:D interaction parameter.
* K23: [] ([-inf, inf]) B:C interaction parameter.
* K24: [] ([-inf, inf]) B:D interaction parameter.
* K34: [] ([-inf, inf]) C:D interaction parameter.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_rpa
SETTING PARAMETERS (
case_num=1,
vector N[4]={1000.0},
vector Phi[4]={0.25},
vector v[4]={100.0},
vector L[4]={10.0},
vector b[4]={5.0},
K12=-0.0004,
K13=-0.0004,
K14=-0.0004,
K23=-0.0004,
K24=-0.0004,
K34=-0.0004,
model_scale=1.0,
model_abs=0.0,
xwidth=0.01,
yheight=0.01,
zdepth=0.005,
R=0,
target_x=0,
target_y=0,
target_z=1,
int target_index=1,
focus_xw=0.5,
focus_yh=0.5,
focus_aw=0,
focus_ah=0,
focus_r=0)
SHARE %{
%include "sas_kernel_header.c"
/* BEGIN Required header for SASmodel rpa */
#define HAS_Iq
#ifndef SAS_HAVE_rpa
#define SAS_HAVE_rpa
#line 1 "rpa"
double Iq_rpa(double q, double fp_case_num,
double N[], double Phi[], double v[], double L[], double b[],
double Kab, double Kac, double Kad,
double Kbc, double Kbd, double Kcd
);
double Iq_rpa(double q, double fp_case_num,
double N[], // DEGREE OF POLYMERIZATION
double Phi[], // VOL FRACTION
double v[], // SPECIFIC VOLUME
double L[], // SCATT. LENGTH
double b[], // SEGMENT LENGTH
double Kab, double Kac, double Kad, // CHI PARAM
double Kbc, double Kbd, double Kcd
)
{
int icase = (int)(fp_case_num+0.5);
double Nab,Nac,Nad,Nbc,Nbd,Ncd;
double Phiab,Phiac,Phiad,Phibc,Phibd,Phicd;
double vab,vac,vad,vbc,vbd,vcd;
double m;
double Xa,Xb,Xc,Xd;
double Paa,S0aa,Pab,S0ab,Pac,S0ac,Pad,S0ad;
double S0ba,Pbb,S0bb,Pbc,S0bc,Pbd,S0bd;
double S0ca,S0cb,Pcc,S0cc,Pcd,S0cd;
//double S0da,S0db,S0dc;
double Pdd,S0dd;
double Kaa,Kbb,Kcc;
double Kba,Kca,Kcb;
//double Kda,Kdb,Kdc,Kdd;
double Zaa,Zab,Zac,Zba,Zbb,Zbc,Zca,Zcb,Zcc;
double DenT,T11,T12,T13,T21,T22,T23,T31,T32,T33;
double Y1,Y2,Y3,X11,X12,X13,X21,X22,X23,X31,X32,X33;
double ZZ,DenQ1,DenQ2,DenQ3,DenQ,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33;
double N11,N12,N13,N21,N22,N23,N31,N32,N33;
double M11,M12,M13,M21,M22,M23,M31,M32,M33;
double S11,S12,S22,S23,S13,S33;
//double S21,S31,S32,S44;
//double S14,S24,S34,S41,S42,S43;
double Lad,Lbd,Lcd,Nav,Intg;
// Set values for non existent parameters (eg. no A or B in case 0 and 1 etc)
//icase was shifted to N-1 from the original code
if (icase <= 1){
Phi[0] = Phi[1] = 0.0000001;
N[0] = N[1] = 1000.0;
L[0] = L[1] = 1.e-12;
v[0] = v[1] = 100.0;
b[0] = b[1] = 5.0;
Kab = Kac = Kad = Kbc = Kbd = -0.0004;
}
else if ((icase > 1) && (icase <= 4)){
Phi[0] = 0.0000001;
N[0] = 1000.0;
L[0] = 1.e-12;
v[0] = 100.0;
b[0] = 5.0;
Kab = Kac = Kad = -0.0004;
}
// Set volume fraction of component D based on constraint that sum of vol frac =1
Phi[3]=1.0-Phi[0]-Phi[1]-Phi[2];
//set up values for cross terms in case of block copolymers (1,3,4,6,7,8,9)
Nab=sqrt(N[0]*N[1]);
Nac=sqrt(N[0]*N[2]);
Nad=sqrt(N[0]*N[3]);
Nbc=sqrt(N[1]*N[2]);
Nbd=sqrt(N[1]*N[3]);
Ncd=sqrt(N[2]*N[3]);
vab=sqrt(v[0]*v[1]);
vac=sqrt(v[0]*v[2]);
vad=sqrt(v[0]*v[3]);
vbc=sqrt(v[1]*v[2]);
vbd=sqrt(v[1]*v[3]);
vcd=sqrt(v[2]*v[3]);
Phiab=sqrt(Phi[0]*Phi[1]);
Phiac=sqrt(Phi[0]*Phi[2]);
Phiad=sqrt(Phi[0]*Phi[3]);
Phibc=sqrt(Phi[1]*Phi[2]);
Phibd=sqrt(Phi[1]*Phi[3]);
Phicd=sqrt(Phi[2]*Phi[3]);
// Calculate Q^2 * Rg^2 for each homopolymer assuming random walk
Xa=q*q*b[0]*b[0]*N[0]/6.0;
Xb=q*q*b[1]*b[1]*N[1]/6.0;
Xc=q*q*b[2]*b[2]*N[2]/6.0;
Xd=q*q*b[3]*b[3]*N[3]/6.0;
//calculate all partial structure factors Pij and normalize n^2
Paa=2.0*(exp(-Xa)-1.0+Xa)/(Xa*Xa); // free A chain form factor
S0aa=N[0]*Phi[0]*v[0]*Paa; // Phi * Vp * P(Q)= I(Q0)/delRho^2
Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); //AB diblock (anchored Paa * anchored Pbb) partial form factor
S0ab=(Phiab*vab*Nab)*Pab;
Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); //ABC triblock AC partial form factor
S0ac=(Phiac*vac*Nac)*Pac;
Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); //ABCD four block
S0ad=(Phiad*vad*Nad)*Pad;
S0ba=S0ab;
Pbb=2.0*(exp(-Xb)-1.0+Xb)/(Xb*Xb); // free B chain
S0bb=N[1]*Phi[1]*v[1]*Pbb;
Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); // BC diblock
S0bc=(Phibc*vbc*Nbc)*Pbc;
Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); // BCD triblock
S0bd=(Phibd*vbd*Nbd)*Pbd;
S0ca=S0ac;
S0cb=S0bc;
Pcc=2.0*(exp(-Xc)-1.0+Xc)/(Xc*Xc); // Free C chain
S0cc=N[2]*Phi[2]*v[2]*Pcc;
Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); // CD diblock
S0cd=(Phicd*vcd*Ncd)*Pcd;
//S0da=S0ad;
//S0db=S0bd;
//S0dc=S0cd;
Pdd=2.0*(exp(-Xd)-1.0+Xd)/(Xd*Xd); // free D chain
S0dd=N[3]*Phi[3]*v[3]*Pdd;
// Reset all unused partial structure factors to 0 (depends on case)
//icase was shifted to N-1 from the original code
switch(icase){
case 0:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bb=0.000005;
S0bc=0.000006;
S0bd=0.000007;
S0cd=0.000008;
break;
case 1:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bb=0.000005;
S0bc=0.000006;
S0bd=0.000007;
break;
case 2:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bc=0.000005;
S0bd=0.000006;
S0cd=0.000007;
break;
case 3:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bc=0.000005;
S0bd=0.000006;
break;
case 4:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
break;
case 5:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
S0bc=0.000004;
S0bd=0.000005;
S0cd=0.000006;
break;
case 6:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
S0bc=0.000004;
S0bd=0.000005;
break;
case 7:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
break;
case 8:
S0ac=0.000001;
S0ad=0.000002;
S0bc=0.000003;
S0bd=0.000004;
break;
default : //case 9:
break;
}
S0ba=S0ab;
S0ca=S0ac;
S0cb=S0bc;
//S0da=S0ad;
//S0db=S0bd;
//S0dc=S0cd;
// self chi parameter is 0 ... of course
Kaa=0.0;
Kbb=0.0;
Kcc=0.0;
//Kdd=0.0;
Kba=Kab;
Kca=Kac;
Kcb=Kbc;
//Kda=Kad;
//Kdb=Kbd;
//Kdc=Kcd;
Zaa=Kaa-Kad-Kad;
Zab=Kab-Kad-Kbd;
Zac=Kac-Kad-Kcd;
Zba=Kba-Kbd-Kad;
Zbb=Kbb-Kbd-Kbd;
Zbc=Kbc-Kbd-Kcd;
Zca=Kca-Kcd-Kad;
Zcb=Kcb-Kcd-Kbd;
Zcc=Kcc-Kcd-Kcd;
DenT=(-(S0ac*S0bb*S0ca) + S0ab*S0bc*S0ca + S0ac*S0ba*S0cb - S0aa*S0bc*S0cb - S0ab*S0ba*S0cc + S0aa*S0bb*S0cc);
T11= (-(S0bc*S0cb) + S0bb*S0cc)/DenT;
T12= (S0ac*S0cb - S0ab*S0cc)/DenT;
T13= (-(S0ac*S0bb) + S0ab*S0bc)/DenT;
T21= (S0bc*S0ca - S0ba*S0cc)/DenT;
T22= (-(S0ac*S0ca) + S0aa*S0cc)/DenT;
T23= (S0ac*S0ba - S0aa*S0bc)/DenT;
T31= (-(S0bb*S0ca) + S0ba*S0cb)/DenT;
T32= (S0ab*S0ca - S0aa*S0cb)/DenT;
T33= (-(S0ab*S0ba) + S0aa*S0bb)/DenT;
Y1=T11*S0ad+T12*S0bd+T13*S0cd+1.0;
Y2=T21*S0ad+T22*S0bd+T23*S0cd+1.0;
Y3=T31*S0ad+T32*S0bd+T33*S0cd+1.0;
X11=Y1*Y1;
X12=Y1*Y2;
X13=Y1*Y3;
X21=Y2*Y1;
X22=Y2*Y2;
X23=Y2*Y3;
X31=Y3*Y1;
X32=Y3*Y2;
X33=Y3*Y3;
ZZ=S0ad*(T11*S0ad+T12*S0bd+T13*S0cd)+S0bd*(T21*S0ad+T22*S0bd+T23*S0cd)+S0cd*(T31*S0ad+T32*S0bd+T33*S0cd);
// D is considered the matrix or background component so enters here
m=1.0/(S0dd-ZZ);
N11=m*X11+Zaa;
N12=m*X12+Zab;
N13=m*X13+Zac;
N21=m*X21+Zba;
N22=m*X22+Zbb;
N23=m*X23+Zbc;
N31=m*X31+Zca;
N32=m*X32+Zcb;
N33=m*X33+Zcc;
M11= N11*S0aa + N12*S0ab + N13*S0ac;
M12= N11*S0ab + N12*S0bb + N13*S0bc;
M13= N11*S0ac + N12*S0bc + N13*S0cc;
M21= N21*S0aa + N22*S0ab + N23*S0ac;
M22= N21*S0ab + N22*S0bb + N23*S0bc;
M23= N21*S0ac + N22*S0bc + N23*S0cc;
M31= N31*S0aa + N32*S0ab + N33*S0ac;
M32= N31*S0ab + N32*S0bb + N33*S0bc;
M33= N31*S0ac + N32*S0bc + N33*S0cc;
DenQ1=1.0+M11-M12*M21+M22+M11*M22-M13*M31-M13*M22*M31;
DenQ2= M12*M23*M31+M13*M21*M32-M23*M32-M11*M23*M32+M33+M11*M33;
DenQ3= -M12*M21*M33+M22*M33+M11*M22*M33;
DenQ=DenQ1+DenQ2+DenQ3;
Q11= (1.0 + M22-M23*M32 + M33 + M22*M33)/DenQ;
Q12= (-M12 + M13*M32 - M12*M33)/DenQ;
Q13= (-M13 - M13*M22 + M12*M23)/DenQ;
Q21= (-M21 + M23*M31 - M21*M33)/DenQ;
Q22= (1.0 + M11 - M13*M31 + M33 + M11*M33)/DenQ;
Q23= (M13*M21 - M23 - M11*M23)/DenQ;
Q31= (-M31 - M22*M31 + M21*M32)/DenQ;
Q32= (M12*M31 - M32 - M11*M32)/DenQ;
Q33= (1.0 + M11 - M12*M21 + M22 + M11*M22)/DenQ;
S11= Q11*S0aa + Q21*S0ab + Q31*S0ac;
S12= Q12*S0aa + Q22*S0ab + Q32*S0ac;
S13= Q13*S0aa + Q23*S0ab + Q33*S0ac;
S22= Q12*S0ba + Q22*S0bb + Q32*S0bc;
S23= Q13*S0ba + Q23*S0bb + Q33*S0bc;
S33= Q13*S0ca + Q23*S0cb + Q33*S0cc;
//S21= Q11*S0ba + Q21*S0bb + Q31*S0bc;
//S31= Q11*S0ca + Q21*S0cb + Q31*S0cc;
//S32= Q12*S0ca + Q22*S0cb + Q32*S0cc;
//S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23;
//S14=-S11-S12-S13;
//S24=-S21-S22-S23;
//S34=-S31-S32-S33;
//S41=S14;
//S42=S24;
//S43=S34;
//calculate contrast where L[i] is the scattering length of i and D is the matrix
//Note that should multiply by Nav to get units of SLD which will become
// Nav*2 in the next line (SLD^2) but then normalization in that line would
//need to divide by Nav leaving only Nav or sqrt(Nav) before squaring.
Nav=6.022045e+23;
Lad=(L[0]/v[0]-L[3]/v[3])*sqrt(Nav);
Lbd=(L[1]/v[1]-L[3]/v[3])*sqrt(Nav);
Lcd=(L[2]/v[2]-L[3]/v[3])*sqrt(Nav);
Intg=Lad*Lad*S11+Lbd*Lbd*S22+Lcd*Lcd*S33+2.0*Lad*Lbd*S12+2.0*Lbd*Lcd*S23+2.0*Lad*Lcd*S13;
//rescale for units of Lij^2 (fm^2 to cm^2)
Intg *= 1.0e-26;
return Intg;
/* Attempts at a new implementation --- supressed for now
#if 1 // Sasview defaults
if (icase <= 1) {
N[0]=N[1]=1000.0;
Phi[0]=Phi[1]=0.0000001;
Kab=Kac=Kad=Kbc=Kbd=-0.0004;
L[0]=L[1]=1.0e-12;
v[0]=v[1]=100.0;
b[0]=b[1]=5.0;
} else if (icase <= 4) {
Phi[0]=0.0000001;
Kab=Kac=Kad=-0.0004;
L[0]=1.0e-12;
v[0]=100.0;
b[0]=5.0;
}
#else
if (icase <= 1) {
N[0]=N[1]=0.0;
Phi[0]=Phi[1]=0.0;
Kab=Kac=Kad=Kbc=Kbd=0.0;
L[0]=L[1]=L[3];
v[0]=v[1]=v[3];
b[0]=b[1]=0.0;
} else if (icase <= 4) {
N[0] = 0.0;
Phi[0]=0.0;
Kab=Kac=Kad=0.0;
L[0]=L[3];
v[0]=v[3];
b[0]=0.0;
}
#endif
const double Xa = q*q*b[0]*b[0]*N[0]/6.0;
const double Xb = q*q*b[1]*b[1]*N[1]/6.0;
const double Xc = q*q*b[2]*b[2]*N[2]/6.0;
const double Xd = q*q*b[3]*b[3]*N[3]/6.0;
// limit as Xa goes to 0 is 1
const double Pa = Xa==0 ? 1.0 : -expm1(-Xa)/Xa;
const double Pb = Xb==0 ? 1.0 : -expm1(-Xb)/Xb;
const double Pc = Xc==0 ? 1.0 : -expm1(-Xc)/Xc;
const double Pd = Xd==0 ? 1.0 : -expm1(-Xd)/Xd;
// limit as Xa goes to 0 is 1
const double Paa = Xa==0 ? 1.0 : 2.0*(1.0-Pa)/Xa;
const double Pbb = Xb==0 ? 1.0 : 2.0*(1.0-Pb)/Xb;
const double Pcc = Xc==0 ? 1.0 : 2.0*(1.0-Pc)/Xc;
const double Pdd = Xd==0 ? 1.0 : 2.0*(1.0-Pd)/Xd;
// Note: S0ij only defined for copolymers; otherwise set to zero
// 0: C/D binary mixture
// 1: C-D diblock copolymer
// 2: B/C/D ternery mixture
// 3: B/C-D binary mixture,1 homopolymer, 1 diblock copolymer
// 4: B-C-D triblock copolymer
// 5: A/B/C/D quaternary mixture
// 6: A/B/C-D ternery mixture, 2 homopolymer, 1 diblock copolymer
// 7: A/B-C-D binary mixture, 1 homopolymer, 1 triblock copolymer
// 8: A-B/C-D binary mixture, 2 diblock copolymer
// 9: A-B-C-D tetra-block copolymer
#if 0
const double S0aa = icase<5
? 1.0 : N[0]*Phi[0]*v[0]*Paa;
const double S0bb = icase<2
? 1.0 : N[1]*Phi[1]*v[1]*Pbb;
const double S0cc = N[2]*Phi[2]*v[2]*Pcc;
const double S0dd = N[3]*Phi[3]*v[3]*Pdd;
const double S0ab = icase<8
? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb;
const double S0ac = icase<9
? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb);
const double S0ad = icase<9
? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc);
const double S0bc = (icase!=4 && icase!=7 && icase!= 9)
? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc;
const double S0bd = (icase!=4 && icase!=7 && icase!= 9)
? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc);
const double S0cd = (icase==0 || icase==2 || icase==5)
? 0.0 : sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd;
#else // sasview equivalent
//printf("Xc=%g, S0cc=%g*%g*%g*%g\n",Xc,N[2],Phi[2],v[2],Pcc);
double S0aa = N[0]*Phi[0]*v[0]*Paa;
double S0bb = N[1]*Phi[1]*v[1]*Pbb;
double S0cc = N[2]*Phi[2]*v[2]*Pcc;
double S0dd = N[3]*Phi[3]*v[3]*Pdd;
double S0ab = sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb;
double S0ac = sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb);
double S0ad = sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc);
double S0bc = sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc;
double S0bd = sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc);
double S0cd = sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd;
switch(icase){
case 0:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bb=0.000005;
S0bc=0.000006;
S0bd=0.000007;
S0cd=0.000008;
break;
case 1:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bb=0.000005;
S0bc=0.000006;
S0bd=0.000007;
break;
case 2:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bc=0.000005;
S0bd=0.000006;
S0cd=0.000007;
break;
case 3:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
S0bc=0.000005;
S0bd=0.000006;
break;
case 4:
S0aa=0.000001;
S0ab=0.000002;
S0ac=0.000003;
S0ad=0.000004;
break;
case 5:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
S0bc=0.000004;
S0bd=0.000005;
S0cd=0.000006;
break;
case 6:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
S0bc=0.000004;
S0bd=0.000005;
break;
case 7:
S0ab=0.000001;
S0ac=0.000002;
S0ad=0.000003;
break;
case 8:
S0ac=0.000001;
S0ad=0.000002;
S0bc=0.000003;
S0bd=0.000004;
break;
default : //case 9:
break;
}
#endif
// eq 12a: \kappa_{ij}^F = \chi_{ij}^F - \chi_{i0}^F - \chi_{j0}^F
const double Kaa = 0.0;
const double Kbb = 0.0;
const double Kcc = 0.0;
//const double Kdd = 0.0;
const double Zaa = Kaa - Kad - Kad;
const double Zab = Kab - Kad - Kbd;
const double Zac = Kac - Kad - Kcd;
const double Zbb = Kbb - Kbd - Kbd;
const double Zbc = Kbc - Kbd - Kcd;
const double Zcc = Kcc - Kcd - Kcd;
//printf("Za: %10.5g %10.5g %10.5g\n", Zaa, Zab, Zac);
//printf("Zb: %10.5g %10.5g %10.5g\n", Zab, Zbb, Zbc);
//printf("Zc: %10.5g %10.5g %10.5g\n", Zac, Zbc, Zcc);
// T = inv(S0)
const double DenT = (- S0ac*S0bb*S0ac + S0ab*S0bc*S0ac + S0ac*S0ab*S0bc
- S0aa*S0bc*S0bc - S0ab*S0ab*S0cc + S0aa*S0bb*S0cc);
const double T11 = (-S0bc*S0bc + S0bb*S0cc)/DenT;
const double T12 = ( S0ac*S0bc - S0ab*S0cc)/DenT;
const double T13 = (-S0ac*S0bb + S0ab*S0bc)/DenT;
const double T22 = (-S0ac*S0ac + S0aa*S0cc)/DenT;
const double T23 = ( S0ac*S0ab - S0aa*S0bc)/DenT;
const double T33 = (-S0ab*S0ab + S0aa*S0bb)/DenT;
//printf("T1: %10.5g %10.5g %10.5g\n", T11, T12, T13);
//printf("T2: %10.5g %10.5g %10.5g\n", T12, T22, T23);
//printf("T3: %10.5g %10.5g %10.5g\n", T13, T23, T33);
// eq 18e: m = 1/(S0_{dd} - s0^T inv(S0) s0)
const double ZZ = S0ad*(T11*S0ad + T12*S0bd + T13*S0cd)
+ S0bd*(T12*S0ad + T22*S0bd + T23*S0cd)
+ S0cd*(T13*S0ad + T23*S0bd + T33*S0cd);
const double m=1.0/(S0dd-ZZ);
// eq 18d: Y = inv(S0)s0 + e
const double Y1 = T11*S0ad + T12*S0bd + T13*S0cd + 1.0;
const double Y2 = T12*S0ad + T22*S0bd + T23*S0cd + 1.0;
const double Y3 = T13*S0ad + T23*S0bd + T33*S0cd + 1.0;
// N = mYY^T + \kappa^F
const double N11 = m*Y1*Y1 + Zaa;
const double N12 = m*Y1*Y2 + Zab;
const double N13 = m*Y1*Y3 + Zac;
const double N22 = m*Y2*Y2 + Zbb;
const double N23 = m*Y2*Y3 + Zbc;
const double N33 = m*Y3*Y3 + Zcc;
//printf("N1: %10.5g %10.5g %10.5g\n", N11, N12, N13);
//printf("N2: %10.5g %10.5g %10.5g\n", N12, N22, N23);
//printf("N3: %10.5g %10.5g %10.5g\n", N13, N23, N33);
//printf("S0a: %10.5g %10.5g %10.5g\n", S0aa, S0ab, S0ac);
//printf("S0b: %10.5g %10.5g %10.5g\n", S0ab, S0bb, S0bc);
//printf("S0c: %10.5g %10.5g %10.5g\n", S0ac, S0bc, S0cc);
// M = I + S0 N
const double Maa = N11*S0aa + N12*S0ab + N13*S0ac + 1.0;
const double Mab = N11*S0ab + N12*S0bb + N13*S0bc;
const double Mac = N11*S0ac + N12*S0bc + N13*S0cc;
const double Mba = N12*S0aa + N22*S0ab + N23*S0ac;
const double Mbb = N12*S0ab + N22*S0bb + N23*S0bc + 1.0;
const double Mbc = N12*S0ac + N22*S0bc + N23*S0cc;
const double Mca = N13*S0aa + N23*S0ab + N33*S0ac;
const double Mcb = N13*S0ab + N23*S0bb + N33*S0bc;
const double Mcc = N13*S0ac + N23*S0bc + N33*S0cc + 1.0;
//printf("M1: %10.5g %10.5g %10.5g\n", Maa, Mab, Mac);
//printf("M2: %10.5g %10.5g %10.5g\n", Mba, Mbb, Mbc);
//printf("M3: %10.5g %10.5g %10.5g\n", Mca, Mcb, Mcc);
// Q = inv(M) = inv(I + S0 N)
const double DenQ = (+ Maa*Mbb*Mcc - Maa*Mbc*Mcb - Mab*Mba*Mcc
+ Mab*Mbc*Mca + Mac*Mba*Mcb - Mac*Mbb*Mca);
const double Q11 = ( Mbb*Mcc - Mbc*Mcb)/DenQ;
const double Q12 = (-Mab*Mcc + Mac*Mcb)/DenQ;
const double Q13 = ( Mab*Mbc - Mac*Mbb)/DenQ;
//const double Q21 = (-Mba*Mcc + Mbc*Mca)/DenQ;
const double Q22 = ( Maa*Mcc - Mac*Mca)/DenQ;
const double Q23 = (-Maa*Mbc + Mac*Mba)/DenQ;
//const double Q31 = ( Mba*Mcb - Mbb*Mca)/DenQ;
//const double Q32 = (-Maa*Mcb + Mab*Mca)/DenQ;
const double Q33 = ( Maa*Mbb - Mab*Mba)/DenQ;
//printf("Q1: %10.5g %10.5g %10.5g\n", Q11, Q12, Q13);
//printf("Q2: %10.5g %10.5g %10.5g\n", Q21, Q22, Q23);
//printf("Q3: %10.5g %10.5g %10.5g\n", Q31, Q32, Q33);
// eq 18c: inv(S) = inv(S0) + mYY^T + \kappa^F
// eq A1 in the appendix
// To solve for S, use:
// S = inv(inv(S^0) + N) inv(S^0) S^0
// = inv(S^0 inv(S^0) + N) S^0
// = inv(I + S^0 N) S^0
// = Q S^0
const double S11 = Q11*S0aa + Q12*S0ab + Q13*S0ac;
const double S12 = Q12*S0aa + Q22*S0ab + Q23*S0ac;
const double S13 = Q13*S0aa + Q23*S0ab + Q33*S0ac;
const double S22 = Q12*S0ab + Q22*S0bb + Q23*S0bc;
const double S23 = Q13*S0ab + Q23*S0bb + Q33*S0bc;
const double S33 = Q13*S0ac + Q23*S0bc + Q33*S0cc;
// If the full S is needed...it isn't since Ldd = (rho_d - rho_d) = 0 below
//const double S14=-S11-S12-S13;
//const double S24=-S12-S22-S23;
//const double S34=-S13-S23-S33;
//const double S44=S11+S22+S33 + 2.0*(S12+S13+S23);
// eq 12 of Akcasu, 1990: I(q) = L^T S L
// Note: eliminate cases without A and B polymers by setting Lij to 0
// Note: 1e-13 to convert from fm to cm for scattering length
const double sqrt_Nav=sqrt(6.022045e+23) * 1.0e-13;
const double Lad = icase<5 ? 0.0 : (L[0]/v[0] - L[3]/v[3])*sqrt_Nav;
const double Lbd = icase<2 ? 0.0 : (L[1]/v[1] - L[3]/v[3])*sqrt_Nav;
const double Lcd = (L[2]/v[2] - L[3]/v[3])*sqrt_Nav;
const double result=Lad*Lad*S11 + Lbd*Lbd*S22 + Lcd*Lcd*S33
+ 2.0*(Lad*Lbd*S12 + Lbd*Lcd*S23 + Lad*Lcd*S13);
return result;
*/
}
#endif // SAS_HAVE_rpa
/* END Required header for SASmodel rpa */
%}
DECLARE
%{
double shape;
double my_a_k;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth)
shape=1;
else if (R > 0 && yheight)
shape=0;
else if (R > 0 && !yheight)
shape=2;
if (shape < 0)
exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
/*TODO fix absorption*/
my_a_k = model_abs; /* assume absorption is given in 1/m */
%}
TRACE
%{
double l0, l1, k, l_full, l, dl, d_Phi;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
char intersect=0;
/* Intersection photon trajectory / sample (sample surface) */
if (shape == 0){
intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
else if (shape == 1){
intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
else if (shape == 2){
intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
if(intersect)
{
if(l0 < 0)
ABSORB;
/* Photon enters at l0. */
k = sqrt(kx*kx + ky*ky + kz*kz);
l_full = (l1 - l0); /* Length of full path through sample */
dl = rand01()*(l1 - l0) + l0; /* Point of scattering */
PROP_DL(dl); /* Point of scattering */
l = (dl-l0); /* Penetration in sample */
kx_i=kx;
ky_i=ky;
kz_i=kz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&kx, &ky, &kz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(kx, ky, kz);
kx *= k;
ky *= k;
kz *= k;
qx = (kx_i-kx);
qy = (ky_i-ky);
qz = (kz_i-kz);
q = sqrt(qx*qx+qy*qy+qz*qz);
// Sample dependent. Retrieved from SasView./////////////////////
float Iq_out;
Iq_out = 1;
Iq_out = Iq_rpa(q, case_num, N[4], Phi[4], v[4], L[4], b[4], K12, K13, K14, K23, K24, K34);
float vol;
vol = 1;
// Scale by 1.0E2 [SasView: 1/cm -> McXtrace: 1/m]
Iq_out = model_scale*Iq_out / vol * 1.0E2;
p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, R);
circle("xz", 0, -yheight/2.0, 0, R);
line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, R);
circle("xz", 0, 0.0, 0, R);
circle("yz", 0, 0.0, 0, R);
}
%}
END
|