1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Source_div
*
* %Identification
* Written by: Erik Knudsen
* Date: November 11, 2009
* Origin: Risoe
* Release: McXtrace 0.1
*
* X-ray source with Gaussian or uniform divergence
*
* %Description
* A flat rectangular surface source with uniform or Gaussian divergence profile and focussing.
* If the parametere gauss is not set (the default) the divergence profile is flat
* in the range [-focus_ax,focus_ay]. If gauss is set, the focux_ax,focus_ay is considered
* the standard deviation of the gaussian profile.
* Currently focussing is only active for flat profile. The "focus window" is defined by focus_xw,focus_yh and dist.
* The spectral intensity profile is uniformly distributed in the energy interval defined by e0+-dE/2 or
* by wavelength lambda0+-dlambda/2
*
* Example: Source_div(xwidth=0.1, yheight=0.1, focus_aw=2, focus_ah=2, E0=14, dE=2, gauss=0)
*
* %Parameters
* xwidth: [m] Width of source.
* yheight: [m] Height of source.
* focus_aw: [rad] Standard deviation (Gaussian) or maximal (uniform) horz. width divergence.
* focus_ah: [rad] Standard deviation (Gaussian) or maximal (uniform) vert. height divergence.
* focus_xw: [m] Width of sampling window
* focus_yh: [m] Height of sampling window
* dist: [m] Downstream distance to place sampling target window
* E0: [keV] Mean energy of X-rays.
* dE: [keV] Energy half spread of X-rays. If gauss==0 dE is the half-spread, i.e. E\in[E0-dE,E0+dE], if gauss!=0 it's interpreted as the standard dev.
* lambda0: [AA] Mean wavelength of X-rays (only relevant for E0=0).
* dlambda: [AA] Wavelength half spread of X-rays.
* gauss: [1] Criterion: 0: uniform, 1: Gaussian distribution of energy/wavelength.
* gauss_a: [1] Criterion: 0: uniform, 1: Gaussian divergence distribution.
* flux: [1/(s * mm**2 *mrad**2 * energy unit)] flux per energy unit, Angs or keV.
* randomphase: [1] If !=0 the photon phase is chosen randomly.
* phase: [1] Value of the photon phase (if randomphase==0).
* spectrum_file: [string] File from which to read the spectral intensity profile
* focus_ar: [rad] Standard deviation (Gaussian) or maximal (uniform) radial divergence.
* radius: [m] Radius of circular source
* verbose: [0/1] Show more information
*
* %End
*******************************************************************************/
DEFINE COMPONENT Source_div
SETTING PARAMETERS (string spectrum_file="NULL", xwidth=0, yheight=0, dist=0,
focus_xw=0, focus_yh=0,focus_aw=0, focus_ah=0, focus_ar=0, radius=0,
E0=0, dE=0, lambda0=0, dlambda=0, flux=0, gauss=0, gauss_a=0, int randomphase=1, phase=0, int verbose=0)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
double p_init;
double K;
double dK;
double xmin;
double xmax;
double xw_2;
double focus_xw_2;
double ymin;
double ymax;
double yh_2;
double focus_yh_2;
double pmul;
double pint;
t_Table T;
int spectrum_from_file;
%}
INITIALIZE
%{
focus_xw_2=focus_xw/2.0;
focus_yh_2=focus_yh/2.0;
xmin=-xwidth/2.0;
ymin=-yheight/2.0;
xmax=xwidth/2.0;
ymax=yheight/2.0;
if(radius==0 && ( xmax==xmin && ymin==xmax) ){
fprintf(stderr,"ERROR (%s): No meaningful source area set. Either set radius or xwidth and yheight.\n",NAME_CURRENT_COMP);
exit(-1);
}
/*flag if we are using a datafile*/
spectrum_from_file=(spectrum_file && strcmp(spectrum_file,"NULL") && strlen(spectrum_file));
if (spectrum_from_file){
/*read spectrum from file*/
int status=0;
if ( (status=Table_Read(&(T),spectrum_file,0))==-1){
fprintf(stderr,"ERROR (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,spectrum_file?spectrum_file:"");
exit(-1);
}
/*data is now in table t*/
/*integrate to get total flux, assuming raw numbers have been corrected for measuring aperture*/
int i;
pint=0;
for (i=0;i<T.rows-1;i++){
pint+=((T.data[i*T.columns+1]+T.data[(i+1)*T.columns+1])/2.0)*(T.data[(i+1)*T.columns]-T.data[i*T.columns]);
}
if (verbose){
printf("INFO (%s): Integrated intensity radiated is %g pht/s\n",NAME_CURRENT_COMP,pint);
if(E0) printf("INFO (%s):, E0!=0 -> assuming intensity spectrum is parametrized by energy [keV]\n",NAME_CURRENT_COMP);
}
}else if (!E0 && !lambda0){
fprintf(stderr,"ERROR (%s): Error: Must specify either wavelength or energy distribution\n",NAME_CURRENT_COMP);
exit(-1);
}
/*calculate the X-ray weight from the flux*/
if (flux){
pmul=flux;
}else{
pmul=1;
}
pmul*=1.0/((double) mcget_ncount());
if( dist==0 && ( focus_xw!=0 || focus_yh!=0 )){
fprintf(stderr,"ERROR (%s): Cannot have focus sampling window (focus_xw x focus_yh) = (%g x %g) with dist=0.\n",NAME_CURRENT_COMP);
exit(-1);
}
/*check if divergence limits are compatible with focus_xw, focus_yh*/
double maxdivh,maxdivv;
if(focus_xw!=0){
maxdivh=atan((xwidth+focus_xw)/dist);
if (focus_aw>maxdivh){
focus_aw=maxdivh;
if (verbose){
fprintf(stderr,"WARNING (%s): sampling width does not support full divergence. Adjusting to focus_aw=%g rad\n",NAME_CURRENT_COMP,focus_aw);
}
}
}
if(focus_yh!=0){
printf("I am here\n");
maxdivv=atan((yheight+focus_yh)/dist);
if (focus_ah>maxdivv){
focus_ah=maxdivv;
if (verbose){
fprintf(stderr,"WARNING (%s): sampling height does not support full divergence. Adjusting to focus_ah=%g rad\n",NAME_CURRENT_COMP,focus_ah);
}
}
}
%}
TRACE
%{
double kk,theta_x,theta_y,l,e,k;
p=pmul;
if (spectrum_from_file){
double pp=0;
while (pp<=0){
l=T.data[0]+ (T.data[(T.rows-1)*T.columns] -T.data[0])*rand01();
pp=Table_Value(T,l,1);
}
p*=pp;
/*if E0!=0 the tabled value is assumed to be energy in keV*/
if (E0!=0){
k=E2K*l;
}else{
k=(2*M_PI/l);
}
}else if (E0){
if(!dE){
e=E0;
}else if (gauss){
e=E0+dE*randnorm();
}else{
e=randpm1()*dE + E0;
}
k=E2K*e;
}else if (lambda0){
if (!dlambda){
l=lambda0;
}else if (gauss){
l=lambda0+dlambda*randnorm();
}else{
l=randpm1()*dlambda*0.5 + lambda0;
}
k=(2*M_PI/l);
}
/*pick a point of origin*/
if(!radius){
x=xmin+rand01()*xwidth;
y=ymin+rand01()*yheight;
z=0;
}else{
double r=radius*sqrt(rand01());
double th=rand01()*2*M_PI;
x=r*cos(th);
y=r*sin(th);
z=0;
}
/*pick a direction*/
if (focus_aw!=0 || focus_ah!=0){
if (!gauss_a){
/*find limits of uniform sampling scheme for vertical divergence.
thetav should be acos(1-2*U) for U\in[0,1]. for theta measured from vertical axis
we only use a sub-interval for U and measure from horizontal plane.*/
double sample_lim1,u2;
sample_lim1=(1-cos(M_PI_2 - focus_ah/2.0))*0.5;
u2=randpm1()*(sample_lim1-0.5) + 0.5;
theta_x = randpm1()*focus_aw/2.0;
theta_y = acos(1-2*u2) - M_PI_2;
}else{
theta_x=randnorm()*focus_aw;
theta_y=randnorm()*focus_ah;
}
kx=tan(theta_x);
ky=tan(theta_y);
kz=1.0;
NORM(kx,ky,kz);
kz*=k;
kx*=k;
ky*=k;
}else if (focus_ar>0){
/*radial divergence profile*/
double theta,psi,kp;
if(!gauss_a){
double sample_lim1,u2;
sample_lim1=(1-cos(focus_ar/2.0))*0.5;
u2=rand01()*(sample_lim1);
psi=acos(1-2*u2);
}else{
do{
psi=abs(randnorm()*focus_ar);
} while (psi>M_PI);
}
theta=rand01()*2*M_PI;
kz=k*cos(psi);
kp=sqrt(k*k-kz*kz);
kx=kp*sin(theta);
ky=kp*cos(theta);
}else{
/*0 dviergence - source is mathematically collimated*/
kz=k;
kx=ky=0;
}
/*set polarization and phase.*/
Ex=0;Ey=0;Ez=0;
if (!randomphase){
phi=phase;
}else{
phi=rand01()*M_2_PI;
}
%}
MCDISPLAY
%{
double dist_display=1;
if (dist_display>dist){
dist_display=dist;
}
multiline(5, -xwidth/2.0, -yheight/2.0, 0.0,
xwidth/2.0, -yheight/2.0, 0.0,
xwidth/2.0, yheight/2.0, 0.0,
-xwidth/2.0, yheight/2.0, 0.0,
-xwidth/2.0, -yheight/2.0, 0.0);
if (focus_aw){
dashed_line(0,0,0, tan(focus_aw/2.0)*dist_display,0,dist_display,4);
dashed_line(0,0,0,-tan(focus_aw/2.0)*dist_display,0,dist_display,4);
}
if (focus_ah){
dashed_line(0,0,0,0, tan(focus_ah/2.0)*dist_display,dist_display,4);
dashed_line(0,0,0,0,-tan(focus_ah/2.0)*dist_display,dist_display,4);
}
%}
END
|