1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
*
* Component: Source_gaussian
*
* %Identification
* Written by: Jana Baltser & Erik Knudsen
* Date: April, 2011.
* Version: 1.0
* Origin: NBI
*
* Gaussian cross-section source
*
* %Description
* A simple source model emitting photons from a gaussian distribution in the X-Y plane with the specified
* standard deviations and divergence. A square target centered on the beam (Z-axis)
* may be used to restrict the beam to that aperture. If no target aperture is given the full gaussian cross-section is used.
* Further, the beam is restricted to emit photons between E0+-dE keV, or lambda0+-dlambda, whichever is given, if a spectrum_file
* is not specified, in which case the contents of the file dictates the emitted spectrum.
*
* Example: Source_gaussian(sig_x=10e-6,sig_y=10e-6,dist=15,sigPr_x=9e-6, sigPr_y=9e-6,E0=12.5, dE=0.1)
*
* %Parameters
* Input Parameters:
* sig_x: [m] Horizontal standard deviation of source (rms source size).
* sig_y: [m] Vertical standard deviation of source (rms source size).
* sigPr_x: [rad] Angular horizontal divergence
* sigPr_y: [rad] Angular vertical divergence
* Optional Parameters:
* spectrum_file: [ ] File from which to read the spectral intensity profile
* E0: [keV] Centre of emitted energy spectrum (overrides spectrum_file)
* dE: [kev] Half-width (or std. dev.) of emitted energy spectrum.
* lambda0: [AA] Centre of emitted wavelength spectrum.
* dlambda: [AA] Half-width (or std. dev.) of emitted wavelength spectrum.
* phase: [rad] The initial phase of the photons.
* flux: [] Scaling factor to set the total emitted unrestricted flux.
* focus_xw: [m] Width of sampling window dist m downstream from source to allow focused sampling.
* focus_yh: [m] Height of sampling window dist m downstream from source to allow focused sampling.
* dist: [m] Distance from source plane to sampling window.
* brilliance: [ ] Unit in spectrum_file is Brilliance - apply corrections to get to raw flux.
* gauss: [0/1] Gaussian (1) or uniform (0) spectrum profile.
* randomphase: [rad] If nonzero phase is random (incoherent radiation), otherwise it is set to the value of phase
*
* %End
*****************************************/
DEFINE COMPONENT Source_gaussian
SETTING PARAMETERS (string spectrum_file="NULL", sig_x=1,sig_y=0,sigPr_x=0,sigPr_y=0,flux=1,brilliance=0,dist=1,gauss=0,focus_xw=0,focus_yh=0,E0=0, dE=0, lambda0=0,dlambda=-1,phase=0, randomphase=1)
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
double l0,
double dl;
double pmul;
double pint;
/*column specifiers for energy and intenisty/brilliance.*/
int column_e;
int column_flux;
t_Table sT;
double spX;
double spY;
int uniform_sampling;
int spectrum_from_file;
%}
INITIALIZE
%{
if (!sig_y) sig_y=sig_x;
if (!sigPr_x || !sigPr_y){
fprintf(stderr,"Source_gaussian (%s): Must define horizontal and vertical angular divergences \n",NAME_CURRENT_COMP);
exit(1);
}
if ( (focus_xw || focus_yh) && (dist*focus_xw*focus_yh == 0.0) ){
fprintf(stderr,"Error (%s): Nonsensical definition of sampling window: (focus_xw,focus_yh,dist)=(%g %g %g). Aborting\n",NAME_CURRENT_COMP,focus_xw,focus_yh,dist);
exit(1);
}
/*flag if we are using a datafile*/
spectrum_from_file=(spectrum_file && strcmp(spectrum_file,"NULL") && strlen(spectrum_file));
if (spectrum_from_file){
/*read spectrum from file*/
int status=0;
if ( (status=Table_Read(&sT,spectrum_file,0))==-1){
fprintf(stderr,"Source_gaussian(%s) Error: Could not parse file \"%s\"\n",NAME_CURRENT_COMP,spectrum_file?spectrum_file:"");
exit(1);
}
/*data is now in table sT*/
/*integrate to get total flux, assuming numbers have been corrected for measuring aperture*/
int i;
int cols,rows;
pint=0;
cols=sT.columns;
rows=sT.rows;
column_e=0;/*default column specifiers*/
column_flux=1;
/*parse header for column specifiers*/
char **parsing;
parsing=Table_ParseHeader(sT.header,"column_e","column_E",
"column_l", "column_L",
"column_bril", "column_flux",NULL);
if (parsing){
if (parsing[0]) { E0=-1; column_e=strtol(parsing[0],NULL,0); }
if (parsing[1]) { E0=-1; column_e=strtol(parsing[1],NULL,10); }
if (parsing[2]) { E0=0; column_e=strtol(parsing[2],NULL,10); }
if (parsing[3]) { E0=0; column_e=strtol(parsing[3],NULL,10); }
if (parsing[4]) { brilliance=1; column_flux=strtol(parsing[4],NULL,10); }
if (parsing[5]) { brilliance=0; column_flux=strtol(parsing[5],NULL,10); }
}
t_Table *T=&(sT);
for (i=0;i<rows-1;i++){
int ec=column_e;
int flc=column_flux;
double ebin=(T->data[(i+1)*cols + ec]-T->data[i*cols + ec]); /*energy bin width in keV*/
if (brilliance){
/*unit is brilliance - not raw flux per unit angle and source area*/
/*correct for the non-uniform energy binning*/
double ebw=T->data[i*cols + ec]*1e-3; /*absolute bw in keV (should be the mean energy of the bin edges)*/
pint+=T->data[i*cols+flc]/ebw*ebin;
}else{
pint+=T->data[i*cols+flc]*ebin;
}
}
printf("INFO (%s): Integrated intensity radiated is %g pht/s\n",NAME_CURRENT_COMP,pint);
if(E0) printf("%s: E0!=0 -> assuming intensity spectrum is parametrized by energy [keV]\n",NAME_CURRENT_COMP);
} else if (!E0 && !lambda0){
fprintf(stderr,"Error (%s): Must specify either wavelength or energy distribution\n",NAME_CURRENT_COMP);
exit(1);
}
/*Beam's footprint at a dist calculation*/
spX=sqrt(sig_x*sig_x+sigPr_x*sigPr_x*dist*dist);
spY=sqrt(sig_y*sig_y+sigPr_y*sigPr_y*dist*dist);
uniform_sampling=0;
if (focus_xw && focus_yh){
/*adjust for a focusing window*/
pmul*=erf(focus_xw*0.5/M_SQRT2/spX)*erf(focus_yh*0.5/M_SQRT2/spY);
if ( focus_xw<spX || focus_yh<spY){
/*use a uniform sampling scheme for more efficient sampling by adjusting weights*/
uniform_sampling=1;
}
}
/*corrections for energy range, calculate the X-ray weight from the flux*/
if (flux){//pmul=flux;
pmul=flux*1.0/(double)mcget_ncount();
if(E0 && dE){
pmul*=2*dE;
}else if (lambda0 && dlambda){
pmul*=2*(12.398/(lambda0-dlambda)-12.398/(lambda0+dlambda));
}
}else if(spectrum_from_file ){
pmul*=(sT.data[(sT.rows-1)*sT.columns]-sT.data[0]);
}else{
pmul=1.0/(double)mcget_ncount();
}
%}
TRACE
%{
double xx,yy,x1,y1,z1;
double k,e,l;
double F1=1.0;
double dx,dy,dz;
/* Initial source area. Gaussian distribution at origin*/
xx=randnorm();
yy=randnorm();
x=xx*sig_x;
y=yy*sig_y;
z=0;
p=1.0;
if (spectrum_from_file){
double pp=0;
l=sT.data[0]+ (sT.data[(sT.rows-1)*sT.columns] -sT.data[0])*rand01();
if(brilliance){
/*correct for brilliance being defined in relative wavelength band to get raw flux*/
pp=Table_Value(sT,l,column_flux)/(Table_Value(sT,l,column_e)*1e-3);
}else{
pp=Table_Value(sT,l,column_flux);
}
p*=pp;
/*if E0!=0 assume tables values are in keV, otherwise assume lambda i AA*/
if (E0) {
k=E2K*l;
}else{
k=(2*M_PI/l);
}
}else if (E0){
if(!dE){
e=E0;
}else if (gauss){
e=E0+dE*randnorm();
}else{
e=randpm1()*dE + E0;
}
k=E2K*e;
}else if (lambda0){
if (!dlambda){
l=lambda0;
}else if (gauss){
l=lambda0+dlambda*randnorm();
}else{
l=randpm1()*dlambda + lambda0;
}
k=(2*M_PI/l);
}
/* targeted area calculation*/
if (focus_xw){
if (uniform_sampling){
/*sample uniformly but adjust weight*/
x1=randpm1()*focus_xw/2.0;
p*=exp(-(x1*x1)/(2.0*spX*spX));
}else {
do {
x1=randnorm()*spX;
}while (fabs(x1)>focus_xw/2.0);
}
}else{
x1=randnorm()*spX;
}
if (focus_yh){
if (uniform_sampling){
/*sample uniformly but adjust weight*/
y1=randpm1()*focus_yh/2.0;
p*=exp(-(y1*y1)/(2.0*spY*spY));
}else {
do {
y1=randnorm()*spY;
}while (fabs(y1)>focus_yh/2.0);
}
}else{
y1=randnorm()*spY;
}
z1=dist;
dx=x1-x;
dy=y1-y;
dz=sqrt(dx*dx+dy*dy+dist*dist);
kx=(k*dx)/dz;
ky=(k*dy)/dz;
kz=(k*dist)/dz;
/*randomly pick phase*/
if (randomphase){
phi=rand01()*2*M_PI;
}else{
phi=phase;
}
/*set polarization vector*/
Ex=0;Ey=0;Ez=0;
p*=pmul;
%}
MCDISPLAY
%{
double radius;
if (sig_x<sig_y) radius=sig_x;
else radius=sig_y;
circle("xy",0,0,0,radius);
%}
END
|